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Abstract

Genetic variants underlying reduced male reproductive performance have been identified in humans and model organisms,
most of them compromising semen quality. Occasionally, male fertility is severely compromised although semen analysis
remains without any apparent pathological findings (i.e., idiopathic subfertility). Artificial insemination (AI) in most cattle
populations requires close examination of all ejaculates before insemination. Although anomalous ejaculates are rejected,
insemination success varies considerably among AI bulls. In an attempt to identify genetic causes of such variation, we
undertook a genome-wide association study (GWAS). Imputed genotypes of 652,856 SNPs were available for 7962 AI bulls
of the Fleckvieh (FV) population. Male reproductive ability (MRA) was assessed based on 15.3 million artificial inseminations.
The GWAS uncovered a strong association signal on bovine chromosome 19 (P = 4.08610259). Subsequent autozygosity
mapping revealed a common 1386 kb segment of extended homozygosity in 40 bulls with exceptionally poor reproductive
performance. Only 1.7% of 35,671 inseminations with semen samples of those bulls were successful. None of the bulls with
normal reproductive performance was homozygous, indicating recessive inheritance. Exploiting whole-genome re-
sequencing data of 43 animals revealed a candidate causal nonsense mutation (rs378652941, c.483C.A, p.Cys161X) in the
transmembrane protein 95 encoding gene TMEM95 which was subsequently validated in 1990 AI bulls. Immunohisto-
chemical investigations evidenced that TMEM95 is located at the surface of spermatozoa of fertile animals whereas it is
absent in spermatozoa of subfertile animals. These findings imply that integrity of TMEM95 is required for an undisturbed
fertilisation. Our results demonstrate that deficiency of TMEM95 severely compromises male reproductive performance in
cattle and reveal for the first time a phenotypic effect associated with genomic variation in TMEM95.
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Introduction

Impaired reproductive performance is a prevalent condition in

both sexes of many species and up to 15% of couples are affected

in humans [1,2]. The disability to reproduce is defined as infertility

(i.e., sterility), whereas subfertility refers to any form of reduced

fertility [3].

Low sperm concentration (i.e., oligospermia) and the absence of

spermatozoa (i.e., azoospermia), respectively, are frequently

diagnosed in males with impaired fertility [4]. Further aberrant

semen quality traits (e.g., abnormal sperm morphology [5],

reduced motility [6,7]) account for another substantial fraction

of reduced male fertility. However, semen analysis of a consider-

able number of males with impaired reproductive performance

remains without any apparent pathological findings (i.e., unex-

plained/idiopathic infertility) [8,9].

Semen quality traits have low to medium heritability in cattle

populations [10]. Numerous genetic variants underlying routinely

assessed semen quality traits have been identified so far in humans

[11,12], model species [13] and livestock populations [14].

However, the number of known genetic mechanisms causing

idiopathic male subfertility is very small [15,16] and identified

polymorphisms explain only a small fraction of its genetic variation

[17].

Artificial insemination (AI) is predominant over natural service

in most cattle populations and all ejaculates are closely examined

immediately after semen collection. Only semen samples without

any apparent abnormalities, such as low sperm count, reduced

progressive motility, low viability, abnormal morphology of

spermatozoa, are used for insemination. However, the reproduc-

tive performance indicated by the proportion of successful

inseminations varies considerably among AI sires [18,19]. So far,

genome-wide association studies (GWAS) for male reproductive

traits were of limited success in cattle populations [20,21] and only

one putatively causative mutation has been identified [22].
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Here we report a new recessively inherited variant of idiopathic

male subfertility in the Fleckvieh (FV) cattle population. The

mapping of the underlying genomic region was facilitated by using

high-density genotypes in a large sample of artificial insemination

bulls with phenotypes for reproductive performance assessed based

on 15 million artificial inseminations. Exploiting whole-genome re-

sequencing data revealed a causative loss-of-function mutation in

the transmembrane protein 95 encoding gene TMEM95.

Results

Male subfertility in the Fleckvieh cattle population
Phenotypes for male reproductive ability (MRA) were obtained

for 7962 bulls of the FV population based on 15.3 Mio artificial

inseminations (AI). The values for MRA range from 240 to +13

and reflect the bulls’ reproductive performance as percentage

deviation from the population mean. Male reproductive ability is

highly correlated (r = 0.59) with the 56-day non-return rate

(NRR56) in cows. The NRR56 is the proportion of cows that

are not re-inseminated within a 56-day interval after the first

insemination. After visual inspection of the distribution of MRA,

forty-nine bulls with exceptionally poor reproductive performance

(MRA,220) were considered as subfertile (Figure S1 and

Table 1). Animals with values for MRA below 220 ( = five

standard deviations below the population mean) were used as case

group in a case-control design.

Bovine male subfertility maps to chromosome 19
Using MRA as quantitative trait in a genome-wide association

study (GWAS) yielded a strong association signal on bovine

chromosome (BTA) 19 (P = 4.38610220, Figure S2). However, the

association signal was more pronounced using 49 subfertile

animals (MRA,220) as case group and the remaining 7913

animals as controls (Table 1 and Figure 1A). The most significantly

associated SNP is located at 30,220,186 bp (ARS-BFGL-NGS-

11488; P = 4.08610259).

Autozygosity mapping revealed a common 1386 kb segment

(26,580,096 bp–27,956,634 bp) of extended homozygosity in 40

subfertile bulls containing 80 genes (Figure 1B and Table S1).

None of 7913 bulls with normal reproductive performance was

homozygous for the 1386 kb segment, indicating recessive

inheritance. Semen samples of 40 homozygous bulls had been

used for 35,671 artificial inseminations with an average of 892

inseminations per bull. This is a typical number for test

inseminations performed with semen samples of young bulls in

progeny testing based breeding programmes. However, only 619

(1.74%) of those inseminations were successful (Table S2).

There was no evidence for the presence of large structural

variants (i.e., copy number variations) within the segment of

extended homozygosity (Figure S3). The proportion of missing

Table 1. Characteristics of the case/control design.

