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Abstract: Toll-like receptor 4 (TLR4) is a receptor on an immune cell that can recognize the invasion
of bacteria through their attachment with bacterial lipopolysaccharides (LPS). Hence, LPS is a
pro-immune response stimulus. On the other hand, statins are lipid-lowering drugs and can also
lower immune cell responses. We used human embryonic kidney (HEK 293) cells engineered to
express HA-tagged TLR-4 upon treatment with LPS, statin, and both statin and LPS to understand
the effect of pro- and anti-inflammatory responses. We performed a monoclonal antibody (mAb)
directed co-immunoprecipitation (CO-IP) of HA-tagged TLR4 and its interacting proteins in the HEK
293 extracted proteins. We utilized an ETD cleavable chemical cross-linker to capture weak and
transient interactions with TLR4 protein. We tryptic digested immunoprecipitated and cross-linked
proteins on beads, followed by liquid chromatography–mass spectrometry (LC-MS/MS) analysis
of the peptides. Thus, we utilized the label-free quantitation technique to measure the relative
expression of proteins between treated and untreated samples. We identified 712 proteins across
treated and untreated samples and performed protein network analysis using Ingenuity Pathway
Analysis (IPA) software to reveal their protein networks. After filtering and evaluating protein
expression, we identified macrophage myristoylated alanine-rich C kinase substrate (MARCKSL1)
and creatine kinase proteins as a potential part of the inflammatory networks of TLR4. The results
assumed that MARCKSL1 and creatine kinase proteins might be associated with a statin-induced
anti-inflammatory response due to possible interaction with the TLR4.

Keywords: Toll-like receptor 4; human embryonic kidney; protein interactions; proteomics; mass
spectrometry; macrophage myristoylated alanine-rich C kinase substrate; lipopolysaccharide; statin;
cross-linker

1. Introduction

Macrophages are immune effector cells that perform diverse functions, e.g., innate
immune response, inflammatory response, wound healing, etc. [1]. Activation through
Toll-like receptor(s) (TLRs) activate macrophages for their function [1,2]. The recognition
of pathogenic ligands by TLRs generates signals to downstream adaptor proteins. TLRs
lead to activation of transcription factors, e.g., NF-κB, interferon regulatory factors (IRFS),
etc., and that induces the expression of type 1 interferon (IFN) different proinflammatory
cytokines, e.g., TNF-IL-1, IL-6, IL-12, nitric oxide, reactive oxygen species, etc. [3]. These
responses include microbicidal activity, tissue repair, wound healing, inflammation, im-
mune suppression, etc., based on the types and sites of the infection and/or involvements
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of immune cells and their effectors [1,2,4–6]. Apart from innate immune response, Toll-like
receptor response in adaptive immunity also plays a role through type 1 interferon pro-
duction and proliferation of memory T cells [7]. Additionally, unregulated activation of
TLRs can lead to autoimmune disease [8]. A comprehensive study of the Toll-like receptor
activation signaling network is, thus, essential to find new therapeutic approaches against
viral or bacterial infections or autoimmune disorders.

So far, 10 functional Toll-like receptors have been identified in humans. Among TLRs,
TLR2 and TLR4 have gained significant attention due to their ability to recognize a diverse
array of pathogenic ligands. Toll-like receptor 4, associated with host accessory proteins
MD-2 and CD-14, can recognize the LPS from the outer membrane of Gram-negative
bacteria [9,10]. Upon activation, TLR4 can exert functions through two distinctive pathways,
e.g., MyD88-dependent and TRIF-dependent. Hence, immune signaling through TLR4 is
diverse and complicated [11,12]. Thus, we were interested in studying TLR4-interacting
immune signaling networks comprehensively.

LPSs are found on the outer membranes of Gram-negative bacteria. During infec-
tion, processed LPS can be transferred to the TLR4 complex with MD-2 via LPS-binding
protein and CD14. Once bound to the TLR4-MD-2 complex, TLR-4-mediated signaling is
activated with the overwhelming secretion of cytokines due to immune inflammatory or
host defense response from the immune cells [9,13]. Statins are inhibitors of 3-hydroxy-
3-methylglutaryl-CoA (HMG-CoA) reductase. Hyperlipidemic patients are treated with
statins to reduce serum cholesterol. Apart from this, statins have been reported with ad-
ditional immunomodulatory activities. For example, human monocyte-derived dendritic
cells’ maturation is suppressed with statins [14].

