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Abstract: Plant cells are separated by cellulose cell walls that impede direct cell-to-cell contact.
In order to facilitate intercellular communication, plant cells develop unique cell-wall-spanning
structures termed plasmodesmata (PD). PD are membranous channels that link the cytoplasm, plasma
membranes, and endoplasmic reticulum of adjacent cells to provide cytoplasmic and membrane
continuity for molecular trafficking. PD play important roles for the development and physiology of
all plants. The structure and function of PD in the plant cell walls are highly dynamic and tightly
regulated. Despite their importance, plasmodesmata are among the few plant cell organelles that
remain poorly understood. The molecular properties of PD seem largely elusive or speculative. In this
review, we firstly describe the general PD structure and its protein composition. We then discuss
the recent progress in identification and characterization of PD-associated plant cell-wall proteins
that regulate PD function, with particular emphasis on callose metabolizing and binding proteins,
and protein kinases targeted to and around PD.
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1. Introduction

Plasmodesmata (PD) span the plant cell walls and connect protoplasts of adjacent cells [1,2].
The presence of PD allows molecular communication conveniently between plant cells [3–5]. Several
thousand PD form a network between fully differentiated plant cells [6], transforming individual cells
into interconnected symplasts, providing channels for the intercellular exchange of electrical signaling,
diffusion of small molecules, and transportation of macromolecules such as proteins, nucleic acids,
and viruses [7–10]. The exchange channel provides a direct cell-to-cell cytoplasmic pathway for plant
molecule transport and information transmission [11]. The PD also regulates plant metabolic activity
and gene expression through the transfer of signaling chemicals, enabling plant cells to exchange
information with each other to coordinate physiological processes [12–14].

Although being a functional important structure, the molecular composition of PD remains largely
elusive [15,16]. PD are embedded in rigid cell walls; it is arduous to purify and study such an organelle
via classical biochemical methods. High-resolution electron microscopy showed that proteinaceous
particles are associated with PD structures [17]. Studies such as immunolocalization revealed that
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various proteins are present in PD, including kinase-like proteins [18], actin, and myosin [19], which
may serve as permanent structural components. In addition, genetic and biochemical approaches
applied to dissect PD-associated functional components led to the discovery of callose binding proteins
and receptor-like kinase proteins in the model plants [20]. They regulate the permeability of PD
and control intercellular substance transport and signal communication. PD-mediated symplasmic
transport is involved in a variety of plant physiological processes that are pivotal for the development
of plants of economic interest, such as shoot apex dormancy, flowering, fruit ripening, fiber elongation,
and plant–microbe symbiosis [21]. Understanding PD function through characterization of PD-related
proteins may have the potential for improving agronomic traits in the future.

It is generally believed that callose deposited at the PD neck region plays a regulatory role in the
neck switch [22]. This is the most well-known mechanism for regulating PD permeability [23]. Callose
is a polysaccharide in the form of β-1,3-glucan [24]. Callose is synthesized at the plasma membrane at
the neck region of PD, squeezing the plasma membrane inwardly, thereby narrowing down the neck
region, which reduces the free space that PD can use for molecular passage [25]. A large amount of
evidence indicates that the change in PD permeability is due to the synthesis and hydrolysis of callose
in the cell wall [26–28]. Callose synthase, β-1,3-glucanase, and PD-associated callose binding protein
are involved in the regulation of callose homeostasis in PD, which in turn affects the permeability of
PD channels [29,30].

2. The Formation and Structure of PD

From the perspective of origin, PD is generally formed during the mitotic cell division. In the primary
formation of PD, although the protoplasm is split by the newly formed cell plate, the endoplasmic
reticulum (ER) is still connected through the cell plate [31]. The presence of the ER in the channels
prevents the deposition of wall-forming substances, thus maintaining the connection between the
two separated cells [32]. Furthermore, the ER transforms into the PD under the pressure of the cell
plate or membrane. There are also PD between non-sister cells, that is, PD can be formed between
non-mitotic cells [6,33]. However, the molecular origin and process of secondary PD formation are not
well understood.

Ding et al. [34] obtained a series of new PD structural details using rapid freezing and freezing
replacement sample preparation techniques, high-resolution electron microscopy, and computer-aided
image processing techniques. A structural model of PD was proposed based on their observations.
At both ends of PD is an enlarged hole [35,36], and the center of the PD is a cylindrical body formed by
the appressed ER, called a desmotubule [37]. The desmotubule is tightly constricted with little space [38].
Cytoskeletal proteins are often found in PD, such as actin and myosin [39,40]. Protein particles of about
3 nm are embedded between the appressed ER and the plasma membrane. Electron-dense radial fibrils
connect the protein particles [34,41]. The protein particles on the ER membrane present a spiral or a
series of circularly arranged rotations. In the cross-section, 7–9 particles can be seen [34]. The channel
of the ER is considered to be the transport pathway of PD [42,43]. The two ends of the channel become
smaller, called the neck region [37].