Group Phenotype N MRA NRR56

Control Normal reproductive
performance

7913 20.44 (63.16) 65.46 (65.35)

Case Subfertile 49 227.69 (64.15) 29.16 (65.27)

The 7962 artificial insemination (AI) bulls were subdivided based on their male
reproductive ability (MRA). Forty-nine bulls with MRA#220 were considered as
subfertile. The mean and standard deviation for MRA and the 56-day non-return
rate (NRR56) is presented for both groups.
doi:10.1371/journal.pgen.1004044.t001

Figure 1. Bovine male subfertility maps to chromosome 19 in
the Fleckvieh cattle population. Association of 652,856 SNPs with
male reproductive ability (MRA) in 7962 FV bulls (A). P-values were
obtained by fitting a linear mixed model. Autozygosity mapping in 40
subfertile bulls (B). Blue and pale blue represent homozygous
genotypes (AA and BB), heterozygous genotypes (AB) are displayed in
light grey. The solid grey bars represent segments of extended
homozygosity in 40 subfertile bulls. The red bar indicates the common
segment of homozygosity. The shared segment of homozygosity
encompasses 80 transcripts, among them TMEM95. The full list of genes
within the 1386 kb segment is presented in Table S1.
doi:10.1371/journal.pgen.1004044.g001

Author Summary

Impaired male fertility is a prevalent condition in many
species and is often explained by aberrant semen quality.
In some cases, male fertility is severely compromised
although semen quality is without any apparent patho-
logical findings (i.e., idiopathic male subfertility). The
genetic mechanisms underlying idiopathic male subfertil-
ity often remain unexplained. In the present paper, we
report a recessively inherited variant of idiopathic male
subfertility in a cattle population. We use 650,000 genome-
wide SNP markers genotyped in .7900 artificial insemi-
nation bulls to pinpoint the underlying genomic region.
We take advantage of whole-genome re-sequencing data
of 43 animals to identify a causal loss-of-function mutation
in TMEM95 encoding a nondescript transmembrane
protein. We demonstrate that transmembrane protein 95
is located at the plasma membrane of spermatozoa of
fertile animals whereas it is absent in spermatozoa of
subfertile animals. Our results indicate that integrity of
transmembrane protein 95 is required for an undisturbed
fertilisation. This is the first report to reveal a phenotypic
effect associated with genomic variation in TMEM95 in any
organism.

Idiopathic Male Subfertility in Cattle

PLOS Genetics | www.plosgenetics.org 2 January 2014 | Volume 10 | Issue 1 | e1004044



genotypes did not significantly differ between cases and controls

(P.0.09) for all SNPs located within the associated region.

The frequency of the subfertility-associated haplotype amounts

to 7.2%. Of 7962 genotyped bulls with phenotypes for MRA, 1068

(13.41%) carry the deleterious haplotype in heterozygous state.

The carrier frequency increased considerably within the last years

(P = 0.0002, Figure S4). The reproductive performance of

heterozygous bulls is normal, indicating recessive inheritance

(Figure 2). Of 1952 primiparous cows, 291 are heterozygous and

17 are homozygous for the subfertility-associated haplotype. The

haplotype neither affects reproductive performance nor milk

production traits in females (Table S3). The haplotype distribution

does not deviate from the Hardy-Weinberg equilibrium, neither in

females (P = 0.303) nor in males (P = 0.817).

Both, haplotype and pedigree analysis allowed to trace the

mutation back to the bull HAXL (*1966) (Figure S5). HAXL

appears in the pedigrees of 7779 out of 7962 bulls (97.70%) and

can be considered as the most important ancestor of the current

FV population [23].

Exploiting whole-genome re-sequencing data for
mutation detection

Whole genome re-sequencing of 43 animals and subsequent

multi-sample variant calling yielded genotypes at 17.17 million sites

[23]. Among them, 5965 (5287 SNPs and 678 INDELs) are located

within the subfertility-associated region on BTA19 (26,580,096 bp

to 27,956,634 bp). Six of the 43 re-sequenced animals were

identified as carriers of the associated haplotype via high-density

genotypes. The sequence data were filtered for variants compatible

with the supposed recessive inheritance, i.e., heterozygous in carriers

and homozygous for the reference allele in non-carriers (see

Material & Methods, Figure S6). After filtering, 26 SNPs and six

INDELs were retained as candidate causal mutations (Table S4 and

S5). The functional effects of those variants were predicted based on

the gene annotation of the UMD3.1 assembly of the bovine genome

[24]. Four of the 32 compatible variants were located in coding

regions (Table 2). Among them, we considered a nonsense mutation

in TMEM95 (rs378652941, c.483C.A, p.Cys161X, Chr19:

27,689,622 bp) as the prime candidate causal mutation (Figure 3A

and 3B). The nonsense mutation was subsequently confirmed in the

re-sequenced animals by classical Sanger sequencing (Figure S7 and

S8).

A loss-of-function mutation in TMEM95 causes male
subfertility in cattle

Genotypes for two non-synonymous substitutions in ACDVL and

KIF1C and for the nonsense mutation in TMEM95 were obtained

for cases and controls using TaqMan genotyping assays (Table 3).

Only c.483C.A, introducing the premature stop-codon in

TMEM95 (p.Cys161X), was perfectly associated. All animals,

which are homozygous for the subfertility-associated haplotype,

are homozygous for the non-reference allele, whereas none of

1396 FV bulls with normal reproductive performance are

homozygous. The polymorphism is present in the FV breed only;

277 Holstein-Friesian and 278 Braunvieh animals are homozygous

for the reference allele. The c.483C.A-mutation is not segregat-

ing among 15 Jersey, 47 Angus and 129 Holstein-Friesian animals

which were sequenced in the context of the 1000 bull genomes

project [25].

TMEM95 encodes a highly conserved single-pass type I

transmembrane protein consisting of 183 amino acids with a

predicted extracellular N-terminal signal peptide, a 23-amino acid

transmembrane domain (amino acid position 153 to 175) and a 8-

amino acid intracellular C-terminal domain (Figure 3C and Figure

S9 and S10). The premature stop codon introduced by the

c.483C.A-mutation is located within the predicted transmem-

brane domain and truncates the protein by 22 amino acids.