A few quantitative proteomics studies have been reported with a combined exposure
of LPS and statin to immune cells. A label-free proteomics study on LPS-treated human
monocyte suggested its potential therapeutic application in tumor treatment [15]. A total
of 11 differentially expressed proteins were identified when LPS-treated RAW macrophage
cells were analyzed in 2D gel electrophoresis followed by mass spectrometry analysis of
peptides [16]. Stable isotope labeling of amino acid in cell culture (SILAC) experiment
performed on nuclear and cytosolic fractions of LPS-stimulated macrophages led to the
modulation of several mitogen-activated protein kinases (MAPK) and NF-kB signaling
pathways [17]. There are reports of quantitative proteomics experiments on isolated lipid
rafts from LPS-treated RAW 264.7 macrophage cell line [18–20]. A proteomics study on an
isolated raft of ABCA1-deficient primary mouse macrophage cells upon LPS stimulation
identified 383 unique proteins [20]. In LPS and interferon-γ (IFNγ)-activated macrophages,
409 microtubule-associated proteins were identified [21]. Proteomics analysis of Salmonella-
infected macrophage cells identified 244 significantly altered proteins in a time-dependent
manner [22]. Isotope-coded affinity tagging (ICAT) profiling of the Raw 264.7 macrophage
cells identified 36 differentially expressed proteins upon LPS stimulation [23].

Co-immunoprecipitation (Co-IP) is an established method for studying interacting
proteins. In Co-IP, antibody-dependent enrichment of a target protein facilitates the enrich-
ment of interacting proteins [24]. The immunoprecipitated proteins are then analyzed in a
Western blot or mass spectrometry based on the project need. The most commonly used
proteomics experiment is mass spectrometry-based bottom-up proteomics. In bottom-up
proteomics, the proteins are first tryptic digested in small peptides, using proteolytic en-
zymes, e.g., trypsin. Different proteolytic enzymes can have various preferential sites for
proteolytic cleavage. Tryptic digested peptides are separated in liquid chromatography,
followed by detection in a mass spectrometer. Application of bottom-up proteomics in-
cludes relative and absolute quantification of proteins and peptides, structural analysis,
e.g., sequence variation identification, different types of post-translational modification,
e.g., PTMs identification, sequence polymorphisms or mutation identification, etc. [25].
All the variations of a gene product present in a sample, e.g., isoforms, different PTMs,
single amino acid polymorphism, etc., give rise to different proteoforms [26]. Coexistence
of PTMs and sequence variation may be lost in digested peptide in bottom-up proteomics.
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As proteins are quantified based on the most abundant peptide, proreform-level changes
are often lost in bottom-up proteomics [27].

However, Co-IP also has its limitations. Weak protein interaction may be lost dur-
ing cell lysis [28,29]. Interactions specific to large protein complexes requiring a natural
environment may also be lost before detection [30,31]. Chemical cross-linking is another
method to study protein–protein interactions. Chemical cross-linking may covalently link
and stabilize protein–protein interactions in a natural setting of biological systems. Due to
the complexity involved in the analysis of cross-linked modified peptides, for large-scale
data sets, it is popular to look for unmodified peptides to search for weak or transiently in-
teracting proteins [32–34]. From this perspective, we decided to incorporate our previously
published ETD cleavable cross-linker (ETD-XL) in this study [35].

Several proteomics studies were reported on a proinflammatory model system, with
LPS being used as a proinflammatory stimulant in RAW 264.7 macrophage cell line. How-
ever, no reports of a combined experiment with an anti-inflammatory stimulant, statin,
and proinflammatory stimulant LPS have been used in tandem to see the transition in the
proteomic network to understand a model system better. Recently, we published a com-
prehensive study on a TLR2 interactome network using statin and lipopeptide exposures.
As far as we know, this is the first study using Co-IP cross-linking proteomics with ETD
cross-linkers [36].

In this study, we performed a combination of Co-IP, cross-linking experiment with
mass spectrometry-based identification of protein interactors. We applied this strategy
in TLR4-mediated immune response concerning pro- and anti-inflammatory stimulus by
LPS and statin. We identified 712 proteins through TLR4 pull-down across treated and
untreated samples and performed protein network analysis using Ingenuity Pathway
Analysis (IPA) software (QIAGEN Inc., https://digitalinsights.qiagen.com/IPA, accessed
on 1 May 2018) [37].

