
Original Article

Anti-Oxidative and Immuno-Protective
Effect of Camel Milk on Radiation-Induced
Intestinal Injury in C57BL/6 J Mice
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Abstract

Purpose: The main objective is to investigate the protective effect of camel milk (CM) on radiation-induced intestinal injury.

Methods: The C57BL/6 J mice in 2 experiments were assigned into control group (Con), irradiation group (IR), and
CMþirradiation group (CMþIR). After receiving the CM via gavage for 14 days, the mice in the first experiment were exposed to
6 Gy X-ray whole body irradiation, and survival rate was compared among the groups. Mice in the second experiment were
exposed to 4 Gy irradiation and sacrificed at day 7. The small intestines were collected to examine the histopathological changes
and to determine the anti-oxidative index and HMGB1/TLR4 inflammatory pathway. Fasting blood was used to measure serum
pro-inflammatory factors.

Results: Compared with the IR group, the survival time was prolonged, and survival rate was increased in the CMþIR group. CM
increased levels of SOD and GSH and decreased MDA in the jejunum. Furthermore, intestinal protein expression of HMGB1/
TLR4 pathway (TLR4, NF-kB, and HMGB1) was up-regulated by CM intervention. CM decreased the serum levels of TNF-a and
IL-1b and increased IL-10 level.

Conclusions: CM extended the survival time and had a protective effect against radiation-induced jejunum injury by regulation of
antioxidant capacity and HMGB1/TLR4/NF-kB/MyD88 inflammatory signaling pathway.
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Introduction

With the increasing incidence of cancer, radiotherapy has

become one of the most important treatments. Although this

technology has made great progress, radiation-related injury

restricts its application in clinical practice.1 Small intestine is

one of the organs that are most sensitive to radiation.2 The main

symptoms of radiation-induced intestine injury include anor-

exia, vomiting, diarrhea, dehydration, systemic infections, and

in extreme cases, septic shock, and death.3,4 These conditions

seriously affect the prognosis of patients with abdominal or

pelvic tumors and ultimately reduce their quality of life.5 Ami-

fostine is the only radioprotective agent currently approved by

the U.S. Food and Drug Administration (FDA) for the preven-

tion of severe radiation-induced toxic reactions. However, it

could cause hematotoxicity and gastrointestinal toxicity.6

Therefore, the development of novel radio-protective products

with low toxicity from functional food is urgently needed.7
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Camel milk (CM), which has a special healthy function, has

received recent research attention.8 Compared with traditional

cow milk, CM has lower fat, and is richer in protein and lacto-

ferrin content and contains more polyunsaturated fatty acids and

linoleic acid, which are necessary for human nutrition.9 In addi-

tion, CM has unique antioxidant and anti-inflammatory prop-

erties due to its biologically active protein and vitamin

components.10,11 It can effectively alleviate the symptoms of

rheumatoid arthritis,12 diabetes,13,14 and fatty liver,15 and even

promote wound healing.16 Whether CM influences radiation-

induced intestine injury is rarely reported. In this study, the

protective effect of CM on radiation-induced intestinal injury

model was determined. This work provided a novel adjuvant

method for patients with abdominal tumors undergoing radia-

tion therapy.

Materials and Methods

Reagents and Antibodies

CM was purchased from Xinjiang Nanshan Pasture (Urumqi,

China). The milk was collected from Camelus bactrianus.

After traditional pasteurization, it was transported to the

laboratory via food cold chain logistics within 48 h. Cytokines

TNF-a, IL-1b, IL-6, and IL-10 kits were obtained from Wuhan

ColorfulGene Biological Technology Company. SOD, MDA,

and GSH kits were acquired from Nanjing Jiancheng Bioengi-

neering Institute. Antibodies for Western blot, namely,

HMGB(166525-1-Ig) and TLR4 (19811-1-AP) were purchased

from ProteinTech Group (Chicago, IL, USA). MyD88

(YT2928) was purchased from ImmunoWay Biotechnology

Company (Plano, TX, USA). IKKb (D30C6) was obtained

from Cell Signaling Technology (Shanghai, China). NF-kB

(ARG65677) was acquired from Bio-Platform Technology

Company (Shanghai, China). b-actin (BM 0627) was bought

from Boster Biological Technology (Wuhan, China).

