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Automated Scale Reduction of Nonlinear QSP Models 
With an Illustrative Application to a Bone Biology System
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Integrating quantitative systems pharmacology (QSP) into pharmacokinetics/pharmacodynamics (PKPD) has resulted in 
models that are highly complex and often not amenable to further exploration via estimation or design. Because QSP models 
are usually depicted using nonlinear differential equations it is not straightforward to apply some model reduction tech-
niques, such as proper lumping. In this study, we explore the combined use of linearization and proper lumping as a general 
method to simplification of a nonlinear QSP model. We illustrate this with a bone biology model and the reduced model was 
then applied to describe bone mineral density (BMD) changes due to denosumab dosing. The methodologies used in this 
study can be applied to other multiscale models for developing a mechanism- based structural model for future analyses.
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WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
✔   Proper lumping has been used for order reduction of 
complicated models. This technique is, however, not 
straightforward to apply for nonlinear differential equa-
tions that are not uncommon in QSP models.
WHAT QUESTION DID THIS STUDY ADDRESS?
✔   Can nonlinear QSP models be simplified by a two- 
stage process (1) inductive linearization of the system and 
(2) application of proper lumping? Application of this pro-
cess is illustrated with a case example.
WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
✔   Nonlinear QSP models can be simplified using a two- 
stage process (inductive linearization and proper 

lumping). Both components can be automated, although, 
in this work, only proper lumping is fully automated. The 
reduced model was then able to be applied to extrapolate 
long- term responses that were not able to be captured by 
an empirical approach.
HOW MIGHT THIS CHANGE DRUG DISCOVERY, 
DEVELOPMENT, AND/OR THERAPEUTICS?
✔   The scale reduction of a QSP model provides a simple 
mechanistic model, which can then be used to predict 
long- term responses from short- term or middle- term 
data.

Study Highlights

Quantitative systems pharmacology (QSP) models are in-
creasingly used in drug development to provide a deeper 
understanding of the mechanisms of action of drugs and 
their likely effects on the system, or to identify appropriate 
disease targets in preclinical settings.1,2 Irrespective of the 
purpose of development, such models are generally not 
suitable for estimation purposes due to the large number of 
states and parameters yielding long runtimes and numerical 
instability.3,4

Based on identifying a specific input- output relation-
ship, however, the system may be reduced to fewer states 
and parameters that may then be suitable for estimation 
purposes. Proper lumping is one such technique that has 
been used for model order reduction with some applica-
tions to systems models.5–7 With this method, the original 
states of the model are lumped into a reduced number of 

pseudo- states, resulting in a model of lower dimensionality 
but with similar input- output behavior as well as physio-
logical interpretation. For linear systems, parameter values 
as well as initial conditions of the lumped states can be 
obtained directly using the lumping formulae. This is, how-
ever, not the case for nonlinear ordinary differential equa-
tions (ODEs) that are not uncommon in QSP models.8,9 In 
such cases, only initial conditions are provided from lump-
ing formulae,7,10 therefore, lumping nonlinear systems is 
not straightforward. We note that solving the (nonlinear) 
system itself is not usually difficult by using numerical time- 
stepping solvers (e.g., Runge–Kutta).

The primary aim of this study was to explore simpli-
fication of a nonlinear QSP model. We chose an exist-
ing 28- state bone biology model just as an illustrative 
example of a nonlinear QSP model. This model links 
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calcium homeostasis and bone biology,11 and was ex-
tended for the prediction of lumbar spine bone mineral 
density (BMD).12 It should be noted that this work is not 
intended to provide a complete treatment of bone biology 
or models that have been developed to describe drug 
effects on bone biology (readers are referred to ref. 13,14 
for more extensive discussions on this therapeutic area). 
The second aim of this study was, therefore, to investi-
gate if the reduced model provides adequate prediction 
of responses. Here, we consider the extrapolation with 
respect to “time” as one of the ways to assess the utility 
of the model: (i) calibrate the reduced model (estimate 
model parameters) using short- term to middle- term data, 
then (ii) assess the utility of the model using long- term 
data (i.e., extrapolation), in which denosumab (a mono-
clonal antibody osteoporosis treatment targeting recep-
tor activator of nuclear factor kappa- B ligand (RANKL)) is 
used as a test drug. The predictive performance will be 
compared to two empirical models developed from data 
over the same period.