2. Materials and Methods
2.1. Cell Culture, Maintenance, and Sample Preparation

HA-tagged human TLR4 gene transfected stable HEK-293 cell line was purchased
from Invivogen (Catalog # 293-htlr4ha). We maintained the hemagglutinin (HA)-tagged
TLR4 human embryonic kidney (HEK) 293 cells in Dulbecco’s modified Eagle medium
(DMEM with) added 10% fetal bovine serum, 1% penicillin/streptomycin, and antibiotics
(50 µg/mL hygromycin and 10 µg/mL blasticidin) in a humidified condition of 5% CO2 at
37 ◦C. Eight experiment sets were prepared with three replicates in each of them.

We treated the cells with 10 µM simvastatin (Sigma-Aldrich now Merck & Co., Inc.,
Kenilworth, NJ, USA) for 24 h, then stimulated them with 1 µg/mL lipopolysaccharides
(LPS-EB, InvivoGen, San Diego, CA, USA) for 1 h in the freshly supplied medium. After
collecting the cells, we treated the cells with our in-house ETD cross-linker (XL, 1 µmol/mL)
for 30 min, followed by stopping the XL reaction with 50 mM Tris-HCl, pH 8.0. Similarly, we
treated cells with simvastatin for 24 h or lipopolysaccharides for 1 h, followed by treatment
with an ETD cross-linker. Moreover, we prepared control cell lines with or without the
treatment of ETD cross-linker. Then, we performed IP pull-down for proteomics studies,
as before [38]. Briefly, cells were lysed with IP lysis buffer containing a protease inhibitor,
followed by sonication, incubation, and centrifugation at 20,000× g.

2.2. Co-Immunoprecipitation (Co-IP) of the TLR4-Interacting Proteins

We used immunoprecipitation, as described before, to separate TLR4-interacting
proteins [38]. Briefly, we washed anti-HA magnetic beads with a vortex in TBST buffer
and collected supernatant with magnetic beads, followed by overnight rotation at 4 ◦C. We
washed the collected beads with ultrapure water and eluted them in Lamelli buffer. We
then performed methanol–chloroform-based precipitation of proteins and trypsin digestion
of the recovered proteins. We used label-free spectral counting for the quantification of
proteins [36].

https://digitalinsights.qiagen.com/IPA
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2.3. In Solution Digestion, Mass Analysis (Nano-LC-MS/MS), and Database Search

In solution, digestion of the immunoprecipitated proteins was performed as described
earlier [36]. Briefly, proteins were reduced, alkylated, and then digested overnight with
MS-grade trypsin (Promega, Madison, WI, USA) at 37 ◦C. Formic acid was added to
drop pH < 3 and trypsin activity. The samples were then desalted using a C18 desalting
column (Thermo Scientific, Rockford, IL, USA). Samples were dried in a speed vacuum
and dissolved in 0.1% formic acid, followed by 30-min centrifugation at 20,000× g, and
analyzed by nano-LC (Ultimate 3000 UHPLC)-MS/MS (Velos Pro Dual-Pressure Linear
Ion Trap Mass Spectrometer; ThermoFisher Scientific, Waltham, MA, USA). LC-MS/MS
conditions and parameters were followed as before [38]. Briefly, peptides were loaded to
a C18 column and ran in a multi-step gradient over 90 min; the MS method was set to
carry out an MS2 fragmentation for the top 3 most intense ions. The injection volume was
a maximum of 5 µL. Identified proteins were relatively quantified using peptide spectra
matches (PSMs) [38].