BeyoECL Plus (P0018) and BCA Protein Assay Kit were pur-

chased from Beyotime Company (Shanghai, China).

Animals

Six-week-old C57BL/6 J mice (20 + 2 g body weight) were

obtained from Shanghai Shrek Company Chinese Academy of

Sciences and housed under a 12 h/12 h light/dark cycle at a

constant temperature of 22 + 2�C and 60 + 5% relative

humidity. All experimental procedures were performed in

accordance with the Guidelines in the Care and Use of Animals

and with the approval of Soochow University Animal Welfare

Committee.

Experiment to Assess Animal Survival

After 1 week of acclimatization, 18 animals were assigned

randomly to the control group (Con), 6 Gy group (IR), and

CMþ6 Gy group (CMþIR). Mice were administered 0.2 ml

of CM through gavage twice every day for 14 days before

irradiation.8 The mice in the Con and IR groups were

administered distilled water. At day 15, mice in the IR and

CMþIR groups were exposed 6 Gy of whole-body X-ray irra-

diation by using a RS-2000 biological X-ray irradiator (Rad

source technology, Suwanee, GA, USA) at a dose rate of

1.283 Gy/min.17,18 Animals were observed twice a day until

all mice died. Death time and number of mice were recorded.

The percentage of surviving animals was used for survival

analysis. This experiment ended at 21 days after radiation.

Experiment to Observe Intestinal Injury

For the observation of intestinal injury, a total of 18 animals

were divided randomly into the control group (Con), 4 Gy

group (IR), and CMþ4 Gy group (CMþIR). The same methods

involving CM intervention and irradiation exposure (except

irradiation dose) were used to assess animal survival. All the

mice were observed for any signs of radiation sickness, and

body weight was recorded daily.

Collection of Sample

The mice were sacrificed 7 days after 4 Gy irradiation. Portions

of the jejunum were fixed immediately in 10% formalin for

future histological observation, and the remaining portions

were stored at �80�C until further use. The thymus and spleen

were immediately dissected and weighed. Blood samples were

collected from the retrobulbar vein. Serum was separated by

centrifugation and stored at �80�C.

Pathological Observation of Intestinal Tissue

Paraffin-embedded sections of intestinal tissues were dewaxed

with 5 mm sections, stained with hematoxylin-eosin (HE)

(Sigma-Aldrich, USA), and examined under a microscope for

assessment. The number of surviving crypts per circumference

of the jejunum was assessed quantitatively by pathologists

under blinded conditions. Ten circular transverse sections per

mouse were stained with HE and blindly analyzed from the

photographs to measure the length of small intestinal villi. The

depth of small intestinal crypts were also measured. The ratio

of villus length to crypt depth (V/C) was calculated as an index

to determine the comprehensive function of the small

intestine.18,19

Radiation Injury Score (RIS)

The overall severity of structural radiation injury was assessed

using the RIS system.17 RIS is a composite histopathologic

scoring system that provides a global measure of the severity

of structural radiation injury. Seven histopathologic parameters

of radiation injury, namely, mucosal ulceration, epithelial aty-

pia, subserosal thickening, vascular sclerosis, intestinal wall

fibrosis, ileitis cystica profunda, and lymph congestion, were

assessed and graded from 0 to 3. RIS value is defined as the

sum of individual alteration scores.
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Determination of Organ Index

To give a quantitative assessment of the immune response,

spleen and thymus indexes (Sx) were calculated as follows:

Sx ¼ [Weight of experiment organ (mg)]/[Weight of experi-

ment animal (g)].20,21

ELISA Assay for Inflammatory Cytokines

The obtained tissue samples were homogenized with a tissue

homogenizer at 4�C for 10 min and then centrifuged at 3000

rpm for 10 min. The supernatants were stored at �80�C.

