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Abstract

Convolutional neural networks (CNNs) have been used to extract information from various datasets of different dimen-
sions. This approach has led to accurate interpretations in several subfields of biological research, like pharmacogenomics,
addressing issues previously faced by other computational methods. With the rising attention for personalized and preci-
sion medicine, scientists and clinicians have now turned to artificial intelligence systems to provide them with solutions for
therapeutics development. CNNs have already provided valuable insights into biological data transformation. Due to the
rise of interest in precision and personalized medicine, in this review, we have provided a brief overview of the possibilities
of implementing CNNs as an effective tool for analyzing one-dimensional biological data, such as nucleotide and protein
sequences, as well as small molecular data, e.g., simplified molecular-input line-entry specification, InChl, binary finger-
prints, etc., to categorize the models based on their objective and also highlight various challenges. The review is organized
into specific research domains that participate in pharmacogenomics for a more comprehensive understanding. Furthermore,

the future intentions of deep learning are outlined.
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Introduction

The massive accumulation of data from genomics, tran-
scriptomics, proteomics, metabolomics, and drug discovery
has shifted the focus of ‘omics’ to ‘informatics’ due to the
emergence of overwhelming biological data, referred to as
the ‘Bigdata’, primarily arising from the high-throughput
sequencing technologies [1, 2]. The rate of accumulation of
new sequence data is far beyond the scientific communities’
capacity to determine their attributes through experimental
methods [3]. Thus, a considerable amount of data is avail-
able to be processed and interpreted, and with significant
improvements in computational resources, the time required
to process a substantial amount of data has been dramati-
cally reduced [4]. While conventional learning algorithms
are inadequate in processing data present in its natural form,
deep learning has brought about developments in solving
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problems in artificial intelligence [5]. These deep learning
models have overtaken machine learning algorithms as they
can extract features automatically; however, it also leaves
the need for better model management for reproducibility
as much information is lost during the model training [6].
Still, deep learning systems have defined structures and algo-
rithms that allow them to learn through training, extract fea-
tures, and alter the parameters to map the input and predict
the output [7].

The idea of deep learning and neural networks has
emerged from mimicking the neurons of the human nerv-
ous system. These artificial neural networks (ANN5) rapidly
accept inputs and produce outputs with a complex network
of neurons (hidden layers) for processing. The input nodes
receive inputs and try to identify the nonlinear input—output
relationship to calculate an optimal solution for the given
problem [7]. The architecture of ANNS can be classified fur-
ther as convolutional neural networks (CNNSs) and recurrent
neural networks (RNNs). The CNNs are a subset of ANNSs,
with each node detecting local features from the input vector,
minimizing the parameters in a process called down-sam-
pling, and the subsequent layers combining these features
into a fully connected layer [8]. The RNNs, contrarily, are
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networks that show dynamic behavior by learning temporal
tasks [9]. These models can input several data types, rang-
ing from simple one-dimensional data to multi-dimensional
data.

With these advancements, several new databases can be
created to extract valuable information from the accumu-
lated biological data. The applications of neural networks
for processing such data present opportunities in genomics
and drug discovery [2]. Deep learning strategies have made
immense progress in recent years and gained popularity in
handling huge volumes of structured data, widely used for
processing images [10—12]. However, their implications in
analyzing one-dimensional data like biological sequence
data, SMILES codes, or medical texts are not widely rec-
ognized [13-16]. Biological sequences like DNA, RNA, or
protein sequences can be identified as simple one-dimen-
sional data that characterize a biological system, while
SMILES data can depict chemical compounds. The potential
benefits of deep learning and their success in data analysis
are presented here. This could persuade biologists to join the
community, learn, and develop more models on their own in
their respective fields of study.