Proteome Discoverer software (v2.1, Thermo Fisher Scientific, Waltham, MA, USA)
and UniProt Human protein database were used to search and match detected spectra
to the database and identify the proteins in our samples [39]. Details of the process are
described in earlier publications [38]. Briefly, Proteome Discoverer software (v2.1, Thermo
Fisher Scientific) was used to search and match our raw files to the database and identify
the proteins present in our samples. The reviewed protein sequences of human (Homo
sapiens, 120,672 sequences and 44,548,111 residues) were downloaded from the UniProt
protein database (www.uniprot.org, accessed on 12 August 2016). The considerations
in SEQUEST searches for standard peptides were used, with carbamidomethylation of
cysteine as the static modification and oxidation of methionine as the dynamic modification.
Trypsin was indicated as the proteolytic enzyme with two missed cleavages. Peptide
and fragment mass tolerance were set at ±1.6 and 0.6 Da; a precursor mass range of
350–3500 Da and peptide charges were set, excluding +1 charge state. SEQUEST results
were filtered with the target PSM validator to improve the sensitivity and accuracy of
the peptide identification. Using a decoy search strategy, target false discovery rates for
peptide identification of all searches were <1%, with at least two peptides per protein, a
maximum of two missed cleavage. The results were strictly filtered by ∆Cn (<0.01), Xcorr
(≥measured 1.5) for peptides, and peptide spectral matches (PSMs) with high confidence,
that is, with a q-value of ≤0.05. Protein quantifications were conducted using the total spec-
trum count of identified proteins. Additional criteria were applied to increase confidence
that PSMs must be present in all three biological replicates samples. The normalization
of identified PSMs among LC-MS/MS runs was carried out by dividing individual PSMs
of proteins by total PSMs, and the average % PSM count was utilized for calculating fold
changes for different treatment conditions.

2.4. Gene Ontology and Protein Interaction Analysis

We functionally categorized the protein-encoding genes using gene ontology systems
by the PANTHER classification system corresponding to molecular function, biological
process, and cellular components [40]. We generated the heatmap to visualize protein
abundances by MeV software (https://sourceforge.net/projects/mev-tm4/, accessed on
2 July 2019) [41]. Differentially expressed proteins’ data were used to create volcano plots
using GraphPad Prism v9.3.1 for Windows, GraphPad Software, San Diego, CA, USA,
www.graphpad.com (accessed on 11 July 2022). Principal component analysis (PCA) was
performed using R package v.4.2.1 (R Core Team (2022), Vienna, Austria) (https://www.r-
project.org/, accessed on 1 July 2022) with FactoMineR (v2.4) and Factoextra (v 1.0.7.999)
packages, as described previously [42–45]. We used the protein expression and fold changes
with UniProt identifiers to generate core analysis through Ingenuity Pathway Analysis (IPA)
(Ingenuity Systems, Redwood City, CA, USA). TLR4 protein interaction networks according
to molecular and cellular functions were generated using the Ingenuity Knowledge Base
database. The indirect and direct relationships were developed between proteins based

www.uniprot.org
https://sourceforge.net/projects/mev-tm4/
www.graphpad.com
https://www.r-project.org/
https://www.r-project.org/
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on experimentally observed data. Other data sources were considered in the Ingenuity
Knowledge Base in humans to create the core analysis [46].

2.5. Immunocytochemistry

We conducted immunocytochemistry of control and treated cells as mentioned be-
fore [38]. We grew cells on HCl (1 M)-treated glass slides. We then fixed the cells on the
slides with 4% paraformaldehyde for 10 min at room temperature. With 0.1% Triton X-100
in 1× PBS, we then permeabilized the cells. Next, we washed the cells with PBS and
stained them with Alexa Fluor 488@ phalloidin 2 µL/2 mL in each well for 25 min at RT.
Subsequently, we washed the cells with PBS, stained them with propidium iodide (PI) for
5 min, and washed them in PBS before being fixed into coverslips. The cells were then
visualized with a Leica DMi8 confocal microscope (Leica, Richmond, IL, USA). The images
were examined and analyzed using Las X software (Leica, Richmond, IL, USA).

2.6. Statistical Analysis

We used a built-in statistical package in Proteome Discoverer (v2.1) for quantitative
analysis of proteins as PSMs. Statistically significant results with q ≤ 0.05 were con-
sidered for analysis. We used the R package (v3.5.3) for generating scatter plots and a
pairwise correlation matrix. The results here were only considered if the correlation coeffi-
cient (R2) was >0.80 (n = 3). The codes are provided in https://github.com/mailshahin/
ScatterPlotMatrix/projects?type=classic (accessed on 11 July 2022).