Actin filaments and callosum sphincters are two modes of controlling PD permeability. According
to experimental observations, actin filaments are located near and inside the PD channel, and the
polymerization state of actin changes the permeability of PD [44,45]. On the other hand, callose
aggregates at the neck region narrow the space between cell wall and PD desmotubule.

3. PD-Associated Structural Proteins

As mentioned above, studies such as immunolocalization revealed that various proteins such
as actin, myosin, tubulin, and calreticulin are present in PD as structural components [39,46]. Actin
and myosin are components of the cell dynamic network, cytoskeleton, involved in intracellular
transport [47]. Microtubule arrays consist of tubulin heterodimers which play critical roles in cell
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division and intracellular organization [48]. These proteins are not cell-wall proteins, but are associated
with the plant cell-wall structure of PD in the context of this review (Table 1).

Table 1. Proteins associated with plasmodesmata (PD).

Gene Protein Function Method Biological
Function References

Actin Cell cytoskeleton Immunolocalization PD structure
component [49–51]

Myosin Cell cytoskeleton Immunolocalization PD structure
component [46,51,52]

Tubulin Cell cytoskeleton Immunolocalization PD structure
component [51]

GSL8
(CALS10) Callose synthase Genetics and cell biology Callose deposition

and auxin response [53]

GSL12
(CALS3) Callose synthase Genetics and cell biology

Callose deposition
and phloem

development
[36]

PDBGs
(AtBG_ppap) β-1,3-glucanase Proteomics and cell biology

Callose
degradation and

lateral root
development

[28,54,55]

PDCBs Callose
binding protein Proteomics and cell biology

PD localization and
callose stabilization

at neck region
[29]

PDLPs
Transmembrane

receptor-like
protein kinase

Proteomics and cell biology
SAR- and

SA-induced callose
accumulation

[55–59]

3.1. Actin

Actin exists in the entire PD [60]. The systematic observation of the nature and structure
of PD in the epidermal cells of Allium sativum L. was performed using a fluorescence probe and
confocal microscope combined with transmission electron microscopy and immunogold labeling [49].
White et al. [49] indirectly demonstrated the presence of actin in PD in young and mature cell walls
of Hordeum vulgare and Nicotiana plumbaginifolia by colloidal gold labeling. The results effectively
confirmed the presence of F-actin in PD. It is unclear how the filaments are organized within PD.
They may exist in the lumen between the desmotubule and the plasma membrane, connecting the
cytoskeleton between adjacent cells [45,61]. The actin filaments may also function as routes along which
vesicular trafficking is possible. Treatments with actin disrupter, cytochalasin D, and actin-stabilizing
fungal toxin, phalloidin, showed opposite effects on the cell-to-cell transport of a fluorescent reporter
dextran; the latter chemical severely restrained the dextran movement [49,50]. These results indicate
that the PD structural component may also be involved in regulating the PD permeability, with larger
molecules being able to move through once actin filaments are disrupted.

3.2. Myosin

Immunochemical localization studies indicated that myosin was also an integral component of
PD [49,51,52]. Radford and White’s experiments indirectly demonstrated a myosin distribution on
PD [52]. They used an animal myosin antibody with colloidal gold to prepare an immuno-electron
microscopic sample of onions, maize, and Arabidopsis seedlings. They found colloidal gold-labeled
particles on the cytoplasm and PD, suggesting that myosin might be present in PD. To date, myosin is
confirmed to belong to 15 families, of which only some are found in plants, where the myosin found in



Int. J. Mol. Sci. 2019, 20, 2946 4 of 16

PD belongs to the eighth family. The effects of myosin inhibitor treatments somehow led to inconsistent
results as to the role of myosin in PD [39]. How myosin regulates PD function is still under debate.

3.3. Tubulin

Blackman and Overall systemically characterized whether the cytoskeletal-related proteins were
targeted to PD and found tubulin in the extracts of the PD-containing internode cell walls of corals,
whereas it was not detected in the PD-independent internode cell walls, suggesting that PD may
contain tubulin [51]. The role of tubulin in PD is less well characterized as compared to actin and
myosin [62]. Blackman and Overall [51] speculated that tubulin may be indirectly involved in
long-distance transport.

4. PD-Associated Regulatory Proteins

Callose is deposited at the cell wall near the neck of the PD and regulates the PD size exclusion
limit (SEL) [22]. The PD function in plants is closely linked to callose deposition in the PD neck region.
PD-associated regulatory proteins are more or less callose-related (Table 1). As mentioned above,
the level of callose in PD is controlled by two antagonistic callose metabolic enzymes, callose synthase
(CALS), also well known as glucan synthase-like (GSL), and β-1,3-glucanase (BG), and requires other
enzymes that regulate callose stability [24,35]. In addition, the PD permeability changes involved in
plant development and defense, processes involving callose, also require other proteins associated
with callose [63,64].