In this review, we elucidate CNNs as a valuable tool in
pharmacogenomics for biological data analytics. As most
biologists are not specialized in machine learning, we aim
to introduce deep learning methods, specifically CNNs, to
analyze one-dimensional data. In this regard, various CNN
methods integrated with other machine learning algorithms
developed in the past decade are reviewed. An outline of
essential components of a CNN is presented along with its
applications. The applications of these strategies are broadly
categorized into five subsections as follows: (1) prediction
of single nucleotide polymorphisms (SNPs) in DNA, (2)
prediction of regulatory regions in DNA, (3) prediction
of DNA/RNA binding sites in proteins, (4) prediction of
drug—target interactions, and (5) prediction of drug—drug
interactions, as illustrated in Fig. 1.

Overview of CNNs

CNN s are a collection of neurons that are organized in inter-
connected layers, with convolutional, pooling, and fully con-
nected layers [17]. As a mathematical construct that pro-
cesses data of multiple dimensions, CNNs are designed to
adaptively learn simpler patterns at lower depths while tran-
sitioning to more complicated patterns as we dive deeper.
Deep neural networks overcome the use of exponentially
large parameters by the addition of multiple hidden layers.
There are two significant characteristics of a CNN: weight
sharing and local connectivity [18]. Weight sharing implies
uniform weights across the nodes in the layer. Local connec-
tivity is the term used when each node receives input only
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from a few local values in an array, and each output is related
to only certain parts of the input vector (Fig. 2).

The CNN framework

The convolutional layers perform operations of convolution
and activation. A linear operation like convolution is where
each of its layers performs an element-wise multiplication
between an array of features called a kernel and the input
of array numbers called a tensor [19]. The kernel is usually
of a defined size, 3 X3 or 5x5. The repeated operations on
smaller arrays in local patches that make up a single array
give rise to a feature map, which acts as an input to the next
layer in the network. Such persistent operations at several
locations detect local conjunctions from the layer [20]. A
convolutional layer with ‘n’ kernels can detect ‘n’ local fea-
tures that result in the formation of ‘n’ feature maps [21]. A
subsequent activation function follows, which computes the
function’s nonlinearity, a jump from previously conducted
linear convolution operations, with the commonly applied
nonlinear functions being the tangent function (tanh) or the
rectified linear unit (ReLU).

The pooling layer reduces the dimensions of the input lay-
ers, subsequently reducing layer parameters. This operation
merges similar features by shifting the patches containing
these features across rows or columns [5]. While a more
commonly used pooling method, max-pooling, selects the
highest value out of a kernel to pass through to the output
tensor, average pooling calculates the average in the kernel
[22, 23].

Fully connected layers connect every local input from
the previous layer to every output in the next layer. Its role
is to combine portions of the generated outputs from convo-
lutional layers with a one-dimensional vector consisting of
probabilities of each feature belonging to a label. Nodes in
these layers have a learnable weight that can map inputs to
the desired outputs [24]. The final layer consists of an activa-
tion function different from the other layers, with softmax as
an example for classification problems.

Training a neural network

Training a neural network is the process of finding optimal
weights and biases for nodes in a layer. In CNNs, training
aims at finding optimal kernels in convolutional layers and
weights in the fully connected layers [25]. Forward propa-
gation inspects input features from the previous layer and
produces an output across the hidden units first and then
to the output layer with a final nonlinear activation func-
tion. The task involves initializing parameters, kernels, and
weights with random values with the input of feature vectors
from the training dataset to obtain the corresponding output
value for every node in each layer. To calculate errors at
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each output, the loss function is evaluated to check for model
performance. Backpropagation involves the optimization of
algorithms by changing parameters in each node using gra-
dient descent. For each weight, the gradient descent is the
deviation in the amount of loss when that weight is altered
by a small amount. After repeated iterations, it eventually
calculates the optimal parameters that provide minimum loss
in the algorithm [26].

