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Abstract
Convolutional neural networks (CNNs) have been used to extract information from various datasets of different dimen-
sions. This approach has led to accurate interpretations in several subfields of biological research, like pharmacogenomics, 
addressing issues previously faced by other computational methods. With the rising attention for personalized and preci-
sion medicine, scientists and clinicians have now turned to artificial intelligence systems to provide them with solutions for 
therapeutics development. CNNs have already provided valuable insights into biological data transformation. Due to the 
rise of interest in precision and personalized medicine, in this review, we have provided a brief overview of the possibilities 
of implementing CNNs as an effective tool for analyzing one-dimensional biological data, such as nucleotide and protein 
sequences, as well as small molecular data, e.g., simplified molecular-input line-entry specification, InChI, binary finger-
prints, etc., to categorize the models based on their objective and also highlight various challenges. The review is organized 
into specific research domains that participate in pharmacogenomics for a more comprehensive understanding. Furthermore, 
the future intentions of deep learning are outlined.
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Introduction

The massive accumulation of data from genomics, tran-
scriptomics, proteomics, metabolomics, and drug discovery 
has shifted the focus of ‘omics’ to ‘informatics’ due to the 
emergence of overwhelming biological data, referred to as 
the ‘Bigdata’, primarily arising from the high-throughput 
sequencing technologies [1, 2]. The rate of accumulation of 
new sequence data is far beyond the scientific communities’ 
capacity to determine their attributes through experimental 
methods [3]. Thus, a considerable amount of data is avail-
able to be processed and interpreted, and with significant 
improvements in computational resources, the time required 
to process a substantial amount of data has been dramati-
cally reduced [4]. While conventional learning algorithms 
are inadequate in processing data present in its natural form, 
deep learning has brought about developments in solving 

problems in artificial intelligence [5]. These deep learning 
models have overtaken machine learning algorithms as they 
can extract features automatically; however, it also leaves 
the need for better model management for reproducibility 
as much information is lost during the model training [6]. 
Still, deep learning systems have defined structures and algo-
rithms that allow them to learn through training, extract fea-
tures, and alter the parameters to map the input and predict 
the output [7].

The idea of deep learning and neural networks has 
emerged from mimicking the neurons of the human nerv-
ous system. These artificial neural networks (ANNs) rapidly 
accept inputs and produce outputs with a complex network 
of neurons (hidden layers) for processing. The input nodes 
receive inputs and try to identify the nonlinear input–output 
relationship to calculate an optimal solution for the given 
problem [7]. The architecture of ANNs can be classified fur-
ther as convolutional neural networks (CNNs) and recurrent 
neural networks (RNNs). The CNNs are a subset of ANNs, 
with each node detecting local features from the input vector, 
minimizing the parameters in a process called down-sam-
pling, and the subsequent layers combining these features 
into a fully connected layer [8]. The RNNs, contrarily, are 
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networks that show dynamic behavior by learning temporal 
tasks [9]. These models can input several data types, rang-
ing from simple one-dimensional data to multi-dimensional 
data.

With these advancements, several new databases can be 
created to extract valuable information from the accumu-
lated biological data. The applications of neural networks 
for processing such data present opportunities in genomics 
and drug discovery [2]. Deep learning strategies have made 
immense progress in recent years and gained popularity in 
handling huge volumes of structured data, widely used for 
processing images [10–12]. However, their implications in 
analyzing one-dimensional data like biological sequence 
data, SMILES codes, or medical texts are not widely rec-
ognized [13–16]. Biological sequences like DNA, RNA, or 
protein sequences can be identified as simple one-dimen-
sional data that characterize a biological system, while 
SMILES data can depict chemical compounds. The potential 
benefits of deep learning and their success in data analysis 
are presented here. This could persuade biologists to join the 
community, learn, and develop more models on their own in 
their respective fields of study.