4.1. Callose Synthases Modify Cell Wall PD to Regulate Plant Development

In the callose-dependent PD permeability, the PD channel is turned off by a high level of callose
and turned on by a low level of callose, indicating that the callose level of the PD neck region is
particularly crucial to PD function. The callose deposition determines PD SEL, which in turn determines
their permeability and the transportation of macromolecules. Biochemical and genetic studies in barley
and tobacco pollen tubes first demonstrated that GSLs produced callose [65]. This is also evidenced
by studies in Arabidopsis [36,66]. GSLs control developmental signals by modulating the amount of
callose in PD.

Plant hormones play a role in many aspects of plant physiology and development. Auxin has
a gradient distribution in plants and plays an important role in plant growth and development [67].
As a small molecule, auxin can diffuse freely through the PD [68]. A recent study revealed that the
auxin gradients can be maintained by controlling the PD permeability. Han et al. [53] screened all
12 GSL gene mutants in Arabidopsis, and found that the PD callose content decreased significantly only
in the gsl8/cals10 mutant. They used hypocotyls that responded to the auxin gradient distribution as
experimental systems and found that the inducible gsl8 RNA interference (RNAi) system showed
lower phototropism and agravitropism in hypocotyl, which mimics auxin defects. Further studies
found that a decrease in the messenger RNA (mRNA) level of GSL8 resulted in the decrease of callose
at PD, the increase of permeability of PD, and the increase of the diffusion of auxin transported by the
symplast; finally, the gradient distribution of auxin was destroyed. Moreover, they proposed that the
auxin gradient in plant tissues was established by the auxin–GSL8 feedback circuit associated with
auxin response factor 7 (ARF7).

PD-mediated signaling plays a role in plant morphogenesis. Callose biosynthesis in the regulation
of symplasmic transport by PD plays a central role in plant cell-to-cell signaling, but it is not clear
how this regulation is arranged [69]. Vatén et al. [36] screened for the gsl12/cals3 mutant in an ethyl
methanesulfonate (EMS) mutagenesis library of Arabidopsis. Observation of the GFP::GSL12 fusion
protein expressed in the leaves indicated that it was localized in PD. The gain-of-function mutation of
GSL12 leads to a transient accumulation of callose in PD in the early stage of root development, a decrease
in PD SEL, a decrease in intercellular transport, and a defect in root development. This suggests that the
regulatory activity of GSL12 influences the biosynthesis of callose in the cell wall surrounding the PD,



Int. J. Mol. Sci. 2019, 20, 2946 5 of 16

which determines the pore size of the PD and regulates the transport of substances. The experiment
with the GSL12 allele (cals3m) showed that the PD pore size between plant tissues is controlled spatially
and temporally. Using this system, they assessed the movement of the short-root (SHR) protein,
microRNA165/6, and cytokinin in Arabidopsis roots and revealed the role of symplasmic communication
in lateral root development. The above results indicate that GSL12 is a callose synthase, and that
the biosynthesis of callose affects the plant developmental signals transmitted by PD. Interestingly,
Yadav et al. [66] also identified GSL12 in Arabidopsis, and its semi-dominant mutants overproduce
callose in PD.

The new cells required for plant growth and development are derived from the differentiation of
stem cells. There is a group of stem cells called stem-cell niche (SCN) at the root apical meristem, and at
its center are slowly dividing cells called the quiescent center (QC). It was believed that the location
information provided by intercellular communication enabled QC and SCN to be maintained, but it was
not verified for a long time. Liu et al. [70] developed a system that can effectively block PD-mediated
communication in QC. They controllably and specifically blocked the intercellular communication
between QC and neighboring cells by expressing icals3m (inducible form of cals3m) in QC. Using
this system, they explored the function of intercellular communication in the SCN. They found that
changes in symplastic communication between QC and adjacent cells resulted in elevated local auxin
concentrations and the establishment of AP2-domain transcription factor gradients. Changes in
symplasmic communication not only affect the polar transport of auxin, but also affect the biosynthesis
of local auxin, which together provide local information for stem cell maintenance and play a key role
in the maintenance of SCN. These studies revealed a direct link between symplasmic translocation and
auxin-dependent regulation of stem-cell identity.