The c.483C.A-mutation does not affect semen quality
Semen quality (morphology, vitality, total motility) was analysed

using cryopreserved semen samples of 30 bulls (10 wt/wt, 10 wt/mt,

10 mt/mt). In all ejaculates, spermatozoa showed less than 20%

morphological alterations and less than 5% morphological

alterations of the head. Total motility after thawing ranged from

50 to 65%. Statistical analysis showed no significant differences in

the proportion of motile spermatozoa from wt/wt, wt/mt and mt/mt

bulls (Table 4). As shown by eosin staining, 40 to 70% of the

spermatozoa were viable after thawing. There were no significant

differences in the percentages of viable spermatozoa between wt/

wt, wt/mt and mt/mt bulls. Additionally, ejaculate volume, sperm

concentration and progressive motility were assessed in fresh

semen samples of 203 AI bulls (177 wt/wt, 21wt/mt, 5 mt/mt).

Ejaculate volume was above 5 ml, sperm count was above 1.42

Mio/ml and the proportion of spermatozoa with progressive

motility was above 70% for all animals (Table 5).

Localization of TMEM95 in spermatozoa
A mouse-derived polyclonal antibody generated against human

transmembrane protein 95 was used to locate its position in

spermatozoa of 33 bulls (10 wt/wt, 10 wt/mt and 13 mt/mt). In

spermatozoa of wt/wt bulls, TMEM95 was distinctly located on

the plasma membrane of the acrosome (Figure 4A). Staining was

also visible on the equatorial segment of the head. The sperm neck

was regularly labelled. Spermatozoa of wt/mt and wt/wt bulls

Figure 2. Effect of the subfertility-associated haplotype on
male reproductive ability. The boxplots display the male reproduc-
tive ability (MRA) of 7962 artificial insemination bulls as a function of
copies of the subfertility-associated haplotype. The reproductive
performance of heterozygous bulls (N = 1068) is normal, whereas MRA
is ,220 for homozygous bulls (N = 40).
doi:10.1371/journal.pgen.1004044.g002

Idiopathic Male Subfertility in Cattle
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showed an identical staining pattern (Figure 4B), whereas

spermatozoa of mt/mt bulls did not show any staining on the

head (Figure 4C). Weak fluorescence was detected in the midpiece

of the tail in spermatozoa of all animals due to the autofluores-

cence of the mitochondria. In the negative controls, there was no

signal detectable on the sperm head whereas the midpiece of the

tail showed weak autofluorescence (Figure S11).

Discussion

The genome-wide association study (GWAS) with imputed

genotypes for 7962 artificial insemination bulls identified a

genomic region on BTA19 for male reproductive ability (MRA)

in the FV population. Autozygosity mapping revealed a common

1386 kb segment of extended homozygosity in 40 bulls with

unexplained exceptionally poor reproductive performance. None

of the bulls with normal reproductive performance was homozy-

gous indicating recessive inheritance. Only 1.74% of inseminations

performed with semen samples of affected bulls were successful,

although semen quality parameters were within a normal range,

reflecting idiopathic subfertility [26]. The newly identified

congenital defect is denominated as ‘‘Bovine Male Subfertility’’ and

accounts for 82% of FV bulls with exceptionally poor reproductive

performance. However, we cannot exclude the possibility that

Figure 3. A nonsense mutation in TMEM95 resides within the predicted transmembrane domain of the encoded transmembrane
protein 95. Genomic structure of the transmembrane protein 95 encoding gene TMEM95 (A). Grey and red boxes represent exons. The red box
represents exon 6 including rs378652941, introducing a premature stop codon. Genomic and protein sequence of exon 6 of TMEM95 (B). The affected
codon (p.Cys161X, TGCRTGA) is highlighted with red colour. Predicted protein topology of TMEM95 (C). TMEM95 is a single-pass type I
transmembrane protein with a predicted N-terminal signal peptide sequence (yellow) and a 23-amino acid transmembrane domain (blue). The
affected codon (p.Cys161X) resides within the predicted transmembrane domain (red).
doi:10.1371/journal.pgen.1004044.g003

Table 2. Coding variants compatible with recessive inheritance.

Chr
Chromosomal
position (bp) NCBI Assay ID Reference allele Alternative allele Affected gene Effect

Polyphen-2
prediction

19 27,042,848 rs381722524 T C KIF1C p.Gln66Arg Benign

19 27,299,006 rs208952900 C T PELP1 p.Phe250Phe -

19 27,570,146 rs385135118 C A ACADVL p.Pro236Thr possibly damaging

19 27,689,622 rs378652941 C A TMEM95 p.Cys161X -

Four compatible polymorphic sites are located in coding regions. The functional annotation of the polymorphisms was obtained based on the UMD3.1 gene prediction
[24]. The effect of non-synonymous substitutions was predicted using Polyphen-2 [75].
doi:10.1371/journal.pgen.1004044.t002

Idiopathic Male Subfertility in Cattle
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homozygous males are infertile and that the very low proportion of

successful inseminations reflects errors in parentage recording

which might be as high as 10% in dairy cattle breeding

programmes [27]. In progeny testing based breeding programmes,

semen doses of young bulls are used for approximately 1000 test

inseminations [28]. These artificial inseminations are performed

within very short time, precluding the early identification of

subfertile/infertile bulls. Identifying and culling bulls with poor

fertility prognosis (i.e., homozygous bulls) before they are used for

artificial insemination is now possible. There was no evidence for

any additional genomic region underlying idiopathic male

subfertility in the FV population, although the reproductive ability

of nine bulls which are not homozygous for the c.483C.A-

mutation, is very low. However, the number (n = 9) of subfertile

bulls not attributable to the BTA19 locus might not be sufficient

for detecting additional loci (Figure S12 and Table S6).

The potential of targeted or whole genome re-sequencing for

the identification of causal trait variants has been demonstrated in

several species (e.g., [29–31]) including cattle [32–34]. Causal trait

variants for monogenic disorders are traditionally identified by

sequencing case/control-panels and by subsequently comparing

allele counts in affected and unaffected individuals. However, the

concept of the present study is different: the identification of the

underlying mutation was based on whole genome re-sequencing

data of 43 unaffected FV animals explaining a vast majority of the

population’s genomic variation [23]. As the frequency of the

mutation was reasonably high (7.2%), the affected haplotype was

present in heterozygous state in six of the re-sequenced animals.