3. Results
3.1. Identification of TLR-4 Interacting Proteins

We wanted to understand the immune responsive interactome in TLR4 mediating
immune signaling. We started with Co-IP proteomics on HA-TLR4-HEK293 cells under four
conditions: control; LPS; statin; and LPS–statin, with or without post-treatment ETD cross-
linker (ETD-XL) (Figure 1). After pull-down with anti-HA magnetic beads, the targeted
protein-bound beads were washed and dissolved in Laemelli buffer. After methanol–
chloroform purification and reconstitution in trypsin (50 mM ammonium bicarbonate)
for in-solution digestion and after in-solution digestion with trypsin, the peptides were
analyzed and the data were acquired by nano-LC-MS/MS. The acquired spectra were
searched in the UniProt protein database. Peptide spectrum matches (PSMs) were used for
the quantification of proteins. Pairwise correlation coefficients among the three biological
replicates showed a significant correlation, with an R2 value of >0.80 (Figures S1 and S2).

A total of 712 proteins were identified and quantified in all four conditions, with or
without cross-linker presence. The data set was filtered with at least one unique peptide
per protein and a false discovery rate of 1%. Details about the identified proteins and
peptides are shown in Supplementary Tables S1–S3. A total of 416 proteins were identi-
fied across four conditions without a cross-linker treatment, whereas 158 were commonly
identified in the control; LPS; statin; and LPS–statin without cross-linker treatment. In
contrast, 166 proteins were exclusively identified, among which 147 proteins were in the
control, 10 in LPS, 6 in statin, and 3 in LPS–statin (Figure 2A). Additionally, we identified
446 proteins in the control and LPS with cross-linker treatment, whereas 165 proteins were
commonly identified and 10 proteins were exclusively identified in LPS-treated samples
in the presence of cross-linkers (Figure 2B). Similarly, when statin or LPS–statin were
compared with cross-linker-treated and untreated control, we identified 12 or 10 proteins
exclusively in statin or LPS–statin treated with cross-linker, respectively (Figure 2C,D).
Additionally, we identified 75 different proteoforms across all treatments; 16 were uniquely
identified without cross-linker treatment and 12 were uniquely identified with cross-linker.
(Supplementary Table S7a–c). The relative expressions of 712 TLR4-interacting proteins
were used to visualize as a heatmap (Supplementary Table S2). Proteins with differential ex-
pression were plotted to generate volcano plots across control vs. treatment (Figure 3A). The
volcano plots show a significant number of differentially expressed proteins (p value > 0.05).

https://github.com/mailshahin/ScatterPlotMatrix/projects?type=classic
https://github.com/mailshahin/ScatterPlotMatrix/projects?type=classic
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Principal component analysis (PCA) showed that treatment of cross-linker places each
treatment sample in a distant cluster and is well discriminated among the treatments
(Figure 3B). Additionally, the heatmap represents that identified proteins were expressed
and distributed distinctly upon the treatment of LPS, statin, and LPS–statin in the TLR4
cells (Figure 3C). The 416 proteins identified in the absence of cross-linker in the treatment
of statin, LPS, and LPS–statin, were categorized into various gene ontologies using the pan-
ther classification system, such as cellular components (six pathways), biological process
(ten pathways), and molecular functions (seven pathways) [38]. The ontology pathways
showed differential representation across different treatment conditions (Figure 4).
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MS/MS, followed by PSM-based quantitative analysis. All proteomics studies have been carried out
in triplicate.
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Figure 2. Venn diagrams represent the allocations of identified proteins across all treatment conditions.
For example, the diagram shows the distribution of the total and exclusively identified proteins
in HEK293 cells upon treatment with (A) statin, LPS, and LPS–statin; (B) control cross-linker and
LPS cross-linker; (C) control cross-linker and statin cross-linker; and (D) control cross-linker and
LPS–statin cross-linker.