Slewinski et al. [71] identified a callose synthase in maize. They obtained tie-dyed (TDY) mutants
of maize exhibiting green and yellow variegated leaves by EMS mutagenesis, and the yellow leaf tissue
accumulated too much soluble sugar and starch. After constructing the population, they cloned the
TDY2 gene using map-based cloning, and found that TDY2 encodes a callose synthase. Characterization
of expression patterns by RT-PCR analysis, RNA in situ hybridization, and colocalization with the
vascular marker, PINFORMED1a (ZmPIN1a)-YFP, revealed that TDY2 was preferentially expressed in
vascular tissues of developing young leaves. The movement experiments of 14C-labeled sucrose and
carboxyfluorescein diacetate (CFDA) showed that the tdy2 leaves defected in the entry of sucrose into
phloem. Solutes could not enter phloem in yellow leaf region of tdy2 mutants, but its long-distance
transport capacity was not impaired. The ultrastructure study of the tdy2 mutant vein by transmission
electron microscopy showed that the phloem and xylem cells in the yellow leaf region of tdy2 were
changed, and that the vein differentiation was incomplete, which hindered the symplasmic transport
from phloem companion cells to sieve elements mediated by PD, resulting in functional defects
in phloem. As to how the callose synthase TDY2 targets to PD in the cell walls, Baker et al. [72]
hypothesized that TDY2 was synthesized in the ER and traveled through secretory vesicles from the
Golgi apparatus to localize to PD, or that TDY2 proteins translocated through the secretory system to
the plasma membrane and PD.

Song et al. [73] identified a plasmodesmal callose synthase gene cannot reach the roof 1 (CRR1)
that affects ovary development in rice plants. The rice CRR1 gene is closely related to Arabidopsis
GSL8 and GSL10. By aniline blue staining and immunocolloidal gold analysis, the crr1 mutation had
no effect on the callose deposition at root cell plates, pericarp, and pedicel sieve plates. However,
iodine staining of ovarian development showed that the starch granules were significantly less
numerous than wild type (WT) in the pericarp of the crr1 ovary, and that the distribution was uneven,
indicating that the unloading from the phloem to the pericarp could be defective. RT-PCR analysis
and pCRR1::GUS reporter transgenic plants showed that CRR1 was specifically expressed in vascular
tissues. The movement analysis of CFDA revealed that sugars were inefficiently unloaded from the
lateral vascular system to the developing caryopsis. Transmission electron microscopy showed that
the connection between sieve tube cells and peripheral parenchyma cells of vascular bundles was
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reduced, and some cells had defective cell walls, where the deposition of callose at PD was reduced.
These results suggest that CRR1 may alter the transport of cell fate determinants by controlling the
permeability of PD, resulting in the change of the vascular cell differentiation pattern, thereby playing
a key role in determining the plant reproductive development.

4.2. Callose Hydrolases Degrade Callose to Enhance Intercellular Communication

Class I β-1,3-glucanase (GLU I) plays an important role in the defense against virus infection [74].
Iglesias et al. [75] studied the role of GLU I in PD and PD-dependent communication. They obtained
a homozygous class I β-1,3-glucanase (GLU I)-deficient mutant tobacco (TAG 4.4) by antisense
transformation. This mutant become insensitive to viral infections. Observation was carried out
of the size of the necrotic area and the GFP expressed by a recombinant form of potato virus X
(PVX). GFP showed that the spreading of the virus in this mutant was slowed down. Observation
of the fluorescence of CMV’s 3a movement protein in fusion with GFP (3aMP::GFP) revealed that
the movement of viral movement proteins between cells was limited in TAG 4.4. Observations of
fluorescein isothiocyanate (FITC)-dextrans and FITC-peptides indicated that plasmodesmal SEL was
reduced in this mutant. Aniline blue staining showed that, after the loss of GLU I, the deposition
of callose increased. The above results indicate that β-1,3-glucanase plays an important role in the
metabolism of callose. It may promote the degradation of callose, change the permeability of PD,
and regulate the movement of macromolecules through PD. Bucher et al. [76] further explored the
relationship between GLU I and plant sensitivity to viruses. They studied the role of GLU I in viral
migration between cells from both gain- and loss-of-function mutants. They inserted the different target
fragments into the TMV-based expression vector to obtain products of different enzymatic activities.
The positive insertion fragments expressed the active GLU I protein, and the necrotic area of leaves
increased continuously after infection with the virus. The plants infected with viruses expressing
antisense GLU I showed reciprocal effects. These experiments indicated that GLU I promoted the
movement of virus between cells by hydrolyzing callose to increase PD SEL.

Levy et al. [28] identified a putative plasmodesmal associated proteinβ-1,3-glucanase (AtBG_ppap)
in Arabidopsis and demonstrated that the permeability of PD is regulated by β-1,3-glucanase.
The proteins in the PD-enriched fraction of Arabidopsis were separated by sodium dodecyl sulfate
polyacrylamide gel electrophoresis (SDS-PAGE) and subjected to mass spectrometry analyses.
The β-1,3-glucanase identified was named AtBG_ppap (beta-1,3-glucanase_putative PD-associated
protein). Observation of transient and stable expression of GFP fusion proteins and aniline blue staining
revealed that AtBG_ppap was related to the callose around PD in the cell walls. In the Atbg_ppap
mutant, the callose level around the PD was higher, and the mobility of the GFP protein between
cells was decreased, that is, the permeability of PD was lowered. The above experimental results
demonstrated that AtBG_ppap is a PD-associated protein involved in plasmodesmal callose removal.