METHODS

Model order reduction consisted of three steps:

1. Linearization of the original nonlinear model.
2. Scale reduction of the linearized original model.
3. Finalization of the reduced model for parameter 

estimation.

The model was then applied to data describing the effects 
of denosumab.

Linearization of the original nonlinear model
An inductive approximation was used to obtain the linear-
ized system from a nonlinear model.15 The method consists 
of two steps: (i) linearization to create a linear version of the 
nonlinear ODE; and (ii) then solving the linear ODE. Here, 
we briefly cover the main concepts of the linearization. QSP 
as well as pharmacokinetic/pharmacodynamic (PK/PD) 
models are often defined as a set of nonlinear ODEs of the 
general form:

where t is time, y(t) = (y1(t), …, yM(t))T is an M × 1 vector of 
response variables (i.e., M states in the system), f(t, y) is an 
M × 1 vector, and A(t, y) is an M x M nonsingular matrix of 
which each element includes the corresponding parame-
ters (e.g., rate constants). The initial conditions for the ODE 
are given by y0 (M × 1). The ODE is linearized by replacing 
the coefficients that are dependent on the current state y 
with a previous iteration of that state y[n−1] at time t. The 
linearization is initialized (when n = 1) with y[0](t) (our initial 
guess for the first iteration in linearization at time t). The ini-
tial guess could be set to our initial conditions for the ODE, 
y0, for all t (an uninformative starting point). The dimen-
sions of y[0] depend on the number of ODEs in the nonlinear 

system (see ref. 15 for further details). The linearization is 
performed for the solution y[n](t) inductively by:

Here, y[n−1](t) is a response vector obtained from the previ-
ous iteration and, hence, considered to be a known quantity. 
Because f and A now depend on a known quantity, y[n−1](t), 
rather than on the current value of y[n](t), Eq. 2 now rep-
resents a linear (time- varying) system that can be expressed 
in the following form:

With a sufficient n, the inductive approximation (Eq. 2) is 
considered to form the true solution. We note that the induc-
tive approximation was applied in order to enable the direct 
use of proper lumping for nonlinear QSP models. Other pos-
sible benefits of using the inductive approximation can be 
found elsewhere.15

Because the PK of denosumab and the QSP bone biol-
ogy model were expressed with nonlinear ODEs, they were 
linearized sequentially. A two- compartment PK model with 
a quasi- steady- state approximation of the target- mediated 
drug disposition model was used to describe denosumab 
PK.16 Model equations are shown in Appendix S1. The 
output of interest in this study is the change in BMD from 
baseline. Two components in the bone biology model, os-
teoblasts (OBs) and osteoclasts (OCs), directly characterize 
the change in BMD in the form12:

Therefore, we focused on those two states when induc-
tively approximating the original nonlinear system. The iter-
ation was stopped when the following maximal relative error 
fell below 10-3:

where x is a vector of response variables of OB and OC, 
such that x = (OB[1], …, OB[n]; OC[1], …, OC[n])T of dimen-
sions n × 2. A matrix exponential solution was used to 
solve linearized ODEs using appropriately small time 
steps. All calculations and simulations were performed 
using MATLAB R2015b or higher (MathWorks, Natick, MA).

Scale reduction of the linearized original model
The technique of proper lumping was used for scale reduc-
tion of the linearized original model. The detail of the proper 
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lumping has been described elsewhere.5 Here, we briefly 
cover the main concepts. Using Eq. 3, the system for the 
lumped states can be written in the form:

where ŷ is the vector of response from lumped states, f̂ and 
Â are the vector and matrix of parameters in the reduced 
system, respectively. Then it is known that f̂ and Â can be 
derived as:

in which L is the lumping matrix transforming the original 
system y to reduced models ŷ in the form:

L+ in Eq. 8 is the Moore- Penrose inverse, sometimes re-
ferred to as pseudo inverse of L. Please note that f̂ and Â 
can take different values at each time as f and A as in the 
original system. It is obvious that f̂ and Â cannot be ob-
tained for nonlinear systems. As in this case, f and A de-
pend on the original response y, which cannot be obtained 
(solved) from the ODEs of lumped states (Eq. 6). This is why 
the linearization is required.