Data collection can be from various sources such as
public repositories, clinical reports, experimental or syn-
thetic datasets, depending on the requirements (Fig. 3). For
instance, DeepECA, a model predicting protein contact
from multiple sequence alignment, obtained the 1D amino
acid sequence data using PISCES, a PDB sequence culling

server [27]. Similarly, for DNA-binding protein identifica-
tion, Shadab et al. extracted information from Protein Data
Bank (PDB) and named the training dataset as ‘PDB1075’
[28]. Training a deep CNN from scratch has its challenges.
A deep CNN requires large amounts of medical data, but dis-
eases that occur less frequently tend to have smaller datasets.
Poor memory and computational resources with complica-
tions due to overfitting require a great deal of patience and
expertise [29]. An alternative to this would be to implement
pre-trained CNNs and fine-tuned according to the applica-
tion [30, 31]. To increase the performance with smaller data-
sets, any of the following strategies can be used, such as
data augmentation [32], transfer learning [33], and capsule
network [34].
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Fig.2 Basic architecture of a CNN. The input layer extracts infor-
mation from the input sequence by multiplying with weights. The
subsequent layers perform the function of convolution and pooling,
wherein these layers extract local information and pool it, reduc-
ing dimensions of the sequence vector. Fully connected layers have
its nodes connected to all the nodes in the previous layer. The final

Hyper-parameter and parameter tuning

A parameter is a variable that is interior to the model and
configured by learning the data. Parameters can only be ini-
tialized but are not set by the user, and it determines the
performance of the model, for instance, kernel and weights.
Hyperparameters are set by the user and are external to the
model. These include learning rates, number of iterations,
and number of layers. Tuning involves collecting weights of
the layers from previously trained models to a new network,
except for the last fully connected layer [35]. Assessment
of the required number of parameters and hyperparameters
may vary according to the application [36]. The number of
parameters required directly correlates to the complexity
of the neural network, and it will have a significant impact
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BACK PROPAGATION

activation function outputs the sequence classification. This predicted
value is compared to the actual annotated value when the model is
being trained. The prediction errors are assessed, and the model
undergoes back propagation iteratively to update the existing param-
eters each time to reduce the errors in prediction until the values con-
verge

on the accuracy [37]. Too many parameters can cause
overfitting.

Pharmacogenomic data analysis using CNNs

There is an increase in the availability of sources from
where data can be extracted (Fig. 3). This data can be one-
dimensional biological sequences, such as DNA, RNA, or
protein sequences. For small molecules, data formats, such
as SMILES, SMARTS, InChl, binary fingerprints, can be
used to represent chemical structures. Besides, medical
literature that includes text briefings about biomolecular
targets and biomarkers is also one-dimensional. This data
may not provide knowledge on prediction-based analysis
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Fig.3 The production of datasets. (a) Different techniques involved
to create annotations on the sequences. Some of these techniques
include ChIP-seq to identify protein binding sites, mass spectrome-
try to identify protein/drug structures or gPCR to quantify the gene
expression. (b) Annotated sequences, SMILES codes or interac-

unless processed in machine learning models. Likewise,
machine learning models are ineffective without incorpo-
rating appropriate datasets. The following text reviews the
relationship between prediction tools and learning data. We
constrict the CNN approach as a prediction tool and one-
dimensional input as learning data to summarize applica-
tions and improvements in pharmacogenomics prediction
through recent years. For biological sequences, we have
classified pharmacogenomics analysis into the prediction of
SNPs in DNA, prediction of regulatory regions in DNA, and
prediction of DNA/RNA binding sites in proteins; we have
involved SMILES representation in drug—target interaction
prediction and lastly, medical texts in drug—drug interaction
prediction. A summary of all the models communicated in
this article is provided in Table 1.