3.2. IPA-Based TLR4-Targeted Protein Interactions Network

Ingenuity Pathway Analysis (IPA) was used to perform a core analysis of identified
proteins, canonical pathways, hypothetical interaction networks, functional putative up-
stream regulators, and disease pathways among the TLR4 interactome proteins [38]. This
analysis found 14 protein-interacting networks according to top disease and/or functions in
each LPS-, statin-, or LPS–statin-treated proteins dataset. TLR4 protein-interacting network
was the fourth ranked protein interaction network (Table S4). The TLR4 network is centered
on the cell-to-cell signaling interaction and signaling in all three-stimulus conditions. With
LPS, statin, and both statin and LPS stimuli, the TLR4 interacting network is centered
on various cancer and organismal injury and abnormalities pathways on LPS, and both
statin and LPS responsive samples. With statin stimulus, the TLR4 interacting network is
also centered on DNA replication, recombination, repair, and RNA post-transcriptional
modification (Table S4). In this study, we targeted pull down of the TLR4 proteins and
their interacting partners. Then, we performed a TLR4-based network analysis (Figure 5,
Supplementary Figures S3 and S4) using IPA. We found 35 interacting protein partners
using an IPA knowledge-based protein database here. TLR4 protein expression was de-
creased in statin treatment (Figure 5) and increased with LPS, and both statin and LPS in
LPS-stimulated cells. (Supplementary Figures S3 and S4). TLR4 interacted directly with
IgG and indirectly with eight different proteins in this putative network. These include
IFN-β, interferon-α, actin α-1 (ACTA1), phosphoinositide 3-kinase (PI3K complex), T-cell
receptor (TCR), p38 mitogen-activated protein kinases (P38-MAPK), c-Jun N-terminal ki-
nase (JNK), and extracellular signal-regulated kinase (ERK1). The identified four protein
kinases interact with cellular kinase-like cyclin-dependent kinase 1 (CDK1) or transcription
factors, such as E2F, receptor proteins, such as breast cancer anti-estrogen resistance protein
1 (BCAR1), filamentous proteins, such as ACTA1, filamin-A (FLNA), vimentin (VIM), and
F-actin-capping protein subunit α-1 (CAPZA1). This pull-down study identified TLR4
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interacting partners, such as kinase CDK1, and filamentous proteins, such as ACTA1,
filamin-A, vimentin, and F-actin-capping protein subunit α-1 (CAPZA1), that have various
cellular functions in the cell systems. Additionally, we observed that the expression of
filamentous proteins increased in LPS treatment upon activation of TLR4 signaling and
LPS–statin treatment, whereas it decreased with statin treatment. This phenomenon of
filamentous proteins was further confirmed through fluorescence staining, where actin
filaments and nucleus were stained.
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Figure 3. Alternation of proteins upon treating LPS and statin in HA-TLR4-HEK293 cells. (A) Volcano
plots show relative expression of identified proteins under four conditions: control, LPS, statin,
and LPS–statin. Proteins were differentially altered across the different treatment conditions, e.g.,
statin, LPS, and both statin and LPS. (B) Principal component analysis (PCA) reveals that cross-linker
treatment shows distinct discrimination among treated samples. (C) Heatmap showing relative
expression across control and treatment samples with or without cross-linkers.
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3.3. Protein Identification and Interactions after Cross-Linking Study and Validation

In this study, we used an in-house ETD cleavable cross-linker that covalently captures
the low abundance or weakly and transiently interacting proteins in the TLR4 interactome.
After cross-linker treatment, we identified 317, 274, 198, and 175 proteins as single peptides,
244, 214, 120, and 116 proteins as two or more peptides in the control, LPS, statin, and
LPS–statin as one peptide per protein, respectively (Supplementary Figure S5). After
stringent filtering among cross-linked and non-cross-linked samples, we identified 10, 12,
and 10 proteins exclusively in LPS-, statin-, and LPS–statin-treated samples, respectively
(Figure 2B,C; Table S3).

Alexa Fluor 488® phalloidin, a high-affinity filamentous actin probe, was used for
F-actin’s selective staining to validate filamentous actin proteins. Propidium iodide was
used to bind the DNA in the nucleus (Figure 6). These staining outcomes coincided with
previously mentioned findings (Figure 6). From fluorescence staining, it is evident that
treatment of LPS increases filamentous protein production and increases cell and nuclear
size to activate the cells for immune response. So, the model expression system validated
the F-actin protein expression, activation, and suppression of immune response through
TLR4 signaling interactome.
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4. Discussion