A final lumped model was selected using the following 
composite criterion17:

T1 and T2 represent model performance and complex-
ity, respectively, m is the number of states in the reduced 
model, and the two indices (T1 and T2) were weighted with 
a user- defined mixing constant α: (0≤α≤1). For any given 
value of weighting the smallest criterion value will provide 
the best tradeoff between complexity and performance. The 
search for the lumped model was started with α=0.5, and 
this value was finally determined by qualification of the sim-
plified model based on a visual predictive check. The detail 
of this process is shown in Appendix S1.

Considering the important role of responding OB,14,18 
it was forced to remain unlumped in addition to the com-
ponents for the output of interest (i.e., OC and OB). In this 
model, OB has been separated into two states where the 
removal rate is either fast (differentiation into osteocytes) 
or slow (apoptosis), yielding the minimum number of states 
to be five (corresponding to responding OB (ROB), fast OB 
(FOB), slow OB (SOB), OC, and a lumped state from the 
rest), excluding the denosumab PK components. We note 
that OB is the sum of FOB and SOB. All calculations and 

simulations were performed using MATLAB R2015b or 
higher (MathWorks).

Finalization of the reduced model for parameter 
estimation
The reduced model includes time- varying composite param-
eters (derived from Eqs. 7 and 8) which may vary nonmono-
tonically over time and, therefore, be difficult to express with 
typical functions (e.g., exponential, power, etc.). This is not 
an issue if time- varying values of the composite parameters 
are provided as input data (e.g., $INPUT in NONMEM), al-
though one may want to avoid this, especially for parameter 
estimation. To circumvent this issue, the time- varying pa-
rameters were re- converted (unlinearized) back to the orig-
inal nonlinear functions for states which remained unlumped 
(replace y[n−1] with y[n] then remove [n] from the equation). The 
conversion to linear time- invariant parameters using base-
line values (at t = t0) was also applied for states that were 
lumped together with other states. Through this process all 
the parameters in the final reduced model are provided as 
time- invariant.

Identifiability analysis. Identifiability analysis was per-
formed using an information approach that evaluated 
structural and deterministic identifiability.19,20 In addition, 
an informal heuristic approach was used to evaluate 
whether further parameters could be estimated by using a 
sensitivity analysis. This was performed through parameter 
estimation using published BMD data until 1 year from the 
initiation of denosumab dosing,21 in which each parameter 
was assessed for its influence on the objective function 
value of NONMEM univariately.

Application of the reduced model
The reduced model and two empirical models were trained 
on the first 12 months of BMD data extracted from a publi-
cation describing the treatment effects of denosumab over 
48 months in postmenopausal women.21 The extracted 
data is available in Table S2. The BMD data, 12 months 
after the initiation of drug dosing, are often evaluated as 
primary analyses in typical phase II studies for osteopo-
rosis treatment.22–24 The three models were then used to 
predict the BMD response over the next 36 months. The 
BMD data were digitized using the software application 
WebPlotDigitizer version 3.12.

Two empirical models were considered, a direct response 
(with time- varying maximum effect (Emax)) and a turnover 
model, and also used for fitting to data until 12 months:

Empirical model 1

Empirical model 2

(6)
dŷ

dt
= f̂(t)+ Â(t) ⋅ ŷ; ŷ(t0)= ŷ0

(7)f̂(t)=L ⋅ f(t)
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(9)ŷ=L ⋅y
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where C is the serum concentration of denosumab. The 
Emax is the maximum response, C50 is the serum concen-
tration of denosumab causing 50% of maximum response, 
k is the rate constant for the onset of denosumab drug ef-
fect, Rin is the zero- order rate constant, kout is the first- 
order rate constant for BMD, and Imax is the maximum 
inhibitory effect of denosumab. The number of parame-
ters to be estimated is three in both models because in 
Eq. 12 Rin is derived as kout times 100 (normalized baseline 
BMD). After parameter estimation, the three models (the 
reduced and the two empirical models) were then used to 
extrapolate the long- term BMD responses over the follow-
ing 36 months. Parameter estimation was performed using 
NONMEM version 7.3.0 (ICON Development Solutions).25 
Figures were prepared using SAS version 9.3 (SAS Institute 
Inc, Cary, NC).