In this review, we elucidate CNNs as a valuable tool in 
pharmacogenomics for biological data analytics. As most 
biologists are not specialized in machine learning, we aim 
to introduce deep learning methods, specifically CNNs, to 
analyze one-dimensional data. In this regard, various CNN 
methods integrated with other machine learning algorithms 
developed in the past decade are reviewed. An outline of 
essential components of a CNN is presented along with its 
applications. The applications of these strategies are broadly 
categorized into five subsections as follows: (1) prediction 
of single nucleotide polymorphisms (SNPs) in DNA, (2) 
prediction of regulatory regions in DNA, (3) prediction 
of DNA/RNA binding sites in proteins, (4) prediction of 
drug–target interactions, and (5) prediction of drug–drug 
interactions, as illustrated in Fig. 1.

Overview of CNNs

CNNs are a collection of neurons that are organized in inter-
connected layers, with convolutional, pooling, and fully con-
nected layers [17]. As a mathematical construct that pro-
cesses data of multiple dimensions, CNNs are designed to 
adaptively learn simpler patterns at lower depths while tran-
sitioning to more complicated patterns as we dive deeper. 
Deep neural networks overcome the use of exponentially 
large parameters by the addition of multiple hidden layers. 
There are two significant characteristics of a CNN: weight 
sharing and local connectivity [18]. Weight sharing implies 
uniform weights across the nodes in the layer. Local connec-
tivity is the term used when each node receives input only 

from a few local values in an array, and each output is related 
to only certain parts of the input vector (Fig. 2).

The CNN framework

The convolutional layers perform operations of convolution 
and activation. A linear operation like convolution is where 
each of its layers performs an element-wise multiplication 
between an array of features called a kernel and the input 
of array numbers called a tensor [19]. The kernel is usually 
of a defined size, 3 × 3 or 5 × 5. The repeated operations on 
smaller arrays in local patches that make up a single array 
give rise to a feature map, which acts as an input to the next 
layer in the network. Such persistent operations at several 
locations detect local conjunctions from the layer [20]. A 
convolutional layer with ‘n’ kernels can detect ‘n’ local fea-
tures that result in the formation of ‘n’ feature maps [21]. A 
subsequent activation function follows, which computes the 
function’s nonlinearity, a jump from previously conducted 
linear convolution operations, with the commonly applied 
nonlinear functions being the tangent function (tanh) or the 
rectified linear unit (ReLU).

The pooling layer reduces the dimensions of the input lay-
ers, subsequently reducing layer parameters. This operation 
merges similar features by shifting the patches containing 
these features across rows or columns [5]. While a more 
commonly used pooling method, max-pooling, selects the 
highest value out of a kernel to pass through to the output 
tensor, average pooling calculates the average in the kernel 
[22, 23].

Fully connected layers connect every local input from 
the previous layer to every output in the next layer. Its role 
is to combine portions of the generated outputs from convo-
lutional layers with a one-dimensional vector consisting of 
probabilities of each feature belonging to a label. Nodes in 
these layers have a learnable weight that can map inputs to 
the desired outputs [24]. The final layer consists of an activa-
tion function different from the other layers, with softmax as 
an example for classification problems.

Training a neural network

Training a neural network is the process of finding optimal 
weights and biases for nodes in a layer. In CNNs, training 
aims at finding optimal kernels in convolutional layers and 
weights in the fully connected layers [25]. Forward propa-
gation inspects input features from the previous layer and 
produces an output across the hidden units first and then 
to the output layer with a final nonlinear activation func-
tion. The task involves initializing parameters, kernels, and 
weights with random values with the input of feature vectors 
from the training dataset to obtain the corresponding output 
value for every node in each layer. To calculate errors at 
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each output, the loss function is evaluated to check for model 
performance. Backpropagation involves the optimization of 
algorithms by changing parameters in each node using gra-
dient descent. For each weight, the gradient descent is the 
deviation in the amount of loss when that weight is altered 
by a small amount. After repeated iterations, it eventually 
calculates the optimal parameters that provide minimum loss 
in the algorithm [26].