Prediction of single nucleotide polymorphisms
(SNPs) in DNA

Mutations in the genomic sequences may lead to diseases
and disorders. Interpreting these signatures is imperative for
early detection and treatment. Although conducting biologi-
cal experiments help record the gene expression data that

tion networks uploaded to various databases like Protein Data Bank
(PDB), DrugBank, or large-scale projects like ENCODE, Roadmap
Epigenomics. (¢) Obtained annotated sequences, SMILES represen-
tation present in databases or medical texts containing unstructured
data of drug—target or drug—drug interactions

infer the phenotypes or functions of cells, profiling such data
for diseases is intricate due to the amount and complexity
of the genes. On the other hand, characterizing SNPs has
been challenging due to sensitivity issues, as modeling the
functions requires a precise prediction of single-nucleotide
sensitivity [38, 40]. Other setbacks faced by machine learn-
ing methods include the insufficiency of data from rare
disorders, risk of overfitting, and difficulty integrating data
samples from different gene expression platforms [40].
While CNNs are yet to be modeled as an ideal method,
they have shown promises over other machine learning
methods in certain frontiers. A framework to detect non-
coding variants, DeepSEA, was developed by Zhou and
Troyanskaya [38]. It was trained using transcription factor
binding data; the position of the non-coding variant dictated
its regulatory properties. This model can predict the influ-
ence of several SNPs on transcription factor binding. For
instance, a ‘C to T” mutation at SNP locus rs4784227 on the
transcription factor FOXA1 induces the risk of breast cancer,
and an SNP, ‘T to C’ at the binding site for GATA1 may lead
to a-thalassemia. DeepVariant could detect indel variants in
whole-genome sequencing (WGS) data and exome data with
high sensitivity even after limiting the training dataset [15].
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Unlike DeepVariant that uses read pileup as input, NeuSo-
matic functions with base frequency as the input data and
detects somatic mutations using sequence alignment while
dealing with greater accuracy [39]. NeuSomatic can pre-
dict the type and length of the somatic mutation and has a
CNN structure inspired by ResNet [72]. Training this model
on two real WGS datasets consisting of chronic lympho-
cytic leukemia and melanoma data obtained a test accuracy
of >99% and > 93%, respectively. This method was sug-
gested for broader applications in somatic mutation detec-
tion. The model Basset predicted Genome-wide association
studies (GWAS) SNPs that likely affected the local gene
expression [73]. SNPs from GWAS were tested to interpret
the relationship between genetics and bipolar disorder [74].
This model yielded a test accuracy of 91% and 92% and
detected 137 and 407 risk genes, respectively, of which 22
and 51 genes were reported to be associated with the occur-
rence of bipolar disorder.

Multi-task deep learning (MTDL) algorithm was devel-
oped to classify different cancers [40]. The insufficiency of
datasets in learning algorithms was solved using different
gene features for the same output label on two evaluation
sets (e.g., tasks involving acute myeloid leukemia as the out-
put). In total, 12 tasks for evaluating its performance were
used, such as adenocarcinoma, seminoma, ovarian cancer,
and colon cancer. Feng et al. developed a bi-stream model
that simultaneously inputs two SNP maps [41]. These maps
were obtained by converting the SNP intensities at each site
into chromosomal SNP maps at the initial stages. This model
was established for predicting human Down Syndrome, a
disorder of intellectual instability caused by genomic dupli-
cations and dosage imbalances, like microduplications at
human chromosome 21.

Prediction of regulatory regions in DNA

Variations in the gene expression levels can directly con-
tribute to complex diseases; hence it is vital to understand
DNA sequence components that constitute gene regulation.
Prediction of the precise impact of such regulatory elements
can help progress in diagnosis and medicine. A model like
Deopen can read DNA regulatory codes and predicted chro-
matin accessibility [42]. Enhancers are sequences far from
promoters that bind to the transcription factors to regulate
gene expression, and these are critical for healthy cellular
development and differentiation [75]. Exploring enhancers
in sequences has led to a multi-layered CNN model pro-
posed by Chen et al. to capture complex sequences [43].
Testing this model for different species inferred the con-
servation of these sequences across mammals. Other CNN
models that predict enhancer sites are iEnhancer-ECNN
[44], BiREN [45], and DeepEnhancer [46]. An ensemble
learning algorithm consisting of CNNs was introduced in

@ Springer

iEnhancer-ECNN. Analysis for the area under the receiver
operating characteristics curve (AUC) and accuracy
recorded higher values in iEnhancer-ECNN than in models
such as iEnhancer-2L, EnhancerPred, and iEnhancer-EL.
Learning enhancer elements using BiRen achieved high
performance, with an AUC of 0.945. DeepEnhancer used
datasets from the ENCODE and FANTOMS project [76].
FANTOMS consisted of maps of promoters and enhancers
present in mammalian cell lines. Compared to the gapped
k-mer support vector machine (gkmSVM), DeepEnhancer
had a higher AUC [46].