Intercellular communication regulates the function of individual cells to establish organ patterning
and formation. It is long known that mobile signals are important in lateral root (LR) development.
Paradoxically, the role of the intercellular channel PD in this process seems to have inadvertently
not been elucidated. Recently, Benitez-Alfonso et al. [54] identified two plasmodesmal localized
β-1,3-glucanase (PDBG) proteins that particularly accumulated in the LR founder tissue. Callose
deposition changed correlating with changes in symplasmic transport during the course of LR
development. During the formation of lateral meristems, callose amount was detected at low levels
in PD. At early stages of LR development, callose accumulated to a moderate level between cells.
Callose formation increased progressively when LRs developed. Such callose accumulation during LR
organogenesis was regulated by two PDBGs, PDBG1 and PDBG2, which were localized in PD at early
stages of lateral root primordia. In pdbg1,2 double mutants, excessive callose deposition was detected
around LR founder cells. In contrast, callose levels were significantly reduced in PDBG1-overexpressing
plants. Consistent with callose accumulation levels, pdbg1,2 double mutants showed a significant
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increase in LR formation. These results demonstrated that PD-dependent cell-wall glucanases play an
important role in plant development via modulating intercellular communication.

Furthermore, Rinne et al. [77] analyzed 10 presumed cell-wall β-1,3-glucanase genes belonging to
the GH17 family (glucan hydrolase family 17) in poplar, and found that different treatments, such as
photoperiod, chilling, and gibberellin, regulated these genes differently. Based on this, a model of
breaking bud dormancy related to PD regulated by β-1,3-glucanase was proposed. Previous studies
found that flowering locus T (FT) is the primary long-distance signal that is generated at the vascular
bundle by activation of Constans (CO) and transported to the apex [78]. Centroradialis-like 1 (CENL1) in
poplar is an ortholog of Arabidopsis TFL1 (terminal flower 1)—a hypothetical signal peptide, expressed
in a small region under the shoot apical meristem (SAM) [79,80]. Both FT and CENL1 move through
the phloem. They enter phloem tissue via PD which connect the cytoplasm of companion cells with
the sieve tube cells. When the bud is dormant, SAM closes PD with callose, and cells in SAM become
disconnected from each other [80]. Chilling induces FT and affects gibberellic acid 3 (GA3) biosynthesis
by upregulating the expression level of GA3-oxidase; then, FT and β-1,3-glucanase proteins induced by
GA3 reopen the PD in dormant buds. When the climate warms up, the reopened PD enables FT and
CENL1 to move to their targets to cause buds to germinate. Following the study of the mechanism of
seasonal dormant axillary buds (AXBs) releasing dormancy, Rinne et al. [81] continued to study the
mechanism of semi-dormant axillary buds releasing dormancy during tree branch formation. AXB
dormancy breaking also involved the GA pathway, and the expression of β-1,3-glucanase gene was
induced by GA. They founded that the GA synthesis gene gibberellin 3-oxidase 2 (GA3ox2) expression
level in AXBs was very low; thus, GA was absent in AXBs. The expression of GA receptor gene
gibberellin insensitive dwarf 1-like (GID1-like) gradually increased during the maturation of semi-dormant
AXBs; thus, AXBs were sensitive to GA. They found that the expression of GA3ox2 was significantly
upregulated after decapitation of the hybrid poplar; thus, the biosynthesis of GA in AXBs increased.
The GH17s have CBM43 modules that position them to callose around the PD. Upregulated GH17s
responded to increased GA, degraded callose in the cell wall near PD, reducing callose deposition at PD,
and promoted communication between stems and buds, thereby abolishing dormancy of semi-dormant
AXBs. They studied the expression patterns of GA pathway and the GH17s gene at different stages
of bud development, summarized their expression characteristics, and demonstrated the role of
PD-related β-1,3-glucanases in bud development. Conversely, photoperiod regulates seasonal growth;
prior to the advent of winter, short days (SDs) during late autumn promote bud dormancy to induce
growth cessation. It was found that, in hybrid aspen trees, short photoperiods act through activation
of the abscisic acid (ABA) pathway [82]. Later, gene expression analysis revealed that SVL (SVP-like),
an ortholog of the Arabidopsis floral repressor short vegetative phase (SVP), was induced by SDs in an
ABA-dependent manner. SVL negatively regulated the growth promotive GA pathways and positively
mediated the expression of callose synthase 1 (CALS1) in the shoot apex to induce callosic plugs in the
neck region of PD [83,84]. Thus, PD-associated callose synthases and glucanases in the cell walls play
important roles in plant development by regulating bud dormancy and floral transition.