As a positive reference, an existing semimechanis-
tic model of BMD26 was also used for fitting to data until 
12 months and for extrapolating the long- term BMD re-
sponses over the following 36 months. Model equations are 
shown in Table S1.

RESULTS
Linearization of the original nonlinear model
Linearization was performed for both the PK model for 
denosumab and the multiscale bone systems model. 
The results of the linearization of denosumab when dos-
ing 60 mg (approved dose) every 6 months are shown in 
Figure 1a. It is seen that the inductive approximations ap-
proached the solution provided by the original nonlinear 
model, and the iteration stopped at n = 47 with a suitably 
accurate prediction (ES < 0.001 in Figure 1b). By fixing this 
result, the profiles of both OC and OB were then induc-
tively linearized. Successive inductive approximations are 
shown in Figure 1c for OC and Figure 1e for OB. Early 
iterations, however, showed a nonmonotonic decline in ES, 
which occurs due to the recursive feedback mechanisms 
in the system (shown in Figure 1d for OC and Figure 1f 
for OB). An average between successive (odd + even) it-
erations declined monotonically following an exponential 
decay for both OC and OB (broken lines in Figure 1d and 
Figure 1f, respectively). The iteration finally stopped at 
n = 20 (ES < 0.001). The runtime for the combined linearized 
drug and bone biology model was less than 2 minutes.

Figure 1 Inductive linearization (a for denosumab pharmacokinetics (PK), c for osteoclasts (OCs), and e for osteoblasts (OBs)) and 
its convergence process (b for denosumab PK, d for OCs, and f for OBs). n, number of iterations in inductive approximations; ES, 
the error of successive approximations of the inductive solution. The broken lines in d and f show the average between successive 
(odd + even) iterations.
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Scale reduction of the linearized original model
Two components in Eq. 2 after the inductive linearization 
(i.e., f(t, y[n−1]) and A(t, y[n−1])) where n = 20, were directly 
used for the calculation of parameter values in each re-
duced model using Eqs. 7 and 8. Figure 2 shows the lump-
ing criterion value (CC(m, α) in Eq. 10) for each number of 
states tested (m). When α = 0.5 in CC(m, α), a 7- state model 
was selected (shown in Figure 2) and the model predictions 
are shown in Figure 3a. This model roughly agreed with 
the original profile, but clearly underpredicted until 1 year 
and overpredicted from years 1–2 but was consistent from 
years 3–4. With α = 0.7 (more contributions of T1 in Eq. 10), 
the 8- state model was selected, as shown in Figure 2, and 
the plots of the model predictions are shown in Figure 3b. 
This model provided similar predictions of BMD to the 
original profile, and was considered superior to the seven- 
state model over the whole response- time profile. This 
eight- state model was accordingly chosen as a final re-
duced model. The schematic representation of the reduced 
model is shown in Figure 4. In this model, four states (ROB, 
FOB, SOB, and OC) were forced to remain unlumped (see 
the Methods section), and additional two states (i.e., ac-
tive transforming growth factor- beta (TGF- β) and receptor 
activator of nuclear factor kappa- B (RANK)/RANKL com-
plex), also remained unlumped as a result of the automatic 
search. Other states in the original model were grouped to-
gether to the states of either RANK or RANKL. Equations 
for the eight- state model were obtained using lumping for-
mulas (Eqs. 7 and 8) in the form:

where L1 and L2 are the lumped states representing RANK 
and RANKL, respectively, CMX is the RANK- RANKL com-
plex, and TGF is the active TGF- β. The parameters RX are 

the zero- order production rate of X, kXY is the first- order rate 
constant from X to Y, and dX is the first- order degradation 
rate constant of X. The parameters kint and KSS are the elim-
ination rate constant of the denosumab- RANKL complex 
and steady- state constant for denosumab- RANKL binding 
affinity, respectively,16 and C is the serum concentration of 
denosumab (same variables shown in Eqs. 11 and 12).