Promoters are the regions in DNA that denote the start of
transcription. The design principle of these sites is difficult
as promoters are gene-specific, and hence the diversity is
broad [77]. Designing computational methods here is chal-
lenging as sequence features from other models are hard
to reuse. A few promoter site recognition models include
CNNProm [47], PromID [78] and DeeReCT-PromID [48].
CNNProm was learned using a well-known promoter class,
TATA promoters for eukaryotes present in the EPDnew pro-
moter database, and sigma70 sub-class promoters of E.coli.
PromID was an improved model that outperformed its pre-
decessor, CNNProm, with improved precision and lesser
likelihood to produce false positives. DeeReCT-PromID
had a similar impact and could study longer sequences with
higher precision.

The principle of ‘achieving mRNA abundance from rec-
ognizing promoter sequences in the genome’ was applied to
predict the gene expression levels from the given sequence
[36]. Several other attempts to record gene expression by
correlating it to transcription factor binding have brought
about issues in expected motif binding and signal identi-
fication, delivering unlikely false positives and noise in
sequencing data [79]. Constructing new models that do not
use such experimental data could bring about promises in
regulatory mechanisms. In this experiment, the model accu-
rately predicted the expression levels in genes of cells like
human lymphoblastoid cells and human myelogenous leu-
kemia cells. It was estimated from this model that promoter
sequences cause ~50% of the gene expression variability.
However, other aspects of gene expression remain undis-
covered, potentially giving rise to more complex models in
the future.

Prediction of DNA/RNA binding sites in proteins

DNA binding proteins are the proteins that have a common
DNA binding domain but a discrete sequence of amino
acids that allow for specific binding interactions. Examples
of DNA binding proteins include DNA polymerases, coac-
tivators, corepressors. These are involved in several aspects
of genetic activity like packing, replication, transcription,
repair [80]. Genetic signals associated with them play a
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crucial role in gene expression and cell development that
directly associates with studies in complex traits, the patho-
genesis of diseases, and the characteristics of diseases like
diabetes and cancer [81].

CNN models to identify specific protein sequences that
bind to DNA have been developed alongside datasets like
PDNA-543, PDNA-224, and PDNA-316 and have been used
to evaluate performances of the features’ position-specific
scoring matrix (PSSM), one-hot encoding, and predicted sol-
vent accessibility (PSA), that further lead to the prediction of
DNA binding sites in protein [49]. This model was a combi-
nation of features in a CNN, with an ensemble classifier. It
obtained a test accuracy of ~90% on the dataset PDNA-543,
higher than in predictor models TargetDNA and EC-RUS
(WSRC). DeepBind was an upgrade from traditional scoring
matrices and could be applied to microarray and sequencing
data [50]. It was evaluated alongside 26 other algorithms
[82] using protein binding microarray (PBM) data, and it
outperformed all the other methods. A trick into presenting
better learning algorithms is to follow the two rules given;
reverse complementing the DNA strand and treating it as
another sample; extending the DNA sequence, and dividing
it into three shorter sequences [81]. This enabled the CNN
model to understand the relationships between the double-
strand DNA sequences better. This strategy applied to Deep-
Sea [38], and DeepBind models significantly improved
AUC. DeepDBP-CNN, inspired by previously existing mod-
els like DeepBind, used pre-learned embedding and CNN
and produced a training accuracy of > 94%, a sensitivity of
0.83, and an AUC of 0.986 [28]. A comparison of Deep-
DBP-CNN with other methods showed promising results.
An SVM classifier model like HMMBinder, trained with
the same dataset (PDB 1075), had an accuracy of ~86%, a
sensitivity of 0.87, and an AUC of 0.902, while other SVM-
based models performed even more poorly. A useful tactic
to prevent overfitting is to introduce a dropout layer at the
end [83]; this layer will randomly drop a node with all its
connections and hence make the model prevent overfitting
to some degree.

