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Genome editing tools have already revolutionized biomedical
research and are also expected to have an important impact
in the clinic. However, their extensive use in research has re-
vealed much unpredictability, both off and on target, in the
outcome of their application. We discuss the challenges associ-
ated with this unpredictability, both for research and in the
clinic. For the former, an extensive validation of the model is
essential. For the latter, potential unpredicted activity does
not preclude the use of these tools but requires that molecular
evidence to underpin the relevant risk:benefit evaluation is
available. Safe and successful clinical application will also
depend on the mode of delivery and the cellular context.

New therapies that employ genome editing tools (GETs) are being
developed for a broad range of diseases, including cancers, b-thalas-
semia, sickle-cell disease, and Duchenne muscular dystrophy (re-
viewed and discussed in Porteus,1 Pickar-Oliver and Gersbach,2 Mul-
lard,3 Ledford,4,5 and Hamilton and Doudna6). Meanwhile, although
GETs are efficient at inducing specific double-strand breaks (DSBs),
the outcome of DNA repair remains unpredictable. Validation of edi-
tedmodels, checking both targeted allele and potential off-target (OT)
changes, is therefore essential to ensure research reproducibility.
With more than 30 clinical trials underway or concluded,1 the safety
and efficacy of GETs as therapeutic agents are being explored. The
safety challenges associated with using these tools (see Box 1 for
key messages) and potential solutions are discussed in this review.
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Off-Target Effects: The Tip of the Iceberg?

Closely associated with the efficacy to target specific genomic se-
quences is the risk of generating unwanted mutations. Until recently,
OT cuts have been the main focus of discussions: initial use of GETs
on human cultured cells raised concerns about the specificity that
could be achieved, as frequent OT cutting events were recorded.7–10

Subsequent studies of CRISPR/Cas9 unwanted effects suggested
that in mice, OT events were rare.11–13 The same conclusion was
reached in various other models: tomato,14 rice,15,16 Arabidopsis,17

zebrafish,18 and human cell culture models19–24 and with the
use of transcription activator-like effector nucleases (TALENs).20,21

The conclusion of these studies was challenged by Schaefer and
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colleagues25 who reported frequent and unexpected types of genetic
variations in a published article that was subsequently withdrawn
when its methodology came under scrutiny. It is noteworthy that
with the exception of this retracted paper, high-frequency OT effects
have most commonly been reported in cell culture with sustained
Cas9/guide expression.7,8,10,24,26 The level of expression achieved, ge-
netic impact of maintaining cells in culture, transfection method, cell
type, guide sequence, constitutive nuclease expression, or a combina-
tion of any of these factors may explain the differences between high
and low frequency of OT events. More recent studies11,27–31 reinforce
the conclusion that the frequency of OT effects when GETs are used
in vivo is lower than the natural occurrence of genetic drift.32

Less highlighted, but more important, is the variety of repair events
that occurs subsequent to DSBs on target. Evidence of CRISPR/
Cas9-triggered genomic rearrangements was published early in their
use,33 and related potential safety issues for patients in therapeutic
settings were largely unnoticed. Further work demonstrated that
DSBs generated by one or more single-guide ribonucleic acids
(sgRNAs) also led to a high frequency of various and sometimes com-
plex (and often unwanted) events in a range of cellular contexts (early
embryos, embryonic stem cells, primary cultures, and established cell
lines):33–41 these included deletions larger than the genomic segments
defined by the sgRNAs, duplications (see examples in Birling et al.34

and Lee et al.40), inversions (examples in Birling et al.34 and Lee
et al.40), insertions of unrelated DNA sequences,41 translocations (ex-
amples in Jiang et al.35), and combinations of these rearrange-
ments.33–35,37,39 But overall, the most common unexpected repair
event that was described was a deletion of a small number of kilobases
tp://creativecommons.org/licenses/by-nc-nd/4.0/).
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Box 1 Currently Recognized Risks of Using Nucleases for GET: Key Messages

� GETs fit the definition of “targeted mutagens” as agents that increase the frequency or extent of a mutation at a given locus.
� With an experimental design that favors GET transient expression, the frequency of OT mutation is likely to be lower than the natural
occurrence of genetic drift for any given generation.