Finalization of the reduced model for parameter 
estimation
In Eqs. 13 to 20, the parameters with “(t)” are time- varying and 
contain some information that is included within nonlinear 
components of the original model. These time- varying param-
eters were reconverted to the original nonlinear functions so 
the model can be handled easily in parameter estimation. The 
conversion to linear time- invariant parameters using baseline 
values (at t = t0) was also applied when the original nonlinear 
function was no longer available (for states that were lumped 
together with other states). Through this process, the time- 
varying feature “(t)” has been removed from all the equations, 
and Eqs. 16 and 18 were modified using the original nonlinear 
functions. The final equations were then obtained in the form:

(13)
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⋅L1; L1(t0)=30,082

(14)

dL2
dt

=RL2 (t)+kOB→RANKL (t) ⋅ (FOB+SOB)

+kCMX→L ⋅CMX−
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Figure 2 Lumping criterion values for each number of states 
when a weighting factor α is either 0.5 or 0.7.
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where γ is a sigmoidicity term influencing the steepness of 
response, a is the maximum anticipated response, ρ is the 
minimum anticipated response, and δ is the value of the 

driver that produces the half- maximal response.11 The pa-
rameter values are shown in Table 1 as “before estimation.” 
The reduced model has in total 37 parameters including 
Eq. 4.

Identifiability analysis. From the identifiability analysis 
dOC, RL2, KSS, and kout in Eq. 4 were considered estimable. 
Other parameters were fixed to the prior values provided by 

(27)
dFOB

dt
=kROB→OB ⋅ (1− f ) ⋅ROB−dFOB ⋅FOB

(28)
dSOB

dt
=kROB→OB ⋅ f ⋅ROB−dSOB ⋅SOB

Figure 3 Visual predictive check for a reduced model of size m = 7 (a), and size m = 8 (b). Each plot shows bone mineral density (BMD) 
predictions from the reduced (solid line) and original (dashed thin line) models, respectively, and a 95% credible interval (CI; dashed 
thick lines) versus time after the initiation of 60 mg of denosumab every 6 months. m, number of states in reduced models.

Figure 4 Schematic representation of reduced eight- state model. Full arrows indicate flows, and broken arrows indicate control 
mechanisms (+, stimulating; - , inhibition). Three original states included in the receptor activator of nuclear factor kappa- B ligand 
(“RANKL)- related state” are RANKL, parathyroid max capacity, and osteoprotegerin- RANKL complex. A TGF- β transforming growth 
factor- beta; OB, osteoblast; OC, osteoclast; ROB, responding osteoblast.
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lumping formulae (shown in Table 1 as “before estimation”). 
An informal heuristic approach derived a consistent result 
for which estimating more parameters does not improve the 
model fit.

Application of the reduced model
The extracted mean BMD data used for parameter estima-
tion were obtained from 54, 47, 42, and 47 patients for de-
nosumab 6- month regimen (dosing every 6 months) groups 
of 14 mg, 60 mg, 100 mg, and 210 mg, respectively.22 

Parameter estimates on the reduced model and the two 
empirical models, when using data until 1 year, are shown 
in Table 1 (as “after estimation”) and Table 2, respectively. 
The estimate of kout in the reduced model was 0.000533/h 
(24.6%RSE). Figure 5a shows the fitting results for the 
three models. All models captured the BMD profile for 
all doses (administered every 6 months). Two empirical 
models, however, were not able to capture the increase in 
BMD after 1 year when dosing 60 mg (approved dose) of 
denosumab (Figure 5b). In contrast, the reduced model 

Table 1 Derived parameter values using lumping formulae (before estimation), and parameter estimates when using bone mineral density data until 1 year 
from the initiation of denosumab dosing (after estimation)

Parameter Description

Value

Before 
estimation

After estimation 
(%RSE)