Data collection can be from various sources such as 
public repositories, clinical reports, experimental or syn-
thetic datasets, depending on the requirements (Fig. 3). For 
instance, DeepECA, a model predicting protein contact 
from multiple sequence alignment, obtained the 1D amino 
acid sequence data using PISCES, a PDB sequence culling 

server [27]. Similarly, for DNA-binding protein identifica-
tion, Shadab et al. extracted information from Protein Data 
Bank (PDB) and named the training dataset as ‘PDB1075′ 
[28]. Training a deep CNN from scratch has its challenges. 
A deep CNN requires large amounts of medical data, but dis-
eases that occur less frequently tend to have smaller datasets. 
Poor memory and computational resources with complica-
tions due to overfitting require a great deal of patience and 
expertise [29]. An alternative to this would be to implement 
pre-trained CNNs and fine-tuned according to the applica-
tion [30, 31]. To increase the performance with smaller data-
sets, any of the following strategies can be used, such as 
data augmentation [32], transfer learning [33], and capsule 
network [34].

Fig.1   Classification of CNN methods into five major subdomains, each corresponding to the final objective of the analysis
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Hyper‑parameter and parameter tuning

A parameter is a variable that is interior to the model and 
configured by learning the data. Parameters can only be ini-
tialized but are not set by the user, and it determines the 
performance of the model, for instance, kernel and weights. 
Hyperparameters are set by the user and are external to the 
model. These include learning rates, number of iterations, 
and number of layers. Tuning involves collecting weights of 
the layers from previously trained models to a new network, 
except for the last fully connected layer [35]. Assessment 
of the required number of parameters and hyperparameters 
may vary according to the application [36]. The number of 
parameters required directly correlates to the complexity 
of the neural network, and it will have a significant impact 

on the accuracy [37]. Too many parameters can cause 
overfitting.

Pharmacogenomic data analysis using CNNs

There is an increase in the availability of sources from 
where data can be extracted (Fig. 3). This data can be one-
dimensional biological sequences, such as DNA, RNA, or 
protein sequences. For small molecules, data formats, such 
as SMILES, SMARTS, InChI, binary fingerprints, can be 
used to represent chemical structures. Besides, medical 
literature that includes text briefings about biomolecular 
targets and biomarkers is also one-dimensional. This data 
may not provide knowledge on prediction-based analysis 

Fig.2   Basic architecture of a CNN. The input layer extracts infor-
mation from the input sequence by multiplying with weights. The 
subsequent layers perform the function of convolution and pooling, 
wherein these layers extract local information and pool it, reduc-
ing dimensions of the sequence vector. Fully connected layers have 
its nodes connected to all the nodes in the previous layer. The final 

activation function outputs the sequence classification. This predicted 
value is compared to the actual annotated value when the model is 
being trained. The prediction errors are assessed, and the model 
undergoes back propagation iteratively to update the existing param-
eters each time to reduce the errors in prediction until the values con-
verge



1573Molecular Diversity (2021) 25:1569–1584	

1 3

unless processed in machine learning models. Likewise, 
machine learning models are ineffective without incorpo-
rating appropriate datasets. The following text reviews the 
relationship between prediction tools and learning data. We 
constrict the CNN approach as a prediction tool and one-
dimensional input as learning data to summarize applica-
tions and improvements in pharmacogenomics prediction 
through recent years. For biological sequences, we have 
classified pharmacogenomics analysis into the prediction of 
SNPs in DNA, prediction of regulatory regions in DNA, and 
prediction of DNA/RNA binding sites in proteins; we have 
involved SMILES representation in drug–target interaction 
prediction and lastly, medical texts in drug–drug interaction 
prediction. A summary of all the models communicated in 
this article is provided in Table 1.

Prediction of single nucleotide polymorphisms 
(SNPs) in DNA

Mutations in the genomic sequences may lead to diseases 
and disorders. Interpreting these signatures is imperative for 
early detection and treatment. Although conducting biologi-
cal experiments help record the gene expression data that 

infer the phenotypes or functions of cells, profiling such data 
for diseases is intricate due to the amount and complexity 
of the genes. On the other hand, characterizing SNPs has 
been challenging due to sensitivity issues, as modeling the 
functions requires a precise prediction of single-nucleotide 
sensitivity [38, 40]. Other setbacks faced by machine learn-
ing methods include the insufficiency of data from rare 
disorders, risk of overfitting, and difficulty integrating data 
samples from different gene expression platforms [40].