Previous work showed that PD is momentarily closed during the elongation of cotton fibers
in the allotetraploid species Gossypium hirsutum [85]. Ruan et al. [86] applied fluorescence probe
carboxyfluorescein (CF), aniline blue staining, and immunoelectron microscopy to cotton genotypes
with different cotton fiber lengths. It was found that the closure time of cotton fiber PD varied in
different cotton genotypes, which was related to the deposition and degradation of callose at the base
of cotton fiber. They cloned the GhGluc1 gene from cotton fibers and found that it specifically encoded
a β-1,3-glucanase localized to the fiber cells. Moreover, they also found that callose was degraded
when GhGluc1 was expressed, and GhGluc1 expression was higher in plants with shorter cotton fibers.
These results indicate that GhGluc1 is a callose degrading enzyme that allows the PD to be in an open
state. Callose formation at the neck region closes PD. PD closure is positively correlated with fiber
length; therefore, the callose catabolic enzyme GhGluc1 plays a negative role in fiber elongation.
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4.3. PD-Associated Callose Binding Proteins (PDCBs) Regulate Callose Stability

Simpson et al. [29] identified a novel PD-related protein gene, AT5G61130, which encodes PD
callose binding protein 1 (PDCB1) with callose binding activity in Arabidopsis. PDCB1 fused to the YFP
coding sequence driven by the CaMV 35S or its native promoter was stably transferred into Arabidopsis
and transiently expressed in tobacco protoplasts. The fluorescent spots were found in the epidermal cell
wall of Arabidopsis leaf tissue. Moreover, in spongy mesophyll cells, the fluorescent points were limited
to the wall-to-wall junction between adjacent cells and still retained this pattern after plasmolysis.
The results indicate that PDCB1 is associated with cell walls. Immunolocalization with anti-PDCB1
antiserum indicated that PDCB1 is located at the outer neck region of the PD. Combined with aniline
blue staining and confocal microscopy, they proved that PDCB1 was colocalized with callose located
in PD. They also studied PDCB2 (AT5G08000) and PDCB3 (AT1G18650) belonging to this family.
A homology search of the Arabidopsis genome revealed that PDCB2 and PDCB3 have more than 50%
amino-acid sequence similarity to PDCB1. Phylogenetic analysis revealed in fact that PDCB1, -2, and -3
lack a GPI-anchor signal sequence, but contain an X8 domain adjacent to the β-1,3-glucanase catalytic
domain. This is in contrast to the previously identified PD-related β-1,3-glucanase [28]. By comparing
with the structure of OLE-E9, the X8 domain-containing protein with callose binding activity in olives,
it was found that the PDCB1 X8 domain is very similar to the OLE-E9 domain. Gel retardation assays
showed that OLE-E10, PDCB1, and PDCB2 have callose binding activity in vitro. GFP diffusion assay
showed that the migration of GFP decreased with the increase of PDCB1 expression, suggesting
that the deposition of callose mediated by PDCB affected the symplastic communication through PD
between cells.

PDCBs contain a carbohydrate binding module family 43 (CBM43) domain (also known as
an X8 domain), as well as a callose binding domain, which can stabilize callose and regulate the
dynamics of callose of PD [29]. PDCB1-overexpressing plants exhibited increased callose deposition
in PD and decreased intercellular movement of reporter proteins. PDCBs are also predicted to be
glycosylphosphatidylinositol anchored proteins (GPI-APS). Zavaliev et al. [87] studied the effects
of GPI modification on PD proteins. They selected two GPI-APs associated with the callose of PD,
BG_ppap and PDCB1 in Arabidopsis. They also chose two GPI-APs that were not associated with PD
as control, arabinogalactan protein 4 (AGP4) and lipid transfer protein 1 (LTPG1). They first verified
the subcellular localization of these proteins with monomeric citrine (mCitrine) labeling and then
verified the modification of GPI with mannosamine. Subsequently, they subcellular localized the
full-length sequence and deleted GPI signal sequence, respectively. It was found that PD targeting
of BG_ppap and PDCB1 was mediated by GPI, and that the GPI modification played a major role in
protein targeting to PD; furthermore, this sorting happened before positioning.

4.4. PD-Located Receptor-Like Proteins (PDLPs) Regulate Plant Defense Responses

PDLPs are PD-localized transmembrane proteins. PDLPs consist of a short cytosolic tail and
two extracellular cysteine-rich receptor-like kinase domains of unknown function (DUF26) [88,89].
In Arabidopsis, eight PDLPs were identified by homologous comparison [56]; PDLP1, PDLP5, and
PDLP6, were later found in independent proteomic screens of PD-enriched membrane [55,57].
PDLP1 (AT5G43980) is the first member of this protein family identified by cell-wall proteomics
in Arabidopsis [55]. PDLP1 belongs to the DUF26 domain family. Thomas et al. [58] developed
Arabidopsis transgenic plants overexpressing PDLP1 and performed GFP diffusion experiments,
confirming that PDLP1 can regulate intercellular transport by regulating PD. Moreover, they found
through deletion analysis that their single transmembrane domain (TMD) is required for PDLP1a
targeting to PD.