Inflammatory cytokines IL-6 and IL-10 and serum inflamma-

tory factors TNF-a, IL-1b in the supernatants were tested

according to kit instructions using quantitative sandwich assay

to determine the concentrations. OD value was measured by

multimode plate reader (Synergy NEO, BioTek, USA) at

450 nm, and the levels of each factor were calculated.

Measurement of SOD and GSH Activity and MDA
Content

SOD activity in jejunum was examined using the xanthine

oxidase method provided by the standard assay kit,22 in which

the xanthine–xanthine oxidase system was employed to pro-

duce superoxide ions that will react with 2-(4-iodophenyl)-3-

(4-nitrophenol-5-phenlyltetrazolium chloride) to form a red

formazan dye. Absorbance at 550 nm was determined. Protein

concentration was determined by a BCA protein assay kit, and

the values were expressed as units per mg protein. One unit of

SOD was defined as the amount of SOD inhibiting the rate of

reaction by 50% at 25�C. GSH activity in jejunum was tested

according to the manufacturer’s instructions and recorded

using a microplate reader at 405 nm absorbance. Lipid perox-

idation was evaluated by measuring the MDA concentrations

using the thiobarbituric acid (TBA) method as commercially

recommended. This technique was based on the spectrophoto-

metric measurement of the color produced during the reaction

of TBA and MDA. MDA content were calculated by the absor-

bance of TBA reactive substances at 532 nm.

Western Blot Analysis in Jejunum Tissues

Jejunum tissue samples were homogenized in ice-cold lysis

buffer and centrifuged, and the supernatants were collected.

Protein concentration was measured using the BCA protein

assay kit. After denaturation, equal amounts of protein

(50 mg) were separated by 10% SDS-PAGE and then trans-

ferred onto a PVDF membrane. The membranes were blocked

with 5% skim milk in Tris-buffered saline Tween-20 solution

for 1 h and then incubated overnight with the following primary

antibodies at 4�C: HMGB1 (1:1000), IKKb (1:1000), TLR4

(1:400), MyD88 (1:1000), NF-kB (1:500), and b-actin

(1: 1000). After washing thrice in PBST and incubated with

appropriate secondary antibodies, the membranes were devel-

oped by chemiluminescence using Superstar ECL Western blot

substrate reagents. Band intensities were quantified using

Image J software. All experiments were conducted in triplicate,

and the average value was obtained.

Statistical Analysis

All data were expressed as the mean + standard (SD). Differ-

ences between groups were tested by 1-way ANOVA

(SPSS24), followed by the LSD post hoc test. Differences were

considered statistically significant at P < 0.05.

Results

CM Extended the Survival Time of Irradiated Mice

The mice in the IR group started to die at day 9 after irradiation

and the last mouse died at day 11. In CMþIR group, the first

death also occurred at day 9, and the last mouse died at day 21.

The mean survival time was significantly longer in the CMþIR

group than in the IR group (14.40 + 4.09 vs. 10.60 + 1.03

days, P < 0.05) (Figure 1A). Survival analysis showed that the

survival rate was significantly higher in the CMþIR (P¼ 0.04)

than in the IR group (Figure 1B).

Figure 1. (A) The survival time of the 3 groups during the experiment. *P < 0.05, **P < 0.01, ***P < 0.005. (B) The survival curve of the 3 groups
during the experiment. P ¼ 0.04 compared with the IR group.
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CM Ameliorated the General Status of Mice

Radiation decreased the food and water intake and the body

weight (Figure 2). Although food and water intake recovered

within 2-3 days, the body weight did not increase. No signifi-

cant difference in the body weight and food/water intake was

found between the IR and CMþIR groups.

CM Attenuated the Radiation-Induced Intestinal Injury in
Mice

HE staining of the jejunum was performed to evaluate the

protective effect of CM on mice at 7 days after radiation. Com-

pared with the Con group, the intestinal villi in the IR group

were shorter, thicker, and more irregularly arranged. In the

CMþIR group, the villi statue was gradually repaired, and they

became regularly organized (Figure 3A). CM had a remarkable

improvement effect on radiation-induced intestinal injury. RIS

was used to evaluate the extent of intestinal injury. Compared

with the IR group, the CM group had significantly decreased

RIS (Figure 3B).