� GET-associated safety risks are also on-target mutations that are the consequences of unwanted DSB repair mechanisms.
� Each GET is different, with its own efficiency and target specificity compared to other GETs.
� Experimental models produced with GETs require extensive molecular validation to ensure research reproducibility.
� The use of GETs as therapeutic agents is associated with three main risk factors: those directly associated with DNA cutting and the
resulting repair events, those associated with the delivery means, and those attributable to the biological context in which GETs are
employed (that is, which organ systems or cell types are involved).

� GETs need to be assessed in the cellular context(s) for which they are intended in therapy, as the mechanism by which targeted cells
repair specific DSBs may differ among cell types, cell-cycle phase, metabolic status, and level of differentiation.

DNA, deoxyribonucleic acid; DSB, double-stranded break; GET, genome-editing tools; OT, off target.
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around the site of CRISPR/Cas9 nuclease or nickase activity.36,42

Unexpected sequence rearrangements may potentially induce con-
founding phenotypes; for example, an initially unrecognized
bystander tandem duplication associated with an enhancer deletion
allele in Ilr2a causes immune dysregulation through increased cellu-
larity and relative representation of memory T cells.43

With the addition of donor templates, the complexity of repair out-
comes increases, as the donor sequence also may integrate partially
or incorrectly.44–46 Recently, deep scanning of large numbers of
events in cell culture with long-read sequencing illustrated the diver-
sity of repair obtained, with a knock-in attempt resulting in a complex
population of indels and partial, rearranged, or concatemerized on-
target donor insertion, in addition to the expected integration event.47

Furthermore, OT donor integrations (partial or integral) are not un-
common with both double- and single-stranded DNA templates
alike.44,46

The precise DNA repair mechanisms that yield this vast variety of
repair events are largely unknown. DSBs are highly toxic events48

and elicit cellular responses (for example, p53-mediated DNA dam-
age response and cell-cycle arrest49,50). One of several possible com-
plex repair mechanisms is induced,51,52 which most likely determines
the resulting repair event. Examples of such potential consequences
may include unintentional mutations in the cancer driver genes
VHL or KRAS, as a result of GET activity yielding neoplastic events.53

More intense research is needed to understand, and perhaps in the
future control, which repair pathway is activated following DNA cut-
ting by GETs. In this context, as molecules that increase the frequency
or extent of mutations, GETs fit the definition of “targeted mutagens.”
Therefore, it is unrealistic to expect that GETs alone will guarantee the
desired outcomes of their use. In conclusion, whether they are used
alone or in combination with donor templates, although GETs are
astonishingly efficient at generating sought-after sequence changes,
which DNA repair mechanisms are triggered is poorly understood
and even less well controlled. On-target variability has been under-
studied. The gravity of the risks associated with it will depend on
the biological function of modified loci. In addition, this variability
also means that the desired sequence may not be obtained, preventing
the generation of the mutation of interest or the achievement of the
therapeutic goal. In the biomedical research setting, these findings
highlight challenges for ensuring research reproducibility (see the
following paragraph). In the clinic, the emphasis turns to evaluating
the benefit-to-risk ratio of gene-editing therapy, including consider-
ation of the full range of possible outcomes.

Reproducibility Studies in Basic and Preclinical Research Inform

Clinical Strategies

The variability of GET-induced mutations described in the previous
paragraph emphasizes the importance of experimental design in
considering the possibility of unexpected outcomes of DSB repair,
differentiating it from the effect of genetic drift,27–31 and excluding
unwanted events during the validation of genome-edited models,
whether in cell culture or in animals. In particular, it is recognized
that insufficient molecular validation of in vivo models plays an
important role in the misinterpretation of scientific results.54 To be
explicit, detailed characterization of the models generated by GETs
is required to ensure research validity.