When fungi and oomycetes enter host plants with a haustoria structure, they cause plant defense
responses, and the haustoria structure is gradually entrapped by the callose produced by the host.
Caillaud et al. [59] studied the molecular mechanism of accumulation of callose around haustoria. They
infected pPDLP1::GUS and pPDLP5::GUS reporter transgenic plants with pathogens, and found that
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PDLP1 was specifically expressed in cells containing haustoria and responded to pathogen infection.
Observation of PDLP1::GFP showed that PDLP1 localized at PD in both uninfected and infected tissue,
and PDLP1 was associated with haustoria at the early stages of pathogen invasion in infected tissue.
Moreover, the signaling peptide that targets PDLP to haustoria is located at its C-terminus, allowing it
to be localized to the haustorial membrane. Significantly more callose was detected in transgenic plants
overexpressing PDLP1 than in non-transgenic plants following pathogen infection. The experimental
results of Caillaud et al. [59] directly demonstrate that PDLP1 contributes to the immune defense
against pathogens by affecting the deposition of callose in the plant cell walls.

Pathogen invasion first leads to local infection, and then local infection produces signals that are
transported to the uninfected parts of the plant, making the uninfected part resistant to subsequent
enlargement of the infection. This is called systemic acquired resistance (SAR) [90–92]. Signals
generated by local infection include salicylic acid (SA), azelaic acid (AzA), glycerol-3-phosphate
(G3P), and reactive nitrogen species (RNS) [93,94]. Lim et al. [95] studied the transport mechanism
of SAR signals and found that PDLPs were involved. They treated plants with mock solution or
avirulent strains, then detected SA, AzA, and G3P in apoplastic fluids and petiole exudates representing
apoplastic and symplasmic communication signals, respectively. It was found that SA was transported
through the ectoplasmic pathway, while G3P and AZA were transported through the symplastic
pathway mediated through cell-wall PD conduits. Evaluation of SAR in pdlp1/pdlp5 double mutant or
PDLP5-overexpressing plants showed that PDLP1 and PDLP5 were involved in SAR. Moreover, PDLP1
can not only affect the transmission of SAR signals by regulating the permeability of PD, but also affect
the stability of SAR signal transporter azelaic acid induced 1 (AZI1) through direct protein–protein
interactions [96]. Ye et al. [97] also reported that a PDLP1 homolog, PDLP8, was able to interact with
the acyl-CoA-binding protein 6 (ACBP6) to stabilize ACBP6 accumulation in PD.

Various hormone signaling pathways are associated with basal immune responses. The pathways
activated by SA, a defense hormone, contribute to the responses [90]. When a pathogen infects plants,
SA concentration is elevated. The expression of the PD regulator PDLP5 was upregulated resulting in
the restriction of cell-to-cell movement via PD [57]. Accumulation of PDLP5 protein in PD restricts
PD permeability by stimulating callose deposition at the PD neck. Most notably, Cui and Lee [98]
revealed that GSL6 (CALS1) is a primary partner for PDLP5. They produced a transcriptional reporter
line pGSL6::GUS. GUS staining experiments confirmed that the GSL6 expression profile is most
highly correlated with that of PDLP5 in SA-treatment experiments. In gsl6-1 mutant plants, callose
deposition did not change after treatment with SA. This indicates that SA-mediated callose production
requires GSL6. The results of their experiments with carboxyfluorescein, a fluorescent dye that emits
fluorescence and will not retrograde once it enters the cell, also support this conclusion. Neither
changes in plasmodesmal callose deposition nor carboxyfluorescein movement were detected in gsl6-1
mutant after SA treatment. Collectively, these sets of experimental evidence establish that GSL6 is a
bona fide callose synthase gene regulating SA-dependent plasmodesmal responses. Therefore, PDLP5
requires GSL6 for SA-dependent plasmodesmal regulation. Evidence of subcellular localization of
GSL6 to cell-wall PD is missing. Since the gsl10 mutant plants are gametophytic lethal [99], the gsl10
loss-of-function plants are unavailable. The roles of GSL10 in regulating PD permeability and plant
defense responses are still not investigated. Wang et al. [100] cloned and overexpressed the extracellular
domain of Arabidopsis PDLP5 in an insect expression system, followed by purification, crystallization,
and diffraction analysis. The extracellular domain of PDLP5 includes two DUF26 domains. They
collected X-ray diffraction data to 1.90 Å resolution, which indicated that PDLP5 may function as
a dimer. This research provides novel understanding of the molecular mechanisms behind PD
permeability regulation and plant system immunity [100]. It is still far from clear, however, how PDLPs
regulate callose synthase gene expression and callose deposition in PD [101].
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4.5. Other PD-Related Cell Wall Proteins and Even More to Be Identified

The proteins and lipids of eukaryotes are sequentially organized in the plane of the membrane,
forming microdomains that distinguish and coordinate biological processes, ensuring specific kinetics
and functions to specific regions within the cell [102–104]. Grison et al. [105] used Arabidopsis cultured
cells and primary roots to strictly isolate plasma membrane (PM) domains of PD. Immunogold labeling
and Western blotting showed that many false-positive membrane proteins, such as PMA2, CesA3,
CesA6, and PIP2, did not target to PD, but previously known PDLP1 and PDCB1 were specific to PD
PM [105].