In this study, we used HA-TLR4 transfected HEK293 cells as an immune signaling
model system to study the TLR4-mediated immune interactome through the atypically
expressed HA-TLR4 on a transfected HEK293 cell line. HEK cells are easy to maintain
and easy to transfect through foreign DNA. Hence, HEK cells are a popular choice for het-
erologous proteins’ expression and their functional characterization [47–49]. Additionally,
due to the suboptimal performance of IP antibodies against TLRs, we had to consider a
stable epitope (HA)-tagged TLR4-expressing cell line for our TLR4 immune interactome
study design. Moreover, the HEK 293 cells do not have any native TLRs expressed on their
membrane, yet they produce downstream functional signaling molecules, proinflamma-
tory cytokines, after TLR4 ligand stimulation [38,50]. This makes them an ideal system
to control the expression of a selected TLR without endogenous background receptors.
Hence, we chose HA-TLR4 transfected HEK293 cells for targeted immune precipitation
against HA-tagged TLR4 and cross-linking proteomics experiment to study TLR4 mediated
immune signaling.

In this study, we used a Co-IP-based mass spectrometry approach along with an ETD
cross-linker that helps to identify low abundance proteins. This approach pulled down
TLR4-bound proteins to reveal the TLR4 interacting partners associated with immune
response. However, Co-IP-based approaches enrich a significant number of nonspecific
proteins. In addition, a low-resolution mass spectrometry platform was used, which
could limit the total protein coverage. Fortunately, the covalent labeling of proteins with
cross-linkers helps to reduce nonspecific proteins significantly.

We have used two antagonistic stimulants, e.g., LPS, a proinflammatory stimulant [17],
and statin, an anti-inflammatory stimulant [51,52], and, in tandem, the first statin then LPS
to realize a bigger picture, where we can evaluate immune signaling in proinflammatory
and in anti-inflammatory condition, and also its transition from anti-inflammatory to
proinflammatory condition. The introduction of a cross-linker into the study design enabled
us to capture and enrich low-abundance, transiently interacting protein partners during
these three different above-mentioned immune signaling conditions.

After immune precipitation, tryptic digestion, LC-MS/MS analysis, and database
search, we were able to obtain lists of proteins expressed in mentioned conditions. We
used the PSM value to calculate normalized PSM percentage and fold changes among
these conditions compared to the control sample. From this data set, we used the gene
accession number lists (Table S5) of specific treatment conditions to generate a Venn dia-
gram and identified the proteins that are exclusively expressed in each specific condition
(Figure 2, Supplementary Table S3). After stringent filtering, we identified 10, 12, and
9 proteins exclusively in the cross-linked samples treated with LPS, statin, and both statin
and LPS together. The normalized PSM percentage values from different conditions were
used to create a heat map (Figure 3, Supplementary Table S2) showing each protein’s
differential expression across all treatment conditions. The gene accession number lists
were also used to generate gene ontology information of identified proteins across all
treatment conditions and the proteins were classified according to cellular components,
biological processes, and molecular functions. All ontology conditions showed differen-
tial expression across the three categories and each subcategory (Figure 4, Supplemen-
tary Table S6). The fold change data (Supplementary Table S2) we calculated from PSMs
were used to generate core analysis through Ingenuity Pathway Analysis. Hypothetical
interaction networks, canonical pathways, and functional and disease pathways were con-
structed, and putative upstream regulators of TLR4 interactome were identified (Figure 5,
Supplementary Figures S3 and S4). In this analysis, TLR4 showed LPS-dependent higher
expression. The network showed protein interactions directly and indirectly to TLR4, and,
at the same time, their comparative expressions. Noteworthy interacting partners included
different cytokines (e.g., IFN-α and IFN-β), different kinases (e.g., p38 mitogen-activated
protein kinases, c-Jun N-terminal kinase, extracellular signal-regulated kinase, etc.), and
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different filamentous proteins (e.g., actin α-1, filamin-A, vimentin, and F-actin-capping
protein subunit α-1).