With the apparent ease of generating mutated founder animals, the
first generation produced by the action of GETs in embryos was
initially heralded as a desirable model for phenotyping.55 However,
it is now clear that the founder generation may only be used for spe-
cific phenotypic screens.56 Association of a biological trait to a specific
genetic variation requires themutation to be established and validated
in generations subsequent to the founder stage to exclude any unpre-
dicted on-target events. Additionally, repeated crossing of the GET-
generated mutant with wild-type animals will segregate most OTmu-
tations, thus lowering the likelihood that phenotypes could be caused
by OT rather than on-target sequence changes.

Importantly, the understanding and control of the variability of the
outcome of GET use in laboratory animals inform the clinical field
of potential undesired effects and will provide solutions to deal with
Molecular Therapy Vol. 28 No 6 June 2020 1423
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these risks. However, full assessment of GET activity and its impact
will await clinical trial results.

What Is Already Known in Humans?

Early therapeutic attempts to use GETs in humans employed zinc
finger nucleases (ZFNs), targeting the CCR5 gene for the treatment
of HIV-infected patients.57 The same strategy has now been tested
in both autologous T cells and hematopoietic stem cells (HSCs)
without genotoxic side effects. The first direct DNA modification us-
ing ZFNs involved adeno-associated virus (AAV)-mediated in vivo
delivery for the treatment of Hunter metabolic disease.58 After
4 months, in the two men who received the highest dose, glycosami-
noglycan sugar levels dropped substantially, but iduronate 2-sulfa-
tase—the enzyme that breaks these sugars and is not functional in
Hunter syndrome—remained undetected in blood, and furthermore,
no signatures of genome-edited tissue were recovered.59 These results
are therefore difficult to interpret in terms of the safety and efficacy of
this therapy and are not conclusive.

TALENs were also employed to engineer universal chimeric antigen
receptor T cells by disruption of T cell receptor (TCR) and CD52
genes, leading to remission of acute lymphocytic leukemia in two,
1-year-old infants.60,61 The cells were used in a time-limited manner
to obviate safety concerns, and no genotoxic side effects were de-
tected. Over 20 subjects have since been treated using similar cells
with no TALEN-related toxicity described.62 Of note, in these multi-
plex-edited cells, the risk of translocations between edited chromo-
somes was recognized and quantified.63

The first studies employing ex vivo CRISPR-modified cells have been
initiated in China with the ex vivo targeting of the programmed cell
death protein 1 gene (PDCD1) in T cells of patients with metastatic
non-small-cell lung cancer,64 followed by infusion of the cells back
into patients. However, clinical data have not been published. A num-
ber of additional studies modifying TCR, human leukocyte antigen
(HLA) class I, and PDCD1 using CRISPR/Cas9 editing have been re-
viewed by regulatory agencies. The first results of a phase I human
clinical trial with patients suffering from refractory cancer were pub-
lished very recently.65 The authors showed persistence of the engraft-
ment of cells with edits in three loci: TRAC, TRBC, and PDCD1, after
9 months, showing the feasibility of such therapy for cancer immuno-
therapy. The trial identified no safety issues, although it also illus-
trated genetic heterogeneity in the grafted cells, including chromo-
somal translocations.

Other studies had addressed the possibility of initiating HIV resis-
tance through the modification of CCR5.66 Although the therapeutic
goal was not met, no issues of immune reaction or other adverse ef-
fects were reported.66,67

Injection of CRISPR/Cas9-modified CD34+ HSCs was shown to
ameliorate the pathology of both sickle-cell disease and b-thalas-
semia.68 A first in vivo CRISPR/Cas9 trial, administered via subretinal
injection, was launched in March 2019 to treat an inherited form of
1424 Molecular Therapy Vol. 28 No 6 June 2020
blindness caused by amutation in theCEP290 gene (ClinicalTrials.gov:
NCT038724793,5). These trials herald promise for the use of GETs for
tissue engineering or somatic therapies.