While CNNs are yet to be modeled as an ideal method, 
they have shown promises over other machine learning 
methods in certain frontiers. A framework to detect non-
coding variants, DeepSEA, was developed by Zhou and 
Troyanskaya [38]. It was trained using transcription factor 
binding data; the position of the non-coding variant dictated 
its regulatory properties. This model can predict the influ-
ence of several SNPs on transcription factor binding. For 
instance, a ‘C to T’ mutation at SNP locus rs4784227 on the 
transcription factor FOXA1 induces the risk of breast cancer, 
and an SNP, ‘T to C’ at the binding site for GATA1 may lead 
to α-thalassemia. DeepVariant could detect indel variants in 
whole-genome sequencing (WGS) data and exome data with 
high sensitivity even after limiting the training dataset [15]. 

Fig.3   The production of datasets. (a) Different techniques involved 
to create annotations on the sequences. Some of these techniques 
include ChIP-seq to identify protein binding sites, mass spectrome-
try to identify protein/drug structures or qPCR to quantify the gene 
expression. (b) Annotated sequences, SMILES codes or interac-

tion networks uploaded to various databases like Protein Data Bank 
(PDB), DrugBank, or large-scale projects like ENCODE, Roadmap 
Epigenomics. (c) Obtained annotated sequences, SMILES represen-
tation present in databases or medical texts containing unstructured 
data of drug–target or drug–drug interactions
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Unlike DeepVariant that uses read pileup as input, NeuSo-
matic functions with base frequency as the input data and 
detects somatic mutations using sequence alignment while 
dealing with greater accuracy [39]. NeuSomatic can pre-
dict the type and length of the somatic mutation and has a 
CNN structure inspired by ResNet [72]. Training this model 
on two real WGS datasets consisting of chronic lympho-
cytic leukemia and melanoma data obtained a test accuracy 
of > 99% and > 93%, respectively. This method was sug-
gested for broader applications in somatic mutation detec-
tion. The model Basset predicted Genome-wide association 
studies (GWAS) SNPs that likely affected the local gene 
expression [73]. SNPs from GWAS were tested to interpret 
the relationship between genetics and bipolar disorder [74]. 
This model yielded a test accuracy of 91% and 92% and 
detected 137 and 407 risk genes, respectively, of which 22 
and 51 genes were reported to be associated with the occur-
rence of bipolar disorder.

Multi-task deep learning (MTDL) algorithm was devel-
oped to classify different cancers [40]. The insufficiency of 
datasets in learning algorithms was solved using different 
gene features for the same output label on two evaluation 
sets (e.g., tasks involving acute myeloid leukemia as the out-
put). In total, 12 tasks for evaluating its performance were 
used, such as adenocarcinoma, seminoma, ovarian cancer, 
and colon cancer. Feng et al. developed a bi-stream model 
that simultaneously inputs two SNP maps [41]. These maps 
were obtained by converting the SNP intensities at each site 
into chromosomal SNP maps at the initial stages. This model 
was established for predicting human Down Syndrome, a 
disorder of intellectual instability caused by genomic dupli-
cations and dosage imbalances, like microduplications at 
human chromosome 21.

Prediction of regulatory regions in DNA

Variations in the gene expression levels can directly con-
tribute to complex diseases; hence it is vital to understand 
DNA sequence components that constitute gene regulation. 
Prediction of the precise impact of such regulatory elements 
can help progress in diagnosis and medicine. A model like 
Deopen can read DNA regulatory codes and predicted chro-
matin accessibility [42]. Enhancers are sequences far from 
promoters that bind to the transcription factors to regulate 
gene expression, and these are critical for healthy cellular 
development and differentiation [75]. Exploring enhancers 
in sequences has led to a multi-layered CNN model pro-
posed by Chen et al. to capture complex sequences [43]. 
Testing this model for different species inferred the con-
servation of these sequences across mammals. Other CNN 
models that predict enhancer sites are iEnhancer-ECNN 
[44], BiREN [45], and DeepEnhancer [46]. An ensemble 
learning algorithm consisting of CNNs was introduced in 

iEnhancer-ECNN. Analysis for the area under the receiver 
operating characteristics curve (AUC) and accuracy 
recorded higher values in iEnhancer-ECNN than in models 
such as iEnhancer-2L, EnhancerPred, and iEnhancer-EL. 
Learning enhancer elements using BiRen achieved high 
performance, with an AUC of 0.945. DeepEnhancer used 
datasets from the ENCODE and FANTOM5 project [76]. 
FANTOM5 consisted of maps of promoters and enhancers 
present in mammalian cell lines. Compared to the gapped 
k-mer support vector machine (gkmSVM), DeepEnhancer 
had a higher AUC [46].