RL1 Production rate of L1 75.0

kOB→L1 Rate constant expressing the effect of OB to the production of L1 55.3

kL2→L1 Rate constant from L2 to L1 160

kCMX→L Rate constant from CMX to lumped state (L1 or L2) 0.112

dL1 Degradation rate constant of L1 0.970

RL2 Production rate of L2 0.000160 0.00337 (9.1%)

kOB→RANKL Rate constant expressing the effect of OB to the production of RANKL 0.234

dL2 Degradation rate constant of L2 0.00110

dRANKL Degradation rate constant of RANKL 0.00290

kint Elimination rate constant of the denosumab- RANKL complex 0.00795a

KSS Steady- state constant for denosumab- RANKL binding affinity (ng/ml) 138a 63.4 (63.7%)

kL2→CMX Rate constant from L2 to CMX 0.0000190

ROC Production rate of OC 0.00000298

dOC Degradation rate constant of OC 0.0292b 0.0898 (5.4%)

a1 Maximum anticipated response of TGF to the degradation of OC 2.18b

ρ1 Minimum anticipated response of TGF to the degradation of OC 0.200b

δ1 Amount of TGF that produces the half- maximal response to the degradation 
of OC

16.2b

γ1 Sigmoidicity term for the effect of TGF to the degradation of OC 1b

a2 Maximum anticipated response of CMX to the degradation of OC 3.80b

ρ2 Minimum anticipated response of CMX to the degradation of OC 0.470b

γ2 Amount of CMX that produces the half- maximal response to the degrada-
tion of OC

0.000013b

γ2 Sigmoidicity term for the effect of CMX to the degradation of OC 3.09b

kOC→TGF Rate constant expressing the effect of OC to the production of TGF 5.66

dTGF Degradation rate constant of TGF 0.0298

RROB Production rate of ROB 0.000003

a3 Maximum anticipated response of TGF to the production of ROB 4.18b

ρ3 Minimum anticipated response of TGF to the production of ROB 0.202b

δ3 Amount of TGF that produces the half- maximal response to the production 
of ROB

34.0b

γ3 Sigmoidicity term for the effect of TGF to the production of ROB 1.81b

kROB→OB Rate constant from ROB to OB 0.003

f Fraction converting from ROB to SOB 0.06

dFOB Degradation rate constant of FOB 0.01

dSOB Degradation rate constant of SOB 0.000001

σ2 Variance of additive residual error for %BMD – 0.382 (24.0%)

Parameters without RSE were fixed and not estimated.
L1 and L2 are the lumped states representing RANK and RANKL, respectively; CMX, RANK- RANKL complex; TGF, active TGF- β; FOB, fast osteoblast; 
SOB, slow osteoblast; ROB, responding osteoblast; OB, osteoblast; OC, osteoclast; BMD, bone mineral density; RANKL, receptor activator of nuclear 
factor kappa-B ligand; RSE, relative standard error. Units for zero- order production rate and other rate constants are amount/h and/h, respectively.
aEextracted.14

bExtracted/derived.11
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performed well when used to extrapolate beyond the 1 year 
period. Similarly, an existing semimechanistic model also 
performed well (Figures S1 and S2). Parameter estimates 
on this model are also shown in the Table S1.

DISCUSSION

We explored simplification of a nonlinear QSP model by in-
ductively linearizing the system followed by an automatic 
model order reduction technique. A detailed exploration of 
PK/PD and/or QSP models to bone biology was not consid-
ered as the main aim of this study was to explore a method 
for scale reduction rather than a model for bone biology. 
Proper lumping was chosen as a technique for model sim-
plification in which the QSP model was linearized prior to 
lumping. With the lumping, parameter values as well as 
initial conditions of the lumped states can be obtained di-
rectly using algebraic formulae in Eqs. 7 and 8, as long as 
the system is linear. Most QSP systems, however, consist 
of a set of nonlinear ODEs. Standard linearization methods 
exist for such systems (e.g., a Taylor expansion), but their 
application is known to typically incur a relatively high de-
gree of error.27 As an alternative, an inductive linearization 
has been shown to be applicable to nonlinear systems,15 
and worked with arbitrary accuracy also for the relatively 
big system in this study (Figure 1).