In November 2018, the announcement of the alteration of the genome
of twin girls using CRISPR/Cas9 in human early-stage embryos
shocked the scientific community.69 This first gametic trial raised
major practical and ethical concerns around both the absence of
full scientific evaluation and licensing and the safety and efficacy of
CCR5 gene inactivation to prevent HIV infection but chiefly, about
the ethically contentious use of GET for human germline modifica-
tion and the potential for a drift toward eugenism.

Today, over 30 GET trials are registered on ClinicalTrials.gov, but not
all will reach patient recruitment.1 However, few data on short-term
toxicity57,60 and no data on long-term toxicity are yet available. Early
in vivo or ex vivo GET trials are either to assess safety in healthy in-
dividuals or are mostly fast-tracked studies of therapy for terminally
ill patients.

Threshold of Benefit:Risk Analysis

As described above, GETs, along with other therapeutic tools, ranging
from radiotherapy70 and chemotherapy70 to integrating viral vectors,
inherently carry risks of genotoxicity. Both radiotherapy and chemo-
therapy cause random genomic alterations, from single nucleotide
changes to large-scale chromosomal rearrangements. The application
of gamma-retroviral vectors for the modification of HSCs in children
with inherited severe combined immunodeficiency (SCIDX1) re-
sulted in serious adverse effects from insertional mutagenesis.71

Similar complications were later reported in chronic granulomatous
disease72 and Wiskott-Aldrich syndrome.73 The issue seems to have
been resolved by switching to self-inactivating lentiviral74 and
gamma-retrovirus75 with deleted long-terminal repeat U3 enhancer
sequences. Interestingly, variations remain between disease settings,
with no transformation events reported for the enzyme deficiency
adenosine deaminase SCID.76 Other conditions, in which carefully
regulated gene expression is likely to be required to avoid transforma-
tion, have not, to date, been tackled by “gene-addition” strategies but
could be well suited to GETs. In addition, the nature of the target cells
being modified is critical, with reported genotoxicity limited to
studies modifying stem cells and no similar occurrences in other
ex vivo-modified T cells, keratinocytes, or fibroblasts.77 Alternative
nonviral systems, such as the sleeping beauty transposon gene-deliv-
ery platform, have also reached clinical-phase testing.63 Constitutive
expression of transposase was known to be highly mutagenic, and
yet, transient expression during ex vivo modification of cells has, to
date, been safe.

GETs only affect specific targets and potentially, a small number of
DNA sequences with a high degree of homology. Furthermore,
GETs represent a heterogeneous group and differ in efficiency and
target specificity.78 Therefore, each GET carries specific risks, in terms
of both the frequency of the target and highly related sequences, and
the specific risks attached to the targets’ loci.79

http://ClinicalTrials.gov
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For clinical use, the mode of delivery of GETs influences the risks and
depends, among other factors, on whether the genetic defects have a
somatic or developmental etiology. Depending on this, therapy will
involve tissue engineering and somatic delivery or may require germ-
line intervention, each of which brings fundamentally different chal-
lenges. Efficiency and safety with each given delivery mode for use in
the clinic must be validated together for any genome editing-based
therapeutic intervention (for reviews on delivery, see Shim et al.80

and Lino et al.81). As with any other therapeutic agent, the delivery
mode itself of GETs brings inherent safety risks: viruses can be asso-
ciated with a high risk of gene disruption82 or can cause problems of
toxicity and immunogenicity.83 Likewise, transfer of naked DNA to
cells is known to activate an immune response.84

Delivery of any new DNA into a cell has the potential to generate un-
expected genomic sequence insertions.