Promoters are the regions in DNA that denote the start of 
transcription. The design principle of these sites is difficult 
as promoters are gene-specific, and hence the diversity is 
broad [77]. Designing computational methods here is chal-
lenging as sequence features from other models are hard 
to reuse. A few promoter site recognition models include 
CNNProm [47], PromID [78] and DeeReCT-PromID [48]. 
CNNProm was learned using a well-known promoter class, 
TATA promoters for eukaryotes present in the EPDnew pro-
moter database, and sigma70 sub-class promoters of E.coli. 
PromID was an improved model that outperformed its pre-
decessor, CNNProm, with improved precision and lesser 
likelihood to produce false positives. DeeReCT-PromID 
had a similar impact and could study longer sequences with 
higher precision.

The principle of ‘achieving mRNA abundance from rec-
ognizing promoter sequences in the genome’ was applied to 
predict the gene expression levels from the given sequence 
[36]. Several other attempts to record gene expression by 
correlating it to transcription factor binding have brought 
about issues in expected motif binding and signal identi-
fication, delivering unlikely false positives and noise in 
sequencing data [79]. Constructing new models that do not 
use such experimental data could bring about promises in 
regulatory mechanisms. In this experiment, the model accu-
rately predicted the expression levels in genes of cells like 
human lymphoblastoid cells and human myelogenous leu-
kemia cells. It was estimated from this model that promoter 
sequences cause ~ 50% of the gene expression variability. 
However, other aspects of gene expression remain undis-
covered, potentially giving rise to more complex models in 
the future.

Prediction of DNA/RNA binding sites in proteins

DNA binding proteins are the proteins that have a common 
DNA binding domain but a discrete sequence of amino 
acids that allow for specific binding interactions. Examples 
of DNA binding proteins include DNA polymerases, coac-
tivators, corepressors. These are involved in several aspects 
of genetic activity like packing, replication, transcription, 
repair [80]. Genetic signals associated with them play a 
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crucial role in gene expression and cell development that 
directly associates with studies in complex traits, the patho-
genesis of diseases, and the characteristics of diseases like 
diabetes and cancer [81].

CNN models to identify specific protein sequences that 
bind to DNA have been developed alongside datasets like 
PDNA-543, PDNA-224, and PDNA-316 and have been used 
to evaluate performances of the features’ position-specific 
scoring matrix (PSSM), one-hot encoding, and predicted sol-
vent accessibility (PSA), that further lead to the prediction of 
DNA binding sites in protein [49]. This model was a combi-
nation of features in a CNN, with an ensemble classifier. It 
obtained a test accuracy of ~ 90% on the dataset PDNA-543, 
higher than in predictor models TargetDNA and EC-RUS 
(WSRC). DeepBind was an upgrade from traditional scoring 
matrices and could be applied to microarray and sequencing 
data [50]. It was evaluated alongside 26 other algorithms 
[82] using protein binding microarray (PBM) data, and it 
outperformed all the other methods. A trick into presenting 
better learning algorithms is to follow the two rules given; 
reverse complementing the DNA strand and treating it as 
another sample; extending the DNA sequence, and dividing 
it into three shorter sequences [81]. This enabled the CNN 
model to understand the relationships between the double-
strand DNA sequences better. This strategy applied to Deep-
Sea [38], and DeepBind models significantly improved 
AUC. DeepDBP-CNN, inspired by previously existing mod-
els like DeepBind, used pre-learned embedding and CNN 
and produced a training accuracy of > 94%, a sensitivity of 
0.83, and an AUC of 0.986 [28]. A comparison of Deep-
DBP-CNN with other methods showed promising results. 
An SVM classifier model like HMMBinder, trained with 
the same dataset (PDB 1075), had an accuracy of ~ 86%, a 
sensitivity of 0.87, and an AUC of 0.902, while other SVM-
based models performed even more poorly. A useful tactic 
to prevent overfitting is to introduce a dropout layer at the 
end [83]; this layer will randomly drop a node with all its 
connections and hence make the model prevent overfitting 
to some degree.