The intestinal villus length, crypt depth and number, and

V/C ratio were measured (Figure 3C-F). The average villus

height was shorter in the IR group than in the Con group

(271.90 + 37.09 mm vs. 411.14 + 25.701 mm), and the V/C

ratio was markedly reduced from 5.94 + 0.65 in the Con group

to 3.67 + 0.61 in the IR group. All these data indicated that

radiation seriously damaged the intestine. CM effectively

Figure 2. Body weight (A) and daily food/water intake (B) of mice during the experiment.

Figure 3. Effects of CM on radiation-induced intestinal injury in mice. (A) Representative images of the HE stained sections of the jejunum; (B)
radiation injury score; (C) villus length of small intestine; (D) crypt depth of small intestine; (E) V/C ratio of small intestine; (F) regenerated crypt/
circumference of small intestine. *P < 0.05, ***P < 0.005.
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improved the villus statue by increasing the length to 327.95 +
26.08 mm and the V/C ratio to 4.66 + 0.57 in the CMþIR

group, indicating its protective effect on radiation-induced

intestinal damage. Although no significant differences were

found in crypt depth among the 3 groups, CM significantly

increased the number of crypts.

CM Promoted Anti-Oxidative Activity in Jejunum Exposed
to Radiation

SOD, GSH, and MDA levels were detected to evaluate the

oxidative stress level of jejunum tissues. Compared with the

Con group, SOD and GSH levels significantly decreased, and

the MDA level significantly increased in the IR group. This

finding indicated that radiation induced oxidative damage to

mice jejunum. Pre-treatment with CM before radiation effec-

tively alleviated this phenomenon. Compared with the IR

group, the mice in the CMþIR group showed an increase in

SOD and GSH levels and a decrease in MDA level (Figure 4).

CM Inhibited the Expression of HMGB1/TLR4 Pathway
Inflammation-Related Proteins in Jejunum Exposed to
Radiation

The expressions of inflammation-related proteins were

examined by using Western blot analysis to address the under-

lying mechanism of CM protective effect on radiation-

induced intestinal injury. TLR4, IKKb, NF-kB, MyD88, and

HMGB1 levels increased significantly after irradiation but

decreased after the pre-treatment with CM. These results

showed that CM could mediate HMGB1/TLR4 pathway and

inhibit radiation-induced inflammation in the jejunum

(Figure 5).

Figure 4. The effect of CM on anti-oxidative activity in jejunum of mice. (A) SOD activity; (B) GSH activity; (C) MDA content. *P < 0.05, **P <
0.01, ***P < 0.005.

Figure 5. CM reduced inflammation response via HMGB1/TLR4 pathway. (A) Representative protein expression of Western blot. (B) Average
band intensity of TLR4, IKKb, NF-kB, MyD88, and HMGB1 in jejunum homogenate. The expression was normalized with respect to the Con
group. *P < 0.05, **P < 0.01, ***P < 0.005.

Chen et al 5



CM Improved the Organ Index and Inhibited the
Inflammatory Cytokine Levels of Irradiated Mice

Radiation significantly decreased the thymus and spleen

indexes. Compared with the IR group, the thymus and spleen

indexes significantly increased in the CMþIR group. CM pro-

tected the immune organs that were damaged by radiation

(Figure 6A-C).

ELISA was used to detect the levels of pro-inflammatory

factors TNF-a and IL-1b in the serum and the levels of inflam-

matory cytokines IL-6 and IL-10 in jejunum tissues

(Figure 6D-G). The serum levels of TNF-a and IL-1b in the

IR group were significantly higher than those in the Con group.

After CM intervention, the levels of TNF-a and IL-1b were

significantly restored (P < 0.005). The level of anti-

inflammatory factor IL-10 significantly decreased in the IR

group (P < 0.05) but significantly increased after CM interven-

tion (P < 0.05).