In conclusion, evaluation of the risk by nuclease type (that is, ZFN,
TALEN, or CRISPR/Cas9) is not possible. The initial perception of
these molecules was that of an entirely specific and predictable family
of tools. Potential secondary effects have since been revealed, and
earlier over-optimistic expectations have been shattered, leading to
debate over the risks associated with the use of GETs.

In light of the benefits expected from the use of GETs, some cancer
risk may become acceptable for lethal diseases, such as Duchenne
muscular dystrophy, for which the use of CRISPR/Cas9 may show
promise,85 and numerous preclinical studies are ongoing.86 Already,
clinical trials to treat refractory cancer are also underway,65 but for
less immediately critical conditions, such as HIV infection,87 the
threshold of acceptability will be different. Overall, relevant risks
for potential secondary cancer development or for other adverse ef-
fects remain to be evaluated.

Clinical Risks Derive from the Unpredictability of GETs and Are

Modulated by Delivery Mode and Target Cells

With regard to safety in therapy, the genome-editing community
initially focused on the potential OT activity of GETs.7,9 However,
these events are proving to be relatively rare in comparison with
local rearrangements following on-target activity,34–36,39,46 which
are newly recognized and are likely to be studied further. Many
questions arise, such as the size of the rearrangements, frequency
of each type of event (for example, larger than designed deletions,
inversions, duplications, and combinations of these), and specific
consequences attached to the modification of each targeted locus
(for example, potential activation of an oncogene or other patho-
genic gene in the vicinity). The question of specificity can also
be applied at several levels: do GETs solely cut where expected,
and what are the functional consequences of the repairs in each
genomic region affected? The answer to these questions requires
sensitive means of detecting mutagenic events that are themselves
still the objects of improvement.88 These studies are essential to
ensure the reproducibility of all research involving GET use, but
in the clinic, unlike in biomedical research, only cases where those
changes are both functional and pathogenic will represent a safety
concern.

The unwanted consequences of using GETs also need to be assessed in
the relevant systems. Studies in human cells will inform on safety in
relation to the interaction of GETs with the human genome7,19–22

and on expected repairs of the genetic interval containing the targeted
locus.36The choice of in vitromodel is paramount, as cellular repair sys-
tems are lineage specific.89 Animal models may not represent human
repair systems but will inform on safety at the level of the whole organ-
ism and are also useful for studying the consequences of DNA repair
activity. Humanizedmouse strains inwhich themouse allele is replaced
by the full human sequence ally the advantages ofworkingwith the rele-
vant target locus in the context of a whole organism.90 Evidently,
different models have different biases; cell culture itself is known to
introduce changes that affect genome integrity.91 Furthermore, the
mode of delivery in cell culture is different to that in vivo, as it often in-
volves sustained expression of GETs. Conversely, animal models may
lack the specific (human) genetic sequences (and potential OT sites)
for which the GETs are intended. Full evaluation must include the
consideration of safety issues associated with GETs and their mode of
delivery. Cell culture and animal models are therefore both comple-
mentary and essential but cannot replace safety trials in patients.