Filtering the re-sequencing data for variants compatible with the

supposed recessive inheritance pattern revealed a plausible

candidate causative loss-of-function mutation in TMEM95 encod-

ing the transmembrane protein 95.

The nonsense mutation was perfectly associated in 1990 animals

representing three different breeds. To our knowledge, this is the

first report of a phenotypic effect associated with variation in

TMEM95 in any organism. So far, there are no clues about the

precise function of TMEM95. However, it seems likely that

TMEM95 is involved in sperm-egg interactions, which has been

shown to be the main function of sperm-specific transmembrane

proteins (e.g., [35,36]). The phenotype in the present study

resembles phenotypic patterns of Caenorhabditis elegans resulting

from an impaired function of sperm-specific transmembrane

proteins [37,38]. Taken together, our findings evidence genomic

variation within TMEM95 to severely compromise the reproduc-

tive performance in cattle.

The causative polymorphism (c.483C.A, rs378652941) intro-

duces a premature stop codon in TMEM95 (p.Cys161X). The

affected codon resides within the predicted transmembrane

domain of TMEM95 most likely resulting in a disturbed

anchorage of the truncated protein in the sperm plasma

membrane bilayer. It is also likely that the resulting truncated

protein is absent due to nonsense-mediated mRNA decay [39].

Our data show no evidence that the mutation affects any of the

routinely assessed semen quality parameters in vitro. However, we

cannot exclude the possibility that the mutation affects semen

quality parameters, e.g., vitality and motility, in vivo [40,41].

Transmembrane protein 95 is primarily located on the

acrosomal membrane of the sperm head indicating that it may

be involved in the acrosome reaction. Spermatozoa of mt/mt

animals showed no fluorescence at the acrosomal membrane

implying deficiency of TMEM95. Thus, successful fertilization by

spermatozoa of mt/mt animals might be compromised. This is

supported by the fact that the equatorial segment of the acrosome,

which provides the first contact of the spermatozoon with the cell

membrane of the oocyte [42], is also labelled in spermatozoa of

fertile animals. The sperm neck contains the centriole and is

essential for cell division and development of the early embryo

[43]. Labelling of the neck indicates an additional potential role of

TMEM95 after fertilization during the first cell divisions of the

early embryo.

Although spermatozoa of mt/mt animals showed fluorescence,

neither on the acrosomal membrane and the equatorial segment

nor at the centriole, weak unspecific fluorescence was observed at

the midpiece of the tail. This fluorescence pattern is also present in

spermatozoa of wt/wt and wt/mt animals. The midpiece is the only

region of spermatozoa that contains mitochondria [44]. The weak

fluorescence of the midpiece is due to unspecific autofluorescence

Table 3. Validation of three coding variants.

rs381722524 rs385135118 rs378652941

KIF1C – p.Gln66Arg ACADVL – p.Pro236Thr TMEM95 – p.Cys161X

CC CT TT AA AC CC AA AC CC

FVsubfert 39 - - 39 - - 39 - -

FVctrl 1 74 650 6 103 606 - 176 1220

BV - 1 189 - 3 181 - - 278

HF - 23 245 - - 268 - - 277

Genotypes for three coding variants were obtained using TaqMan genotyping assays. The genotypes are presented for FV animals identified as homozygous for the
subfertility-associated haplotype (FVsubfert) and for FV animals with normal reproductive performance (FVctrl). Note that DNA was available for 39 out of 40 subfertile FV
bulls only. Additionally, genotypes were obtained for randomly selected Braunvieh (BV) and Holstein-Friesian (HF) animals with normal reproductive performance.
doi:10.1371/journal.pgen.1004044.t003

Table 4. Assessment of cryopreserved semen quality after
thawing.

rs378652941 N
Motile spermatozoa
(%)

Vital spermatozoa
(%)

wt/wt 10 5369 56611

wt/mt 10 61613 65611

mt/mt 10 48613 51612

The mean and standard deviation of the proportion of motile and vital
spermatozoa was assessed from cryopreserved (2196uC) sperm specimens of
30 artificial insemination bulls immediately after thawing. Cryopreserved semen
samples were obtained from artificial insemination companies.
doi:10.1371/journal.pgen.1004044.t004

Idiopathic Male Subfertility in Cattle
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of the mitochondria, which has been described in several organs

and species [45–47].

Male subfertility is also present in other species besides cattle

[9,48–50], and compromised sperm surface proteins account for a

substantial number of males with distinctly reduced reproductive

ability in humans [15,40]. Our results demonstrate that TMEM95

is another sperm surface protein, which is likely to be involved in

sperm-egg plasma membrane interactions. Its protein sequence is

highly conserved among species (Figure S10) and genetic variants

disrupting TMEM95 are likely to induce male subfertility also in

other species than cattle. Numerous polymorphic sites have been

identified in human TMEM95, among them several potential loss-

of-function variants (Figure S13). Based on our findings it is highly

recommended to systematically survey variants in TMEM95 as

potentially causal for idiopathic male in- or subfertility in any

species.

Frequencies of variants that disrupt protein-coding genes are

usually low in human populations [51,52]. However, in livestock

populations, the frequency of deleterious alleles might increase

rapidly because individual sires can generate tens of thousands of

progeny by artificial insemination (e.g., [53,54,32]). The loss-of-

function mutation in TMEM95 can be traced back to HAXL

(*1966), the most important ancestor of the current FV population.

Within eight generations, the frequency of the deleterious allele

increased to 8.9% and 1443 (13.92%) animals of the present study

are heterozygous. This increase of the allele frequency had been

possible because phenotypic effects become apparent in homozy-

gous males only. There are no phenotypic effects detectable

neither in heterozygous nor in homozygous females (Table S3).

In agreement with previous findings in livestock [55] and

humans [15], our results evidence that standard assessment of

spermatozoa (i.e., morphology, motility and vitality) is not sufficient

to reliably anticipate male reproductive performance. All routinely

assessed semen parameters of bulls homozygous for the nonsense

mutation in TMEM95 comply with current requirements for

artificial insemination in cattle [56]. It might be advisable to

develop functional assays, e.g., for the integrity of sperm surface

proteins, for an efficient prospective monitoring of male fertility.

Materials and Methods

Ethics statement
Semen samples were collected by approved commercial

artificial insemination stations as part of their regular breeding

and reproduction measures in cattle industry. No ethical approval

was required for this study.