RNA binding proteins (RBP) can recognize specific RNA
sequences or structural patterns, called motifs. Like DBP,
such proteins play a role in stability, cellular localization,
and transport while associating themselves in co-transcrip-
tional and post-transcriptional processes [84]. These motifs
observed in RBPs can be obtained using in vitro assays
like RNAcomplete [85]. With such findings differing in
different cell environments and proving costly, an alterna-
tive approach was to apply deep learning, specifically CNN
models using RNA primary sequence as an input to locate
sequence binding motifs. A global module of iDeepE,
iDeepE-G used techniques similar to that in DeepBind and
RNA padding (extending all sequences to that of the long-
est available sequence) [52]. This module evaluated with

the RBP-24 dataset had an average AUC of 0.931, and this
model performed the best out of other sequence predictors
like ResNet-E, Pse-SVM, GraphPlot, and Deepnet-rbp. A
drawback of iDeepE is that it requires a broader training
set to generate a better model. iDeepS, proposed by the
same author [52], introduced the identification of structure
binding motifs. Examples of binding discovery using the
structure motifs by iDeepS included the preference of pro-
tein hnRNPC binding to U-rich hairpin structures and the
interaction of protein PUM2 with UA-rich stem regions.
A CNN model to predict enhancer-promoter interactions
was developed by Zhuang et al., (2019), which performed
as effectively as a complex CNN-RNN model hybrid [86].
Argonaute is a protein associated with the post-transcrip-
tional regulator microRNA (miRNA) to form RNA-induced
silencing complexes (RISC) [53]. This complex results in
the silencing of gene expression and further mRNA degra-
dation. McGeary et al. approached this prediction of repres-
sion with a model that calculated the K, values for miRNA
binding sites [87].

Prediction of drug-target interactions

Drug—target interaction (DTI) prediction is essential for
assessing interactions that lead to the identification of new
drug candidates and can predict many of its side effects
before the start of clinical trials [88]. In vivo techniques
are expensive, and while they are accurate, the proposal
of exploring every possible drug for a target seems labori-
ous and tedious in practice [89]. Moreover, very few com-
pounds worked on end up in the market as drugs after years
of research, mainly due to their toxicity and side effects.
In silico methods can narrow down these chemicals much
quicker, making it feasible to experimentally work only on
the shortlisted candidates. The fundamental idea in drug dis-
covery is that chemically similar drugs interact with similar
protein targets in our system. These predictions can be made
from 3D protein structures using methods like ligand-based
approaches that scan through databases to identify exist-
ing ligands that fit into a given receptor [90] or structure-
based approaches that build ligands from small fragments
of molecules binding to different locations in a target site
[91]. In either of these methods, there is a requirement for
obtaining the 3D structure of the protein and the ligand,
and this a complex task as it is done through strenuous
experimental processes. Hence, there is a requirement to
shift toward methods that are simple and straightforward and
use 1D data such as DNA/protein sequences and SMILES
representations of small molecules. These datasets can be
obtained from databases such as DrugBank, ChEMBL,
STITCH, KEGG, for computational analysis to identify
relationships between drug and target protein interactions
and consequently predict new drugs that alter the disease
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state by regulating the activity of the molecular targets [56].
Validation of such targets follows that use in vitro or in vivo
models.