Initial attempts to understand unwanted effects of GETs on the
genome included whole-genome sequencing and capture of GET-
related events in cell culture models.7–10,24 These approaches,
although informative, did not identify large-scale changes, such as
chromosomal rearrangements and larger deletions. As the research
field matures, methods for the detection and characterization of these
initially unexpected repair events are being developed and applied in a
more systematic fashion, uncovering a hitherto underestimated vari-
ability in outcomes. Table 1 summarizes the most relevant techniques
employed to analyze the genomic consequences of GET use. In partic-
ular, methods for counting the copy number of specific alleles and
long-read sequencing have changed our perception of GET activ-
ity.34,36,46,92 Such methods will be instrumental tools for the valida-
tion of research models, assessment of GET genotoxicity, and defini-
tion of DNA mutation signatures associated with risks. Next-
generation sequencing (NGS) detects a large panel of single nucleo-
tide polymorphism mutations and small indels in the entire genome.
However, unless a very large depth of coverage is achieved, short-read
NGS does not reliably detect structural variationmutations, and some
genomic regions (for example, repetitive or structurally challenging
sequences) are poorly amplified or aligned. By contrast, linear ampli-
fication-mediated, high-throughput, genome-wide sequencing de-
tects DSBs with high sensitivity by employing a fixed “bait” DSB to
capture them prior to cloning and short-read NGS sequencing.
This method allows for a nucleotide-level definition of genomic rear-
rangements without the requirement of predefining potential OT
sites. Long-read NGS methodologies are also beginning to be em-
ployed to analyze the outcome of genome editing through targeted
sequencing for in-depth analysis of specific loci or for whole-genome
sequencing in replacement of or combination with short-read NGS.93
Molecular Therapy Vol. 28 No 6 June 2020 1425
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Table 1. Examples of Techniques for Analyzing Genomic Consequences of GET Activity

Technique Advantages Disadvantages References

Droplet digital PCR
detection of deletion or duplication on any selected
sequence

only a few selected regions can be checked; for
example, potential oncogene or other gene
pathogenic in the GET target vicinity

34,46

Short-read, whole-genome NGS
detection of SNP and small indel mutations in the
entire genome, no required OT prediction

large rearrangements not seen 11

Long-read, whole-genome NGS more accurate contig generation error rate for some instruments 93

Linear amplification-mediated, high-throughput,
genome-wide translocation sequencing

detection of OT nuclease activity, higher
sensitivity, no required OT prediction

large number of events must be analyzed for
complete inventory of OT effect

94

Targeted long-read sequencing (nanopore or
PacBio)

precise detection of rearrangement in the vicinity
of the target region, high sensitivity

rearrangements greater than a few kilobases may
not be detected

36,46,47

Chromosomal microarrays detection of structural variant
not all structural variations will be detected; no
inversion can be detected by this method

95

FISH detection of chromosomal rearrangements large rearrangements only are detected 38

Next-generation mapping (i.e., Bionano Genomics
and Genomic Vision) and molecular painting
(Fiber FISH)

detection of structural variant
access to technology and cost for next-generation
mapping; as Fiber FISH is based on using probes, it
cannot detect variation in the whole genome

92

In all instances, appropriate controls are required to differentiate genome-editing activity from naturally occurring sequence changes. A full characterization of the genome-editing
impact requires the implementation of complementary methods. FISH, fluorescence in situ hybridization; GET, genome-editing tool; PCR, polymerase chain reaction; SNP, single
nucleotide polymorphism.

www.moleculartherapy.org

Review
For all whole-genome methodologies, the number of mutation events
detected can be high, making it difficult to distinguish between caus-
ative and nonessential mutations. Cytogenetic methods38 and next-
generation mapping sensitively identify large genomic variations
that can be missed by PCR-based techniques, NGS, or chromosomal
microarrays.92 Again, the ability to distinguish between pathogenic
structural variants and benign mutations remains challenging.

As new diagnostic tools are developed, new features of GET activity
are revealed, and no single approach currently encompasses the
detection of all possible mutagenic events. Today in the clinic, the
DNA mutation signature obtained through the combination of these
diagnostic tools generally precludes a definition of the risk of toxicity.
The prediction of what these data mean remains highly speculative,
but if toxicity arises, then the data will be essential to define adequate
and unacceptable DNA mutation signatures.

Additionally, the impact of genomic alterations will differ according to
the targeted cell type. For example, therapies that propose to disrupt in-
tegrated HIV sequences by CRISPR/Cas996 are likely to generate mul-
tiple genomic rearrangements: as multiple copies of HIV can be inte-
grated into a single-cell genome,97 DNA repair of multiple DSBs
could trigger large rearrangements or translocations. Transformation
risk is, however, low forT cells compared toother cell types. By contrast,
for cystic fibrosis, after GET-mediated correction of the patient’s
induced pluripotent stem cells (iPSCs), no significant OT events were
detected,98 but the cancer transformation risk of iPSCs is much higher.