Discussion

Radiation is commonly used in cancer therapy, especially in the

treatment of gynecological and colorectal cancers. The high

proliferative rate of intestinal epithelial cells and stem cells

makes the bowel one of the organs that are most sensitive to

radiation injury. Thus, methods to alleviate radiation-induced

small intestine injury are needed to extend survival.19,23

In this study, CM was first examined to explore its protec-

tive effect on radiation-induced intestinal injury. CM

intervention extended the survival time and improved the sur-

vival rate of irradiated mice. Survival extension was attributed

to the alleviation of the injury of the small intestines, which are

susceptible to radiation because they contain rapidly dividing

transit cells.24 Crypt areas were visualized by HE staining, and

the findings showed that CM histopathologically attenuated the

intestinal injury and quantitatively increased the villus length

and V/C ratio. The level of oxidative stress in jejunum was also

tested to further understand the underlying mechanism. Radia-

tion substantially reduced SOD and GSH activities in jejunum

tissues and increased MDA level. These adverse reactions were

effectively improved by CM intervention. Arab also revealed

that CM can inhibit renal oxidative stress and enhance antiox-

idant capacity.25 The distinctive anti-oxidant properties of CM

is likely due to its high content of vitamins C and E, zinc, and

selenium.12

CM protected the immune organs destroyed by radiation,

decreased inflammatory factors TNF-a and IL-1b in the serum,

and increased anti-inflammatory factor IL-10 in the jejunum.

Inflammatory factors play an important role in the occurrence

and development of radiation-induced intestinal injury.26 CM

has a potential anti-inflammatory effect that contributes to its

immune-protective influence on radiation-induced intestinal

injury. Zhu et al found that CM reduces the LPS-induced

increase in neutrophil infiltration and TNF-a and IL-1b levels

in rats.27 By constructing a rheumatoid arthritis mouse model,

Salama et al found that CM lowers TNF-a and augments the

anti-inflammatory IL-10 levels in the sera and exudates of

arthritic rats.12 The antioxidant and immune regulation

Figure 6. Effect of CM on the organ indexes and inflammatory cytokine levels in mice. (A) Thymus index. (B) Spleen index. (C) Spleen anatomy.
(D) Serum TNF-a level. (E) Serum IL-1b level. (F) Jejunum IL-6 level. (G) Jejunum IL-10 level. *P < 0.05, **P < 0.01, ***P < 0.005.
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capacities of CM played important roles in its radio-protective

effect.

Several studies have shown that CM has antioxidant capac-

ity. Since HMGB1 plays pivotal roles in the regulation of the

cellular response to stress. We further investigated whether the

antioxidant effect of CM is mediated by HMGB1 and down-

stream signaling pathways, which included TLR4, IKKb, NF-

kB, and MyD88.28 HMGB1 is a late-stage inflammatory factor

that can be passively released by necrotic and damaged cells or

activated through immune cell activation. Once released in the

extracellular space and upon its interaction with a large panel

of cell surface receptors, HMGB1 exerts a plethora of cell

regulatory functions from maturation, proliferation, and moti-

lity to inflammation, survival, and cell death.28-31 HMGB1 can

also directly bind to TLR4 and induce the secretion of pro-

inflammatory cytokines.32 CM significantly reduced the

irradiation-induced upregulation of HMGB1/TLR4 protein in

intestinal tissues.

CM contains many nutrients, and the protective effect on

radiation-induced intestinal injury is due to the combined

actions of various proteins, vitamins, and nutritional factors.

Lactoferrin, which exhibits various beneficial properties,33 is

used as an example. CM has higher lactoferrin content than

milk from cows, goats, and buffaloes.34 A study revealed that

lactoferrin could increase the survival rate of mice exposed to

X-ray irradiation by decreasing the levels of serum IL-6 and

TNF-a and reducing the expression of radiation-induced

IKKa/b and NF-kB.19

In conclusion, our findings demonstrated that CM reduces

the level of inflammatory cytokines by regulating the HMGB/

TLR4/NF-kB/MyD88 pathway and the antioxidant capacity to

decrease radiation-induced intestinal damage (Figure 7). To

elucidate the exact and comprehensive mechanism in the

future, it is necessary to conduct local irradiation that is limited

to the gastrointestinal tract.
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