Animals and phenotypes
Male reproductive ability (MRA) was evaluated in 7962 AI bulls

of the German FV population. Semen samples of those bulls were

used for 15,321,171 artificial inseminations with an average of

1924 artificial inseminations per bull. The phenotypes for MRA

were obtained from routine breeding value estimation for

reproductive traits, which are jointly estimated for males and

females [57]. The resulting phenotypes for MRA represent the

bulls’ reproductive performance adjusted for environmental and

genetic effects (i.e., year, season, flock, female mating partner). The

lower the value for MRA, the worse is the bull’s reproductive

Table 5. Assessment of fresh semen quality.

rs378652941 N Ø number of ejaculates Ejaculate volume (ml) Sperm count (Mio/ml)
Spermatozoa with progressive
motility (%)

wt/wt 177 52 5.1461.08 1.5360.22 74.7365.21

wt/mt 21 52 5.1561.03 1.4760.23 75.1564.92

mt/mt 5 63 5.5661.75 1.4260.29 70.8267.06

Fresh semen quality of 203 FV bulls. The mean and standard deviation is presented based on an average of 53 ejaculates per bull. The age of the bulls at semen
collection ranged from 1.11 to 2.49 years. Semen quality parameters were kindly provided by Bayern Genetik GmbH (http://www.fleckvieh.de).
doi:10.1371/journal.pgen.1004044.t005

Figure 4. Immunohistochemical localisation of TMEM95. In
spermatozoa of wt/wt animals, TMEM95 is located at the plasma
membrane of the acrosome, on the equatorial segment and at the neck
(A). Spermatozoa of wt/mt animals show the same fluorescence pattern
as spermatozoa of wt/wt animals (B). Transmembrane protein 95 is
absent in spermatozoa of mt/mt animals (C). Note that all spermatozoa
exhibit weak fluorescence at the midpiece of the tail due to the
autofluorescence of the mitochondria.
doi:10.1371/journal.pgen.1004044.g004

Idiopathic Male Subfertility in Cattle
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performance (i.e., the smaller the proportion of successful

inseminations).

Genotypes, quality control and genotype imputation
A total of 3545 animals (1475 AI bulls, 2070 primiparous cows)

of the FV population were genotyped with the Illumina BovineHD

Bead chip comprising 777,962 SNPs. Another 7073 AI bulls were

genotyped with the BovineSNP50 Bead chip comprising ,54,000

SNPs. The chromosomal position of the SNPs was determined

according to the UMD3.1 assembly of the bovine genome [58].

Mitochondrial, Y-chromosomal and those SNPs with unknown

chromosomal position were not considered for further analyses.

Stringent quality control was carried out for each dataset

separately using PLINK v1.07 [59]. Animals and SNPs with call-

rate ,0.95 were excluded, as well as SNPs with minor allele

frequency ,0.5% and those SNPs deviating significantly from the

Hardy-Weinberg equilibrium (P,1026). The pairwise genomic

relationship [60] was compared with the pedigree relationship

tracing pedigree records back to 1920 [61]. Animals showing

major discrepancies of the pedigree and the genomic relationship

were removed from the dataset, as such patterns indicate sample

swaps. After quality control, the high-density dataset contained

3332 animals and 652,856 SNPs with an average per-individual

call-rate of 99.17%. The medium-density dataset contained 7031

animals and 42,907 SNPs with an average per-individual call-rate

of 99.75%. Genotype imputation was performed to extrapolate

medium-density genotypes to higher density using a pre-phasing

based approach. Haplotypes were inferred for the two datasets

separately using Beagle [62] and subsequent haplotype-based

imputation was performed with Minimac [63]. This approach

yields high imputation accuracy in cattle [64]. The imputed

dataset comprised 10,363 animals (8411 AI bulls/1952 primipa-

rous cows) and genotypes for 652,856 SNPs. Phenotypic records

for MRA were available for 7962 bulls.

Genome-wide association study
Genome-wide association studies were performed applying a

variance component based approach to account for population

stratification. We used EMMAX [65] to fit the mixed model

Y~Xbzuze, where Y is a vector of phenotypes, b is the SNP

effect, X is a design matrix of imputed SNP genotypes, u is a

vector of additive genetic effects assumed to be normally

distributed with mean 0 and (co)variance s2
aG, with s2

a being the

additive genetic variance and G being the realized genomic

relationship matrix (GRM) of the 7962 bulls with phenotype

information built based on 635,224 autosomal SNPs (see above)

and where e is a vector of random normal deviates *N(0,Is2
e).

Exploiting whole genome re-sequencing data for
mutation screening

The genomes of 42 key and contemporary animals of the FV

population were sequenced at low- to medium coverage (ø 7.4-

fold) and one animal was sequenced at high coverage (25-fold)

using Illumina GA IIx and HiSeq 2000 instruments [66,23].

Paired-end reads were obtained and mapped to the bovine

reference sequence (UMD3.1 [58]) using the Burrows-Wheeler

Aligner (BWA) [67]. PICARD (http://picard.sourceforge.net) was

used to mark PCR-duplicates. Subsequent multi-sample variant

calling with mpileup [68] yielded genotypes at 17.17 million sites.

The re-sequencing data were contributed to the 1000 bull

genomes project [25] and all variants were submitted to dbSNP

[23]. Beagle phasing and imputation within the 43 sequenced

animals improved the primary genotype calls (a detailed overview

of the entire variant calling pipeline and all obtained variants is

presented in Jansen et al. [23]). Of 17.17 million sites, 5287 SNPs

and 678 INDELs were located within the 1386 kb segment

(26,580,096 bp to 27,956,634 bp) of extended homozygosity on

BTA19. Of the 43 sequenced animals, six were identified as

carriers of the subfertility-associated haplotype via high-density

genotypes, among them the animal sequenced at high coverage.

Assuming perfect correlation between the subfertility-associated

haplotype and the causal mutation, the allele frequency of the

causal mutation should be 7% (6 of 86 affected alleles) in the

sequence-derived genotypes. To account for inaccurately geno-

typed variants due to the low-coverage sequence data (e.g., mis-

calling of heterozygous genotypes for rare variants [69]) [70] and

for possible phasing errors, a conservative mutation scan was

performed to identify variants compatible with recessive inheri-

tance (Figure S6). The 5965 polymorphic sites were filtered for

variants that met three conditions: (i) the frequency of the non-

reference allele is below 10%, (ii) the variant is heterozygous in the

animal sequenced at high coverage and (iii) the variant is present

in heterozygous state in at least three of five carrier sequenced at

low coverage.