RNA binding proteins (RBP) can recognize specific RNA 
sequences or structural patterns, called motifs. Like DBP, 
such proteins play a role in stability, cellular localization, 
and transport while associating themselves in co-transcrip-
tional and post-transcriptional processes [84]. These motifs 
observed in RBPs can be obtained using in vitro assays 
like RNAcomplete [85]. With such findings differing in 
different cell environments and proving costly, an alterna-
tive approach was to apply deep learning, specifically CNN 
models using RNA primary sequence as an input to locate 
sequence binding motifs. A global module of iDeepE, 
iDeepE-G used techniques similar to that in DeepBind and 
RNA padding (extending all sequences to that of the long-
est available sequence) [52]. This module evaluated with 

the RBP-24 dataset had an average AUC of 0.931, and this 
model performed the best out of other sequence predictors 
like ResNet-E, Pse-SVM, GraphPlot, and Deepnet-rbp. A 
drawback of iDeepE is that it requires a broader training 
set to generate a better model. iDeepS, proposed by the 
same author [52], introduced the identification of structure 
binding motifs. Examples of binding discovery using the 
structure motifs by iDeepS included the preference of pro-
tein hnRNPC binding to U-rich hairpin structures and the 
interaction of protein PUM2 with UA-rich stem regions. 
A CNN model to predict enhancer-promoter interactions 
was developed by Zhuang et al., (2019), which performed 
as effectively as a complex CNN-RNN model hybrid [86]. 
Argonaute is a protein associated with the post-transcrip-
tional regulator microRNA (miRNA) to form RNA-induced 
silencing complexes (RISC) [53]. This complex results in 
the silencing of gene expression and further mRNA degra-
dation. McGeary et al. approached this prediction of repres-
sion with a model that calculated the Kd values for miRNA 
binding sites [87].

Prediction of drug–target interactions

Drug–target interaction (DTI) prediction is essential for 
assessing interactions that lead to the identification of new 
drug candidates and can predict many of its side effects 
before the start of clinical trials [88]. In vivo techniques 
are expensive, and while they are accurate, the proposal 
of exploring every possible drug for a target seems labori-
ous and tedious in practice [89]. Moreover, very few com-
pounds worked on end up in the market as drugs after years 
of research, mainly due to their toxicity and side effects. 
In silico methods can narrow down these chemicals much 
quicker, making it feasible to experimentally work only on 
the shortlisted candidates. The fundamental idea in drug dis-
covery is that chemically similar drugs interact with similar 
protein targets in our system. These predictions can be made 
from 3D protein structures using methods like ligand-based 
approaches that scan through databases to identify exist-
ing ligands that fit into a given receptor [90] or structure-
based approaches that build ligands from small fragments 
of molecules binding to different locations in a target site 
[91]. In either of these methods, there is a requirement for 
obtaining the 3D structure of the protein and the ligand, 
and this a complex task as it is done through strenuous 
experimental processes. Hence, there is a requirement to 
shift toward methods that are simple and straightforward and 
use 1D data such as DNA/protein sequences and SMILES 
representations of small molecules. These datasets can be 
obtained from databases such as DrugBank, ChEMBL, 
STITCH, KEGG, for computational analysis to identify 
relationships between drug and target protein interactions 
and consequently predict new drugs that alter the disease 
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state by regulating the activity of the molecular targets [56]. 
Validation of such targets follows that use in vitro or in vivo 
models.