The models that identify the relationship between the
physicochemical properties of chemical structures and
their biological activities are termed as Quantitative Struc-
ture—Activity Relationship (QSAR) models, and these aim
at modeling the ligand descriptors [92, 93]. This is where
we shift our focus away from genomic sequences and
attempt to model the chemical compounds. Hu et al. used
SMILES strings as an input to a CNN model for accurate
QSAR prediction [54] and applied it to FP2VEC [55]. This
deep learning method can identify the activities of small
molecules. The molecular featurizer FP2VEC correlates
chemical compounds to natural language, with the output
being further processed into a CNN QSAR model to classify
the sentences produced using natural language processing
(NLP). Conversion of SMILES to graphical representation
is known to be done to predict the relationships between a
ligand and a protein [94]. This model uses protein sequences
to construct a framework of interactions between the chem-
ical and genomic space; hence a large amount of data is
available for prediction. DeepACTION is a DTI prediction
model that uses a novel technique called majority and minor-
ity instances balancing (MMIB) to balance a dataset between
interacting and non-interacting pairs for an enhanced predic-
tion [56]. QSAR modeling using SMILES has been used in
other models as well [57]. Proteochemometrics (PCM) is an
extension of QSAR models, and it uses both the ligand and
the target descriptors to thoroughly map the compounds to
its targets [78]. Unlike QSAR, PCM is multi-target process-
ing and can pool related targets to increase the data available
for learning. With a concept as such, it can provide infor-
mation on the binding affinity measurements like inhibition
constant (K;), dissociation constant (K,), or the half-maximal
inhibitory concentration (ICs,). DeepDTA is a PCM model
developed with the help of only protein and SMILES strings
data [58]. The CNN blocks performed better when the com-
bination of sequences was fed. FRnet-DTTI consists of two
architectures, FRnet-Encode and FRnet-Predict. The for-
mer extracts 4096 features from gold standard datasets such
as DrugBank, BRENDA, and KEGG:; the latter classifies
drug—protein interactions obtained from the features [59].

Assessing targets through compound sensitivity was
attained using ICs, values present in the Genomics of Drug
Sensitivity in Cancer (GDSC) database [60]. Using SMILES
alongside this data, it is possible to predict ICy, values for
any given compound. This model focuses on finding genes
most relevant to the drug sensitivity prediction rather than
the complete set of genes. DeepPurpose is another model
that predicts ICs, values [61]. Another critical property
considered in drug designing is the compound’s aqueous
solubility. It can be predicted using SMILES codes that are
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analyzed on the CNN model ConvS2S [62]. A model Deep-
Conv-DTI can predict drug—target interactions using only
protein sequences, and it identifies local patterns important
for target binding sites [63]. DTI-CNN, a network-based
approach, constructs a heterogeneous network using data
from different drug and protein-related sources to further
identify DTIs, with a potential usage extending toward
drug—drug and protein—protein interactions [64].

Prediction of drug—drug interactions

In practical circumstances, more than one drug can be pre-
sent in our body or consumed simultaneously to achieve an
effect dissimilar to what is produced from individual drugs;
effects that can be positive (synergistic) such as greater effi-
cacy and reduced drug resistance or negative (antagonistic)
such as increased toxicity, inhibitory, and other side effects.
Drug—drug interactions (DDIs) elucidate such behaviors
and are usually assessed during clinical trials to record such
reactions. In a DDI task, both the subject to be studied and
the object to be recognized is a drug, and machine learning-
based methods observe this classification in two sections:
is there an interaction? If yes, then the type of interaction.

DrugBank is a major database that includes DDI data
[95]. MEDLINE is another essential database that consists
of biomedical literature citing such interactions. A health-
care professional who wishes to identify an interaction
between any two drug compounds must read through the
entire literature before arriving at a conclusion. Another dis-
advantage of having such data is that this information cannot
be used directly as an input to software as they are present
as unstructured data in the literature. Extracting DDIs from
such text manually is challenging as these databases are vast.
NLP is a study that involves the use of artificial intelligence
to extract meaningful information from human language and
can be paired with traditional machine learning models [96],
but these prove to be cumbersome as they require manual
feature extraction [97]. Machine learning methods that use
text learning detect the words around target drugs and evalu-
ate tasks by identifying the exact words around drugs when
required to predict unknown interactions. However, these
models cannot recognize synonyms from the rest of the
vocabulary without any external features and consider each
word to have a unique definition [98]. Hence, there is a need
to apply NLP with deep learning architectures that can detect
essential features automatically.