Validation of three identified polymorphisms
PCR primers (59-CACCCTGCCTTGTCTTTCAT-39 and 59-

AGGCTCTGTCCTCGTTTTCA-39) were designed for exon 6

of TMEM95 to scrutinize the rs378652941-polymorphism by

classical Sanger sequencing in the re-sequenced animals as

recommended by Jansen et al. [23]. Genomic PCR products

were sequenced using the BigDye Terminator v1.1 Cycle

Sequencing Kit (Life Technologies) on the ABI 3130x1 Genetic

Analyzer (Life Technologies). Genotypes for rs378652941

(TMEM95:c.483C.A, p.Cys161X, Chr19:27689622),

rs381722524 (KIF1C:c.197A.G, p.Gln66Arg, Chr19:27042848)

and rs385135118 (ACADVL:c.706C.A, p.Pro236Thr,

Chr19:27570146) were obtained by TaqMan genotyping assays

(Life Technologies) in 1990, 1222 and 1206 animals, respectively,

representing three different breeds (BV, FV, HF). The primer and

probe sequences are listed in Table S7.

Topology prediction for TMEM95
The topology of bovine transmembrane protein 95 (NCBI

reference sequence: XP_002695846.1) was predicted with SPOC-

TOPUS [71] and PHOBIUS [72]. Both methods predict the

transmembrane protein topology while accounting for the

existence of a N-terminal signal peptide sequence. The protein

topology was visualized with SOSUI [73]. ClustalW [74] was used

for multi-species alignment of the protein sequence and for the

prediction of conserved regions.

Assessment of sperm morphology, motility and viability
Cryopreserved (2196uC) sperm specimens of 30 bulls (10 wt/wt,

10 wt/mt, 10 mt/mt) were obtained from artificial insemination

companies. Two different ejaculates of each bull were evaluated

with two straws pooled per ejaculate. After thawing (37uC, 30 s),

sperm morphology was assessed by staining with Diff-Quik

(Siemens Healthcare, Germany). Sperm total motility was

investigated immediately after thawing by phase-contrast micros-

copy using the Leica DM 1000 microscope (Leica, Germany).

Viability of spermatozoa was investigated after thawing by mixing

5 ml of the thawed ejaculate with aqueous Eosin Y solution (Sigma

Aldrich, Germany) in a volume ratio of 1:1. Intact and viable

spermatozoa stay colourless whereas spermatozoa with disturbed

membrane integrity stain red. Counting of viable sperm was done

within 10 seconds after mixing. Two hundred spermatozoa in at
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least two different fields of view were investigated at a

magnification of 4006 to analyse morphology, viability and

motility.

Assessment of ejaculate volume, sperm count and
progressive motility

Fresh semen traits (ejaculate volume, sperm count and

progressive motility) of 203 AI bulls (177 wt/wt, 21wt/mt, 5 mt/

mt) were provided by an artificial insemination company. Semen

quality was analysed based on 10,682 ejaculates with an average of

52.6 ejaculates per bull. At semen collection, the age of the bulls

ranged from 1.1 to 2.5 years.

Immunohistochemical localization of TMEM95
Immunohistochemistry on cryopreserved sperm specimens of 33

bulls (10 wt/wt, 10 wt/mt,13 mt/mt) was repeated for 3 times. After

thawing (37uC, 30 s), spermatozoa were washed in phosphate

buffered saline (PBS) twice and were diluted in PBS to a

concentration of 500,000 spermatozoa/ml. Thereafter, drops of

7 ml were placed on 3-aminopropyl-ethoxysilane-coated slides and

dried on a heating-plate at a temperature of 38uC. Subsequently,

the slides were fixed in Bouin’s solution for 7 min and washed in

PBS twice. Non-specific binding was blocked by incubation in

blocking buffer (0.1% bovine serum Albumin in PBS, Sigma-

Aldrich, Germany) for 5 minutes and in normal goat serum

(dilution 1:5 in PBS, Invitrogen, Germany). Next, the spermatozoa

were incubated with the first antibody Yomics Ab989 (mouse-

derived against human TMEM95, Primm, USA) in a dilution of

1:200 in blocking buffer at 4uC overnight. The secondary antibody

was the Fluorescein (FITC)-conjugated AffiniPure Goat anti

Mouse IgG (H+L) (Dianova, Germany, dilution 1:200). Negative

controls were done by a) replacing the first antibody with PBS and

b) using a non-relevant anti-mouse antibody directed against Villin

(1:75, Beckman Coulter). Specimens were evaluated by using a

confocal laser scanning microscope (Leica DM IRBE) in

magnifications from 400 to 800.

Supporting Information

Figure S1 Male reproductive ability of 7962 artificial insemina-

tion bulls. Male reproductive ability (MRA) in 7962 artificial

insemination bulls of the Fleckvieh population (A). Male

reproductive ability is highly correlated (r = 0.59) with the 56-

day non-return rate in cows (B). Red dots represent 49 bulls with

unexplained exceptionally poor reproductive performance ( = sub-

fertile animals).

(TIF)

Figure S2 Genome-wide association study using male repro-

ductive ability as quantitative trait. Association of 652,856 SNPs

with male reproductive ability (MRA). P-values were obtained

using a mixed-model based GWAS and phenotypes for MRA in

7962 artificial insemination bulls of the FV population.

(TIF)

Figure S3 CNV-analysis within the segment of extended

homozygosity. Signal intensities obtained from genotyping with

the Illumina BovineHD Bead chip are displayed as log R ratios for

cases and controls within the segment of extended homozygosity.

The log R ratio is displayed for 3-SNP-sliding windows.

(PNG)

Figure S4 Frequency of the subfertility-associated haplotype in

the Fleckvieh population. Genotypes of 19,014 FV bulls used for

routine genomic breeding value estimation were analysed.