In summary, the clinical risk will be defined by a complex combina-
tion of factors: the induced genomic variations, the delivery mode of
GETs, and the cellular context (Figure 1).
1426 Molecular Therapy Vol. 28 No 6 June 2020
How Can We Control Safety Risks?

Three therapeutic pathways have been proposed for GETs in the
clinic: ex vivo tissue engineering followed by grafting,80 somatic deliv-
ery of GETs,80 and early embryo genome modification that will be
transmitted through the germline.99 In all three cases, GET design,
in particular, the choice of sgRNAs for CRISPR/Cas9-based ap-
proaches, is the first issue to consider. Many studies indicate that
GET OT activity depends on sgRNA sequence;7,21 designs should
be optimized to minimize the OT activity, in particular, with the rele-
vant mode of delivery. On-target mutations following cell genomic re-
pairs will be equally if not more important to assess when designing a
GET, as they can involve a large variety of changes, including larger-
than-expected deletions and chromosomal rearrangements. These is-
sues need to be assessed in the cellular context(s) for which they are
intended in therapy, as the way in which targeted cells repair specific
DSBs may differ among cell types, cell-cycle phase, metabolic status,
and levels of cell differentiation.89 Interestingly, some studies propose
that not only is the mutational outcome dependent on both the target
sequence and cell line but also that the outcome is also partly predict-
able.100 Careful validation of the design of GETs to limit the range of
mutations generated at each target is essential to a reduction in risks
associated with their use. However, even with the knowledge of the
patient’s genome sequence and sophisticated prediction software,
an exhaustive OT risk profile may not entirely be defined in preclin-
ical studies or in clinical trials and may require investigation of reac-
tivity of the GETs in the cells of each patient.

Other considerations are more specific to the given mode of GET de-
livery. If edited cells can be selected in vitro prior to grafting or reim-
plantation, then infrequent mutations may represent less of a barrier
to GET use. In such cases, if the therapeutic design allows for the

http://www.moleculartherapy.org


Figure 1. Balancing Benefits and Risks of Use of GETs in the Clinic

Each clinical path (cell therapy, somatic therapy, or early embryo treatment) carries its own, as well as common, risk factors. The ratio of benefit to risk of new therapies needs

to be individually evaluated for each disease in combination with each therapeutic design.
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selection of clones or pools of cells that only contain an acceptable
outcome of genome editing, any unwanted events could then be dis-
carded. Recent studies have reported that GETs induce DNA damage
response. Thus, they may carry a risk for cancer, due to selection
against cells with a functional P53 but also with VHL and KRAS mu-
tations.49,50,101 Quality control of engineered tissue should also
address other features related to the use of in vitro methods. For
example, karyotype and epigenetic changes are common occurrences
that are linked to tissue culturing and to methods of transfection91

and may represent as significant a carcinogenic risk as the use of
GETs themselves.

Somatic delivery may present different challenges.102 Following safety
issues with viral sequence insertions,71 current trials are mainly
focused on nonintegrative approaches.80 However, even if integra-
tion-deficient viruses are used, insertion of viral sequences may occur
in time.103 Critically, adenovirus or AAV-mediated delivery may lead
to long-term expression of a targeted mutagenic agent104 and there-
fore, carries an increased risk of OT events. Strategies may therefore
favor transient expression using ribonucleoprotein (RNP) or mRNA
that will reduce the time of exposure to a Cas9 nuclease,105 supported
by a viral vector106 or other modes of delivery, such as liposomes or
association to gold particles.107 Furthermore, the expression itself of
nucleases may carry the risk of immune reaction, as shown by the
identification of immunogenicity against Staphylococcus aureus and
Streptococcus pyogenes (Sp) Cas9 proteins in humans.108,109 Such is-
sues may be circumvented by the use of alternative nucleases, tran-
sient Cas9 expression, or the combination of GET with transient
immunosuppressant treatment. The frequency of such pre-existing
adaptive immunity is not fully understood and may reflect a balance
between the activities of SpCas9-reactive regulatory T cells and
SpCas9-reactive effector T cells.108