A hypothetical sterol carrier protein gene, GHSCP2D, was isolated from elongated cotton fibers
by Zhang et al. [106]. They inhibited the expression of GHSCP2D and observed the deposition of
callose on PD, confirming that GHSCP2D is involved in the permeability of PD. They demonstrated
that the decrease of PD permeability was due to the inhibition of the expression of the PD-targeted
beta-1,3-glucanase GhPDBG3 in cotton fibers. Both downregulation of GHSCP2D and the application
of a sterol biosynthesis inhibitor can reduce the permeability of PD, indicating that sterol also has an
effect on PD.

Viruses move through PD between plant cells. Park et al. [107] studied the role of PD in viral
infection and found that NbEXPA1 is a PD-specific expansin, specifically involved in cell wall relaxation.
They performed a label-free quantitative proteomic analysis of PD-enriched fractions of leaves infected
with TuMV and healthy controls in Nicotiana benthamiana. They collected in total 1070 PD protein
candidates. After data processing, 100 upregulated proteins and 48 downregulated proteins were
identified in the TuMV-infected samples. The observation of YFP or GFP fused with NbEXPA1 showed
that the fusion protein had a dotted pattern along the cell-wall boundary, suggesting that NbEXPA1
might be located in PD. Co-localization between NbEXPA1::YFP and PDLP1::CFP and between
NbEXPA1::GFP and CI::RFP indicated that NbEXPA1 was indeed a PD-localized protein. The results
of proteomics and RT-PCR analysis showed that TuMV infection downregulates the gene expression
and protein accumulation of NbExpA1. Colocalization of NbEXPA1::YFP and TuMV-6K2::mCherry
suggests that NbEXPA1 may be involved in the movement of the virus between cells. Infection of
leaves with recombinant virus expressing CFP ligated with a viral RNA polymerase NIB (CFP::NIB),
combined with a yeast two-hybrid assay and BiFC analysis, suggested that NbEXPA1 acts in the
viral replication complex via interaction with NIB. Silencing and overexpression of NbEXPA1 inhibits
and promotes the movement of the virus between cells, respectively. The above results indicate
that NbEXPA1 is a cell-wall protein associated with PD, which affects viral gene replication and its
movement through the PD between cells through interaction with NIB.

5. Further Perspectives

As the only channels for cytoplasmic communication between neighboring cells, PD are vital for
the developmental process of plants. By combination of genetic, biochemical, and cell biology studies,
many PD-associated proteins were identified and characterized (Figure 1). However, we still lack a
fuller understanding of how the PD functions, which is largely due to the methodological difficulties
in identification and characterization of PD components [108].

Increasing lines of evidence support that callose levels at the PD neck region play a central role in
modulating the PD permeability and the symplasmic pathway. So far, the PD-related proteins, such as
GSLs, PDGBs, PDCBs, and PDLPs, are all involved in maintaining callose homeostasis at the PD
zone [28,29,36,53,56]. Further experiments are required to elucidate how transcription factors regulate
the expression pattern of those genes in response to specific developmental cues and environmental
stimuli. Since callose deposition and degradation in PD respond readily and rapidly to a wide
range of signals, we speculate that PD-associated callose balancing proteins are mainly regulated at a
post-transcriptional level. Another common feature is that those PD proteins contain transmembrane
domains. Subcellular localization analysis showed that PD proteins are specifically targeted to PD
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embedded in the cell wall. It is also of interest to address the routes via which those proteins reach PD
and more specifically the membrane of PD [109].
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Figure 1. A simplified schematic representation of plasmodesmata (PD) structural and functional
proteins. Permeability of PD in the plant cell wall is controlled by dynamic callose deposition (closed,
right side) and degradation (open, left side) at the neck region of PD. ER, endoplasmic reticulum; GSL,
glucan synthase-like; PM, plasma membrane; PDCB, PD-associated callose binding protein; PDGB,
plasmodesmal associated β-1,3-glucanase; PDLP, PD-localized protein.

Previously, high-resolution electron microscopy and image processing methods greatly advanced
our understanding of PD structure [110]. Immunochemical localization studies facilitated the detection
of PD components. Indeed, our knowledge on PD is much dependent on technological progress.
Despite their structural complexity, PD are important for plants and require further studies [21].
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