Haplotype analysis revealed an increasing frequency of heterozy-

gous bulls within the last years. In 2009, 23.41% of all genotyped

bulls were carrier of the deleterious haplotype. The solid green line

represents the carrier frequency as a function of the birth year and

the dashed green line is the corresponding regression line

(ß = 0.003, P = 0.0002).

(TIF)

Figure S5 Pedigree of 40 homozygous artificial insemination

bulls. The pedigree was constructed for 40 homozygous bulls (red)

and includes obligate carriers of the haplotype only. Females and

males are displayed with ovals and boxes, respectively. Grey

colour indicates animals for which genotypes were available. One

animal with incomplete pedigree information is displayed in

yellow. The blue box represents HAXL (*1966), the supposed

founder of the mutation. Green asterisks represent re-sequenced

animals.

(TIF)

Figure S6 Exploiting whole genome re-sequencing data of 43

animals for the identification of the underlying mutation. Whole

genome re-sequencing of 43 animals and subsequent multi-sample

variant calling yielded genotypes at 5965 polymorphic sites (5287

SNPs, 678 INDELs) within the 1386 kb segment of extended

homozygosity on BTA19. Six of 43 re-sequenced animals were

carriers of the subfertility-associated haplotype. One of the carriers

was sequenced at high coverage (HC) whereas the remaining five

carriers were sequenced at low coverage (LC).

(PDF)

Figure S7 Validation of the nonsense mutation in six heterozy-

gous animals. IGV screen-shots of the nonsense mutation in

exon 6 of TMEM95 (rs378652941, c.483C.A, p.Cys161X,

Chr19:27689622) for six animals carrying the subfertility-associ-

ated haplotype. The mutation was present in the re-sequencing

data of four heterozygous animals (C, D, E, F), whereas the

mutation could not be identified in the re-sequencing data of two

animals (A, B). Sequencing of PCR products revealed that the

mutation is present in these animals but initially remained

undetected due to the low-coverage sequencing strategy.

(TIF)

Figure S8 Validation of the nonsense mutation in one

unaffected animal. The nonsense mutation was identified in the

re-sequencing data of one animal not carrying the subfertility-

associated haplotype. Sequencing of genomic PCR products

revealed that this was a mis-call in the re-sequencing data due

to the low coverage sequencing data. The mutation indeed is not

present in that animal, as indicated by haplotype analysis.

(TIF)

Figure S9 Topology prediction of transmembrane protein 95.

The topology of bovine transmembrane protein 95 (NCBI

reference sequence: XP_002695846.1) was predicted with SPOC-

TOPUS (A) and PHOBIUS (B). Both methods simultaneously

predict N-terminal signal peptide sequences and transmembrane

domains. Both tools consistently predicted that transmembrane

protein 95 is a single-pass type I transmembrane protein with an

extracellular N-terminal signal peptide sequence. The affected

codon (p.Cys161X, orange triangle) resides within the predicted

transmembrane domain.

(TIF)

Figure S10 Multi-species sequence alignment of transmembrane

protein 95. ClustalW was used for multiple sequence alignment of

the protein sequence of transmembrane protein 95. Red vertical

lines indicate the boundaries of different domains predicted with

SPOCTOPUS and PHOBIUS. Protein sequences were obtained
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from NCBI for Felis catus (XP_003996306.1), Pan troglodytes

(XP_529925.2), Saimiri boliviensis boliviensis (XP_003929208.1),

Papio anubis (XP_003912296.1), Macaca mulatta

(NP_001181311.1), Mus musculus (NP_001182639.1), Pan paniscus

(XP_003810140.1), Otolemur garnettii (XP_003791206.1), Pongo abelii

(XP_002827002.1), Homo sapiens (NP_937797.1), Rattus norvegicus

(NP_001128271.1), Callithrix jacchus (XP_002748028.1), Canis lupus

familiaris (XP_849662.1) and Bos taurus (XP_002695846.1).

(TIF)

Figure S11 Negative control of the primary antibody.

(TIF)

Figure S12 Genome-wide association study for male reproduc-

tive ability conditional on the rs378652941-polymorphism. The

GWAS was repeated using only 7922 animals that are not

homozygous for the p.Cys161X-mutation. P-values were obtained

using a mixed-model based GWAS.

(TIF)

Figure S13 Polymorphic sites in human TMEM95. The

genomic structure of the human TMEM95 (HGNC:27898) gene

is shown according to the GRCh37.p10 assembly of the human

genome. TMEM95 consists of seven exons. Known variants within

human TMEM95 were obtained from Ensembl (release 69,

October 2012; http://www.ensembl.org). Vertical colored bars

indicate the position of known variants within TMEM95, among

them two stop-gained mutations in exon 1 (rs150578277) and exon

5 (rs199658290), respectively.

(TIF)

Table S1 Gene content within the segment of extended

homozygosity on bovine chromosome 19. The gene content was

assessed based on the UMD3.1-assembly of the bovine genome

sequence. A total of 80 transcripts were identified within the

segment of extended homozygosity.

(PDF)

Table S2 Reproductive performance of 40 subfertile animals.

Phenotypes for male reproductive ability (MRA) and the 56-day

non-return rate are presented for 40 subfertile animals. Insemi-

nations resulting in progeny were considered as successful.

(PDF)

Table S3 Effect of the male subfertility-associated haplotype on

reproduction and production traits of primiparous cows. Pheno-

types in the form of estimated breeding values (EBVs) for six

reproduction and three milk production traits were available for

1857 genotyped primiparous cows. The reproduction traits

comprise EBVs for overall fertility, EBVs for the 56 non-return

rate for heifers (NR56heifer) and cows (NR56cow), EBVs for the

time from calving to first insemination (CTFI) and EBVs for the

interval from first to last insemination for heifers (IFLheifer) and

cows (IFLcow). The mean and standard deviation is presented for

all 1857 primiparous cows as well as for three groups of animals

carrying 0 (unaffected), 1 (carrier) and 2 (homozygous) copies of

the subfertility-associated haplotype, respectively. P-values were

obtained by fitting the mixed linear model Y~Xbzuze, where

Y is a vector of phenotypes, b is the effect of the subfertility-

associated haplotype, X is a design matrix of haplotype genotypes

coded as 0, 1 and 2, respectively, u is the polygenic term

,N(0,s2
aG), with s2

a being the additive genetic variance and G is

the realized genomic relationship matrix (GRM) among 1857

primiparous cows built based on 635,224 autosomal SNPs and e is

a vector of random residual effects.