After linearization, we applied an automated proper lump-
ing method for model simplification. To find a final lumped 
model the composite criterion was applied. In the original 
paper for the criterion, the granularity in m was raised as a 
limitation17 (i.e., for modest full models (e.g., <10 states)) then 
the criterion may tend to choose simpler systems. However, 
for higher dimensional models (e.g., the BMD used in this 
study), the granularity of m is high and reasonable seven- 
state or eight- state models were appropriately chosen based 

on the criterion values. The eight- state model provided an 
almost indistinguishable BMD profile to the original profile 
(Figure 3b). An automatic search resulted in active TGF- β and 
the RANK- RANKL complex to remain unlumped in the final 
reduced model. This seems reasonable because the TGF- β 
is known to play an important role for expressing nonlinear 
changes in BMD as it mediates the differentiation and apop-
tosis rates of bone remodeling OC and OB cells.12–14,18 Due 
to the mechanism of action of denosumab (i.e., input in this 
lumping example) it is known that the RANK- RANKL com-
plex contributes to the process for BMD change and while 
the original two states before binding (RANK and RANKL) 
remain independent they also represent the final compos-
ite lumped states in the final reduced eight- state model. We 
believe the final reduced eight- state model (Figure 4) retains 
the mechanistic nature of the original model.

For extrapolation purposes of long- term BMD responses, 
the final reduced model was fit to BMD data until 1 year 
from the initiation of denosumab dosing. Through structural 
identifiability analyses parameters directly relating to the 
input (denosumab as RANKL inhibitor) or output (BMD as 
a function of OB and OC) in the system were considered 
estimable. Using BMD data until 1 year, those parameters 
were precisely estimated with reasonable precision (relative 
standard error (RSE) <100%). Two typical top- down empiri-
cal PK/PD models (a time- varying direct response and turn-
over models 28,29) were also fit to the 1- year BMD data in 
order to extrapolate to the full 4- year data. We expect the 
poor performance of these models when extrapolating be-
yond 1 year (Figure 5b) because neither model contains the 
long- term feedback processes (e.g., TGF- β) that are present 
in the original and reduced models that would further modify 
the trajectory of the response. A potential method to improve 
predictive performance beyond 1 year would be to consider 
an additional biomarker of drug response (e.g., markers for 
bone formation/resorption),26,30 or a longer training dataset.

An existing semimechanistic model was also used as a 
positive reference model.26 The model also captured the 
increase in BMD (see Figures S2). This would support the 
simulation results obtained from the reduced model because 
both models incorporate the mechanistic nature of bone bi-
ology. Predicting long- term responses from short- term or 
middle- term data is one of the most challenging but import-
ant tasks in drug development. If one fails to extrapolate ac-
curately, then bias would affect projected effective doses for 
future studies (e.g., from phase II to phase III studies). The 
role of mechanistic models that are amenable to estimation 
is, therefore, critical for drug development.

Other semimechanistic models have also been re-
ported.13,14 The former model comprises an integrated 
systems biology- continuum micromechanics approach 
(e.g., bone cell population model) and can be used to sim-
ulate bone volume (rather than bone mineral components). 
The latter model is a simplified version of a full mechanism- 
based OB- OC model31 (a part of the original bone biology 
model used in this study11). The model expressed the con-
tribution of RANK and TGF- β to the behavior of OC and 
OB by their receptor occupancies. This was not present 
in the reduced model developed in this study. The model, 
however, has a similar feedback mechanism in the OB- OC 

Table 2 Parameter estimates from two empirical models when using bone 
mineral density data until 1 year from the initiation of denosumab dosing

Parameter Description Value (%RSE)

Direct response model with time- varying Emax

Emax Maximum response 5.92 (11.8%)

T1/2 Half- life for the onset of drug 
effect (month)a

3.12 (24.0%)

C50 Serum concentration of 
denosumab causing 50% of 
maximum response (ng/mL)

2.05 (30.9%)

σ2 Variance of additive residual 
error for %BMD

0.328 (29.4%)

Turnover model

Imax Maximum inhibitory effect of 
denosumab

0.0577 (15.2%)

kout First- order rate constant for 
BMD (/h)