Models with an NLP approach for DDI tasks must fol-
low two steps: recognize the drug and relation extraction.
One such method using NLP was given by Liu et al. that
generated matrices of a concatenation of position and word
embeddings of drugs of interest that appear in literature
sentences [65]. CNNs are handy for designing solutions in
this context as they can locate and track drugs’ positions in
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sentences. A dataset of DDIs could then be created using
drug pairs identified in the same sentence, for example,
‘When drugl is administered in combination with drug2’.
The DDI corpus designed for the 2013 DDI Extraction
challenge [99] is where several DDI models are trained and
evaluated and consists of DDI pairs classified into five cat-
egories: mechanism (pharmacokinetic), advice (recommen-
dation about DDI), effect (pharmacodynamic), interaction
(Int), and false (no interaction). Int is a sentence containing
a DDI pair and no other additional information, and false
represents drug pairs that have no interaction between them.
A multi-channel CNN was developed by Quan et al. that
assigned different channels for different aspects of word
embeddings [66].

Further down the timeline, CNN models recorded a simi-
lar accuracy without using any external features for clas-
sification, as demonstrated by Suarez-Paniagua et al. [67].
This was a significant step up, as deep learning could now
be represented for what they are meant to be: a feature learn-
ing model. A two-stage learning process developed by the
same group ran the eHealth-KD challenge dataset [100] and
applied a bidirectional long short-term memory (Bi-LSTM)
for drug recognition and a CNN for relation extraction [68].
A more recent architecture developed following NLP is a
bidirectional gated recurrent unit—convolutional neural net-
work (SGRU-CNN) hybrid model [69], while other hybrid
models include attention-based graph convolutional network
(AGCN) in 2020 by Park et al. [70] and recurrent hybrid
convolutional neural network (RHCNN) in 2019 by Sun
et al. [71]. Although CNNs and deep learning show immense
promise, one of the limitations associated with deep learn-
ing models is that it follows a ‘black box’ approach [101],
meaning it is hard to understand the mechanism from the
results obtained.

Conclusion and prospects

Various models in CNNs, as well as other deep learning
architectures, have been developed to a large extent in the
field of bioinformatics and have implications in pharma-
cogenomics. The massive parallelization is unmatched
compared to sequence analysis using conventional experi-
mentations; while the latter is accurate and reliable, the level
of skill and human effort required to achieve such practices
is limiting its pace. It is evident that statistical and machine
learning models have brought about novel tools for analy-
sis, and these technologies have significantly reduced the
time and cost required. These models have now paved the
way for newer deep learning models, like CNN, of higher
complexity, assisted by increased data availability and com-
putational power. With the increase in models’ complexities,
however, more input features are required, as the model’s

power relies on the amount of data. Inconsistencies in the
data could also lead to failures in producing valid outputs.
Altering the model architecture and fine-tuning parameters
and hyperparameters to achieve maximum performance is
still a challenge.

In this review, we have seen how the models presented
worked accurately for a given dataset and solved the problem
efficiently, but due to the heterogeneity of the data avail-
able today, achieving versatility of a model will always be
a challenging task. It could be solved through improved
algorithms for transfer learning, reducing the time it takes
to build a model. As we head toward the future, we look
at the simultaneous time-and-cost reduction in sequencing
technologies and analysis tools. Deep learning models like
CNN s can hold great potential in offering approaches other
than the conventional statistical methods. The continuous
increase in the complexity of models constructed and a
greater amount of data availability would only encourage
solving problems related to the genome mechanism. With
a greater understanding of data, precise annotations can be
assembled, crucial sites in our genome can be visualized
better, and ultimately, drug compounds can be developed
more precisely for a potent treatment. With the advent of
open-source tools, the informatics community will lead the
way for precision and personalized medicine accessible to
everyone on this planet.
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