(PDF)

Table S4 Single nucleotide polymorphisms on BTA19 compat-

ible with the supposed recessive inheritance pattern. The mutation

scan revealed 26 SNPs fulfilling three criteria required to be

compatible with the supposed recessive inheritance. Genotypes are

presented separately for six animals carrying the subfertility-

associated haplotype and for 37 animals not carrying the

subfertility-associated haplotype. Observed genotypes are dis-

played as homozygous for the reference allele (HOM_ref),

heterozygous (HET) and homozygous for the non-reference allele

(HOM_alt).

(PDF)

Table S5 Insertion/Deletion-polymorphisms on BTA19 com-

patible to the recessive inheritance pattern. The mutation scan

revealed six INDELs fulfilling three criteria required to be

compatible with the supposed recessive inheritance. Genotypes

are presented separately for six animals carrying the subfertility-

associated haplotype and for 37 animals not carrying the

subfertility-associated haplotype. Observed genotypes are dis-

played as homozygous for the reference allele (HOM_ref),

heterozygous (HET) and homozygous for the non-reference allele

(HOM_alt).

(PDF)

Table S6 Reproductive performance of nine subfertile animals

not attributable to the c.483C.A - mutation. Inseminations

resulting in progeny were considered as successful.

(PDF)

Table S7 Primers and probes used for TaqMan genotyping

assays.

(PDF)
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berg e.V., Zweckverband für künstliche Besamung Greifenberg.

Author Contributions

Conceived and designed the experiments: HP SK RF. Performed the

experiments: HP SK CW MT. Analyzed the data: HP HS CW SJ CF RE

KUG. Contributed reagents/materials/analysis tools: CF RE KUG.

Wrote the paper: HP RF.

References

1. Irvine DS (1998) Epidemiology and aetiology of male infertility. Hum Reprod 13

Suppl 1:33–44.

2. De Kretser D (1997) Male infertility. The Lancet 349:787–790.

3. Gurunath S, Pandian Z, Anderson RA, Bhattacharya S (2011) Defining

infertility–a systematic review of prevalence studies. Hum Reprod Update

17:575–588.

4. Bhasin S, de Kretser DM, Baker HW (1994) Clinical review 64: Pathophysiology

and natural history of male infertility. J Clin Endocrinol Metab 79:1525–1529.

5. Guzick DS, Overstreet JW, Factor-Litvak P, Brazil CK, Nakajima ST,

Coutifaris C, Carson SA, Cisneros P, Steinkampf MP, Hill JA, Xu D, Vogel

DL (2001) Sperm morphology, motility, and concentration in fertile and infertile

men. N Engl J Med 345:1388–1393.

Idiopathic Male Subfertility in Cattle

PLOS Genetics | www.plosgenetics.org 9 January 2014 | Volume 10 | Issue 1 | e1004044



6. Mundy AJ, Ryder TA, Edmonds DK (1995) Asthenozoospermia and the human
sperm mid-piece. Hum Reprod 10:116–119.

7. Tomar R, Mishra AK, Mohanty NK, Jain AK (2012) Altered Expression of

Succinic Dehydrogenase in Asthenozoospermia Infertile Male. Am J Reprod

Immunol.

8. (2006) Effectiveness and treatment for unexplained infertility. Fertil Steril

86:S111–114.

9. Quaas A, Dokras A (2008) Diagnosis and Treatment of Unexplained Infertility.

Rev Obstet Gynecol 1:69–76.

10. Druet T, Fritz S, Sellem E, Basso B, Gérard O, Salas-Cortes L, Humblot P,

Druart X, Eggen A (2009) Estimation of genetic parameters and genome scan

for 15 semen characteristics traits of Holstein bulls. J Anim Breed Genet
126:269–277.

11. Ferlin A, Raicu F, Gatta V, Zuccarello D, Palka G, Foresta C (2007) Male

infertility: role of genetic background. Reproductive BioMedicine Online
14:734–745.

12. O’Flynn O’Brien KL, Varghese AC, Agarwal A (2010) The genetic causes of

male factor infertility: a review. Fertil Steril 93:1–12.

13. Harris T, Marquez B, Suarez S, Schimenti J (2007) Sperm Motility Defects and
Infertility in Male Mice with a Mutation in Nsun7, a Member of the Sun

Domain-Containing Family of Putative RNA Methyltransferases. Biol Reprod
77:376–382.

14. Sironen A, Uimari P, Venhoranta H, Andersson M, Vilkki J (2011) An exonic

insertion within Tex14 gene causes spermatogenic arrest in pigs. BMC
Genomics 12:591.

15. Tollner TL, Venners SA, Hollox EJ, Yudin AI, Liu X, Tang G, Xing H, Kays

RJ, Lau T, Overstreet JW, Xu X, Bevins CL, Cherr GN (2011) A common
mutation in the defensin DEFB126 causes impaired sperm function and

subfertility. Sci Transl Med 3:92ra65.

16. Wu W, Shen O, Qin Y, Niu X, Lu C, Xia Y, Song L, Wang S, Wang X (2010)

Idiopathic Male Infertility Is Strongly Associated with Aberrant Promoter
Methylation of Methylenetetrahydrofolate Reductase (MTHFR). PLoS ONE

5:e13884.

17. Carrell DT, Aston KI (2011) The search for SNPs, CNVs, and epigenetic
variants associated with the complex disease of male infertility. Syst Biol Reprod

Med 57:17–26.

18. Kastelic JP, Thundathil JC (2008) Breeding soundness evaluation and semen
analysis for predicting bull fertility. Reprod Domest Anim 43 Suppl 2:368–373.

19. Blaschek M, Kaya A, Zwald N, Memili E, Kirkpatrick BW (2011) A whole-

genome association analysis of noncompensatory fertility in Holstein bulls.
J Dairy Sci 94:4695–4699.

20. Huang W, Kirkpatrick BW, Rosa GJM, Khatib H (2010) A genome-wide

association study using selective DNA pooling identifies candidate markers for
fertility in Holstein cattle. Anim Genet 41:570–578.
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