0.000336 (26.5%)

C50 Serum concentration of 
denosumab causing 50% of 
maximum response (ng/mL)

52.5 (67.6%)

σ2 Variance of additive residual 
error for %BMD

0.387 (26.4%)

BMD, bone mineral density; RSE, relative standard error.
aRate constant k is derived as k = ln(2)/T1/2.
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relationship to the reduced model (i.e., RANK occupancy 
(function of OB) increases the amount of OC and TGF- β oc-
cupancy (function of OC) stimulates the production of OB). 
Considering this and similar performance of the developed 
reduced model to the existing one,26 the key benefits of 
this work are the utility of the scale reduction methods. The 
method proposed here involves linearization of the original 
system and then simplification. The latter component can 
be automated and, therefore, does not require the user to 
have innate knowledge of the mathematical properties of 
the system. A tutorial for conducting linearization is under 
review—we also anticipate that automatic linearization is 

potentially feasible. We note that linearization is revers-
ible, in that a nonlinear model can be linearized to attend 
to a particular operation that requires a linear form, and 
then unlinearized when the original form is desired. Going 
back to the model itself, the reduced model as well as the 
existing models13,14 lack the mechanism of bone mineral-
ization. Secondary mineralization is generally considered a 
primary mechanism of action of antiresorptive treatments. 
This feature has been included in another semimechanis-
tic model,26 although the structure may be still empirical. 
These would suggest the development of mechanistic 
models, including such mineralization components.

Figure 5 Fitting (a) and extrapolation (b) results of bone mineral density (BMD) response. A vertical dotted line represents 12 months. 
CFB, change from baseline.
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The reduced model was developed by focusing on the in-
crease in BMD (output) after denosumab dosing (input). It is 
anticipated that the structure of a reduced model will depend 
on the specific input- output relationship. For example, when 
selecting bisphosphonates as the drug modifier, which directly 
stimulates the degradation of OC,32 the model may be fur-
ther reduced by letting the states (directly) relating to RANK- 
RANKL binding (i.e., L1, L2, and CMX be grouped together or 
grouped to other states). The reduced model from this work 
(Figure 4) would still be applicable for that input, although the 
model includes states that are likely to be of little importance. 
Finally, the model can be applied to different dose levels as 
long as the model predictions are based on the nonlinear re-
duced model rather than the linearized reduced model (to ac-
commodate the impact of potential feedback mechanisms).

A potential additional method to scale reduction would be 
just doing an identifiability analysis and fixing unidentifiable 
parameters and then using the original systems model for pa-
rameter estimation. It may perform as well (or not) as scale 
reduction, but is not part of this work. Wendling et al.33 have 
considered this idea on a physiologically based PK model, but 
finally proceeded with reducing the system for parameter es-
timation.10 The main reason for such choices is the consider-
ation that some parameter values will need to be fixed based 
on in vitro results, which may not reflect in vivo phenomena. By 
reducing the dimension of the model, this issue can be mini-
mized as the number of parameters that will be required to be 
fixed will be dramatically reduced. They have also indicated 
that runtime and numerical instability may be an issue when 
using the original systems model for parameter estimation.

In conclusion, a nonlinear bone biology model was success-
fully reduced to an eight- state model by inductively linearizing 
the system followed by automatic proper lumping. The reduced 
model described an increase in BMD after denosumab dosing 
while maintaining physiological meaning. The method used in 
this study is automatic, and can be applied directly to other 
multiscale models for developing a mechanism- based struc-
tural model for future analyses. It is important to note, however, 
that the reduced model developed in this work was for explor-
atory purposes to evaluate the model simplification methodol-
ogy and its potential utility, and would need further evaluation if 
intended to be used in drug development or clinically.

In addition to the supplements, the code for the linear-
ized full model (automatic lumping code) and the code for 
the final form of the nonlinear reduced model will be made 
available with this article and as a download with the original 
bone model on GitHub. The linearized full model is amena-
ble to future development and the code may be helpful for 
those who would like to lump the system for any other input- 
output- drug relations of interest.
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