The models that identify the relationship between the 
physicochemical properties of chemical structures and 
their biological activities are termed as Quantitative Struc-
ture–Activity Relationship (QSAR) models, and these aim 
at modeling the ligand descriptors [92, 93]. This is where 
we shift our focus away from genomic sequences and 
attempt to model the chemical compounds. Hu et al. used 
SMILES strings as an input to a CNN model for accurate 
QSAR prediction [54] and applied it to FP2VEC [55]. This 
deep learning method can identify the activities of small 
molecules. The molecular featurizer FP2VEC correlates 
chemical compounds to natural language, with the output 
being further processed into a CNN QSAR model to classify 
the sentences produced using natural language processing 
(NLP). Conversion of SMILES to graphical representation 
is known to be done to predict the relationships between a 
ligand and a protein [94]. This model uses protein sequences 
to construct a framework of interactions between the chem-
ical and genomic space; hence a large amount of data is 
available for prediction. DeepACTION is a DTI prediction 
model that uses a novel technique called majority and minor-
ity instances balancing (MMIB) to balance a dataset between 
interacting and non-interacting pairs for an enhanced predic-
tion [56]. QSAR modeling using SMILES has been used in 
other models as well [57]. Proteochemometrics (PCM) is an 
extension of QSAR models, and it uses both the ligand and 
the target descriptors to thoroughly map the compounds to 
its targets [78]. Unlike QSAR, PCM is multi-target process-
ing and can pool related targets to increase the data available 
for learning. With a concept as such, it can provide infor-
mation on the binding affinity measurements like inhibition 
constant (Ki), dissociation constant (Kd), or the half-maximal 
inhibitory concentration (IC50). DeepDTA is a PCM model 
developed with the help of only protein and SMILES strings 
data [58]. The CNN blocks performed better when the com-
bination of sequences was fed. FRnet-DTI consists of two 
architectures, FRnet-Encode and FRnet-Predict. The for-
mer extracts 4096 features from gold standard datasets such 
as DrugBank, BRENDA, and KEGG; the latter classifies 
drug–protein interactions obtained from the features [59].

Assessing targets through compound sensitivity was 
attained using IC50 values present in the Genomics of Drug 
Sensitivity in Cancer (GDSC) database [60]. Using SMILES 
alongside this data, it is possible to predict IC50 values for 
any given compound. This model focuses on finding genes 
most relevant to the drug sensitivity prediction rather than 
the complete set of genes. DeepPurpose is another model 
that predicts IC50 values [61]. Another critical property 
considered in drug designing is the compound’s aqueous 
solubility. It can be predicted using SMILES codes that are 

analyzed on the CNN model ConvS2S [62]. A model Deep-
Conv-DTI can predict drug–target interactions using only 
protein sequences, and it identifies local patterns important 
for target binding sites [63]. DTI-CNN, a network-based 
approach, constructs a heterogeneous network using data 
from different drug and protein-related sources to further 
identify DTIs, with a potential usage extending toward 
drug–drug and protein–protein interactions [64].

Prediction of drug–drug interactions

In practical circumstances, more than one drug can be pre-
sent in our body or consumed simultaneously to achieve an 
effect dissimilar to what is produced from individual drugs; 
effects that can be positive (synergistic) such as greater effi-
cacy and reduced drug resistance or negative (antagonistic) 
such as increased toxicity, inhibitory, and other side effects. 
Drug–drug interactions (DDIs) elucidate such behaviors 
and are usually assessed during clinical trials to record such 
reactions. In a DDI task, both the subject to be studied and 
the object to be recognized is a drug, and machine learning-
based methods observe this classification in two sections: 
is there an interaction? If yes, then the type of interaction.

DrugBank is a major database that includes DDI data 
[95]. MEDLINE is another essential database that consists 
of biomedical literature citing such interactions. A health-
care professional who wishes to identify an interaction 
between any two drug compounds must read through the 
entire literature before arriving at a conclusion. Another dis-
advantage of having such data is that this information cannot 
be used directly as an input to software as they are present 
as unstructured data in the literature. Extracting DDIs from 
such text manually is challenging as these databases are vast. 
NLP is a study that involves the use of artificial intelligence 
to extract meaningful information from human language and 
can be paired with traditional machine learning models [96], 
but these prove to be cumbersome as they require manual 
feature extraction [97]. Machine learning methods that use 
text learning detect the words around target drugs and evalu-
ate tasks by identifying the exact words around drugs when 
required to predict unknown interactions. However, these 
models cannot recognize synonyms from the rest of the 
vocabulary without any external features and consider each 
word to have a unique definition [98]. Hence, there is a need 
to apply NLP with deep learning architectures that can detect 
essential features automatically.