Genome editing of the early human embryo or gamete is not the sub-
ject of current registered trials, but methods applicable to such inter-
ventions are being developed.110 Early attempts tomodify human em-
bryos, including unlicensed trials, have encountered the same
challenges as those that are experienced when using animal models,
Molecular Therapy Vol. 28 No 6 June 2020 1427
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such as mosaicism or unpredictability of the repair outcome.99 Exist-
ing methods employed in prenatal diagnostics, such as preimplanta-
tion diagnosis after in vitro fertilization, may offer lower risk by select-
ing offspring free of genetic diseases. However, these techniques are
not applicable to all families (for example, in cases when no unaf-
fected embryo is available). Such issues continue to be subjects of
ethical debate on germline modification in humans.111

Potentially applicable to all three routes of delivery is the ongoing
development of new GETs. A wide variety of strategies have been
tried, including the engineering of nucleases with higher speci-
ficity,112,113 the coupling of Cas9 fusions with specific protein do-
mains to enhance the frequency of DSB repair by homology-directed
repair (see Devkota114 for review), and the abolition of all nuclease ac-
tivity with the coupling of another effector, such as modules that edit
DNA base identity.115 The latter seems particularly attractive, as
many safety issues stem from our inability to direct the mode of
DSB repair that follows GET activity. However, current versions
of these base-editing tools do not yet allow the precise prediction of
the outcome of their use, and whereas point mutations other than
C / T and A / G are not feasible to date,115 there may be imme-
diate applications aimed at creating targeted gene knockouts, and new
generations of base editors are being developed.116 Nickase variants of
GETs may also represent possible safety improvements,117 but the
molecular mechanisms that are involved when nickases are used for
genome editing remain poorly understood, and all safety caveats asso-
ciated with the use of nucleases may also apply.42 A most recent addi-
tion to the GET set is a system with two nickases coupled to a reverse
transcription activity to be used in conjunction with hybrid guides
that also contain a repair template sequence for genome modification
by prime editing.118 Appraisal of the applicability and reliability of
such advanced strategies will await extensive trials in both the
research and preclinical settings. Looking further ahead, methods to
direct DSB repair cell mechanisms transiently to yield the desired
outcome would represent an attractive solution that so far has eluded
the field.119

Conclusions

In spite of their initial promise, GETs have not yet yielded a flawless
capacity to modify genomic sequences specifically and predictably,
either in research or in the clinic. Although their use is highly efficient,
the outcomes can be unpredictable. In the research environment, it is
important that the experimental design takes into account the possi-
bility of unwanted DNA repair outcomes, excludes undesired events
by validation of edited models, and employs appropriate controls to
ensure research reproducibility. In the clinic, there are likely to be
ongoing improvements to genome-editing efficiency, delivery sys-
tems, and techniques to map on- and off-target effects. The first clin-
ical applications are already underway in areas of unmet need, such as
hematological malignancy, using ex vivo-modified somatic and differ-
entiated T cells. Applications using ex vivo CRISPR/Cas9-edited
HSCs for hemoglobinopathies are imminent, and patients will be sub-
jected to close long-term monitoring, as are patients who receive
in vivo therapy for certain life-threatening metabolic conditions.
1428 Molecular Therapy Vol. 28 No 6 June 2020
Careful monitoring and in-depth consideration, including deep mo-
lecular interrogation of any adverse effects, will be the key to success-
ful exploitation of these tools.
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