Models with an NLP approach for DDI tasks must fol-
low two steps: recognize the drug and relation extraction. 
One such method using NLP was given by Liu et al. that 
generated matrices of a concatenation of position and word 
embeddings of drugs of interest that appear in literature 
sentences [65]. CNNs are handy for designing solutions in 
this context as they can locate and track drugs’ positions in 
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sentences. A dataset of DDIs could then be created using 
drug pairs identified in the same sentence, for example, 
‘When drug1 is administered in combination with drug2’. 
The DDI corpus designed for the 2013 DDI Extraction 
challenge [99] is where several DDI models are trained and 
evaluated and consists of DDI pairs classified into five cat-
egories: mechanism (pharmacokinetic), advice (recommen-
dation about DDI), effect (pharmacodynamic), interaction 
(Int), and false (no interaction). Int is a sentence containing 
a DDI pair and no other additional information, and false 
represents drug pairs that have no interaction between them. 
A multi-channel CNN was developed by Quan et al. that 
assigned different channels for different aspects of word 
embeddings [66].

Further down the timeline, CNN models recorded a simi-
lar accuracy without using any external features for clas-
sification, as demonstrated by Suárez-Paniagua et al. [67]. 
This was a significant step up, as deep learning could now 
be represented for what they are meant to be: a feature learn-
ing model. A two-stage learning process developed by the 
same group ran the eHealth-KD challenge dataset [100] and 
applied a bidirectional long short-term memory (Bi-LSTM) 
for drug recognition and a CNN for relation extraction [68]. 
A more recent architecture developed following NLP is a 
bidirectional gated recurrent unit—convolutional neural net-
work (SGRU-CNN) hybrid model [69], while other hybrid 
models include attention-based graph convolutional network 
(AGCN) in 2020 by Park et al. [70] and recurrent hybrid 
convolutional neural network (RHCNN) in 2019 by Sun 
et al. [71]. Although CNNs and deep learning show immense 
promise, one of the limitations associated with deep learn-
ing models is that it follows a ‘black box’ approach [101], 
meaning it is hard to understand the mechanism from the 
results obtained.

Conclusion and prospects

Various models in CNNs, as well as other deep learning 
architectures, have been developed to a large extent in the 
field of bioinformatics and have implications in pharma-
cogenomics. The massive parallelization is unmatched 
compared to sequence analysis using conventional experi-
mentations; while the latter is accurate and reliable, the level 
of skill and human effort required to achieve such practices 
is limiting its pace. It is evident that statistical and machine 
learning models have brought about novel tools for analy-
sis, and these technologies have significantly reduced the 
time and cost required. These models have now paved the 
way for newer deep learning models, like CNN, of higher 
complexity, assisted by increased data availability and com-
putational power. With the increase in models’ complexities, 
however, more input features are required, as the model’s 

power relies on the amount of data. Inconsistencies in the 
data could also lead to failures in producing valid outputs. 
Altering the model architecture and fine-tuning parameters 
and hyperparameters to achieve maximum performance is 
still a challenge.

In this review, we have seen how the models presented 
worked accurately for a given dataset and solved the problem 
efficiently, but due to the heterogeneity of the data avail-
able today, achieving versatility of a model will always be 
a challenging task. It could be solved through improved 
algorithms for transfer learning, reducing the time it takes 
to build a model. As we head toward the future, we look 
at the simultaneous time-and-cost reduction in sequencing 
technologies and analysis tools. Deep learning models like 
CNNs can hold great potential in offering approaches other 
than the conventional statistical methods. The continuous 
increase in the complexity of models constructed and a 
greater amount of data availability would only encourage 
solving problems related to the genome mechanism. With 
a greater understanding of data, precise annotations can be 
assembled, crucial sites in our genome can be visualized 
better, and ultimately, drug compounds can be developed 
more precisely for a potent treatment. With the advent of 
open-source tools, the informatics community will lead the 
way for precision and personalized medicine accessible to 
everyone on this planet.
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