The appearances of different categories of proteins, receptors, transcription factors,
kinases, and filamentous proteins in the network suggested the possibility of complex
connections among proteins in the proposed TLR4 interactome (Figure 5, Supplementary
Figures S3 and S4). In this study, we also observed that the filamentous protein (e.g.,
vimentin, F-actin, and filamin) expressions go up with LPS stimulation, go down with
statin stimulation, and go up again compared to statin once LPS is reintroduced in tandem
after removal of statin (Figure 5, Supplementary Figures S3 and S4). This corresponds
to similarly published literature, where actin, filamin A, or vimentin expressions were
reported to be directly related to macrophage activation and function [53–55]. This trend
was further confirmed through the fluorescence staining experiment where Alexa Flour
488@ phalloidin selectively probed F-actin and propidium iodine bound the DNA in the
HEK293 nucleus (Figure 6). We observed an increase in filamentous protein production,
and cell and nuclear size upon LPS stimulation. So, our model system with atypically
expressed HA-TLR4 in HEK293 cells showed similar immune responsive gene expression
patterns as regular macrophages and, thus, is a good model system to further explore a
novel responsive protein in the TLR4 interactome. As mentioned earlier, incorporating the
cross-linking step in the experiment enriched low-abundance and transiently interacting
proteins in the TLR4 interactome. So, from the protein lists, which were exclusively
identified in the cross-linked samples (Figure 2, Supplementary Table S3) along with the
treatment of LPS, statin, and LPS-statin, we wanted to choose candidate proteins. Creatine
kinase is a marker of kidney function, and [56] its level can be elevated due to trauma
and muscle injury [57]. This enzyme catalyzes the reversible transfer of a γ-phosphate
group of ATP to the guanidino group of creatine to yield phosphocreatine (PCR). In skeletal
muscle, a large pool of phosphocreatine is used for ATP regeneration [58]. As we have
observed the presence of different kinases in our IPA-generated TLR4 network, creatine
kinase appeared in our lists of exclusively identified transient/weak interacting proteins in
the presence of a cross-linker. We hypothesize that creatine kinase may also have some role
in TLR4 signaling, which may or may not be for ATP regeneration. Myristoylated alanine-
rich C kinase substrate (MARCKS) and MARCKSL1 proteins are protein kinase C (PKC)
substrates that participate in myriad functions in the living system. Both share identical
effector domains, binding to calmodulin in a phosphorylation-dependent manner [59].
MARCKS have been implicated with membrane–cytoskeletal signaling, integrin activation,
cell spreading, cell–cell adhesion, migration, and phagocytosis [60–62].

MARCKS had been reported to be expressed in macrophages through LPS stimulation:
in Madin–Darby canine kidney (MDCK) epithelial cells and renal tubule cells, MARCKS is
endogenously expressed [63,64]. Previously, it showed that treatment with IFN-γ and TNF-
α in epithelial cells increased MacMARCKS (MRP/MARCKSL1) expression. Treatment
of statin ensures direct suppression of cytokines (e.g., IFN-gamma, tumor necrosis factor
(TNF)-α, interleukin (IL)-2, and IL-4 [65]). Baicalein pretreatment associated with cytokines’
(e.g., IL-6 and TNF-α) suppression was reported along with suppression of creatine kinase
concentration [66]. We have observed high creatine kinase expression in cross-linker-
treated, and LPS-stimulated samples and creatine kinase brain isoform for cross-linker
treatment with a statin. We also observed differential expression of MARCKS-related
protein in the combined treatment of statin and cross-linker and statin–LPS and cross-linker
(Supplementary Table S3). Thus, we can hypothesize that both MARCKS and creatine
kinase expressions may be critical for inducing cytokines and play a role in TLR-4 mediated
signaling pathways.

Co-IP cross-linking proteomics study is now becoming a very popular technique
due to its ability to pull down transient and weak interactors along with stable ones. In
addition, employing strong denaturing washing conditions further facilitates the removal
of nonspecific interactors. Although a good approach, it suffers from some potential
drawbacks. Sometimes it is difficult to pinpoint the direct and indirect interactions if
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interactors were identified using non-cross-linked peptides. An efficient and in-depth bioin-
formatics approach will overcome these limitations in the future to identify cross-linked
peptides with high confidence in large-scale experiments. With the bottom-up proteomics
approach combined with only trypsin, we cannot fully annotate the proteoform expression
across different conditions. Proteoform consists of alternative splice variants, e.g., isoform,
post-translational modifications, and coding single-nucleotide polymorphisms [67]. This
study could only identify certain isoforms of proteins. In this case, detailed quantita-
tive identification of proteoforms requires a combination of mass spectrometry intensive
top-down proteomics combined with the use of multiple types of proteases in a bottom-up-
type approach [27]. We want to acknowledge that our proteomics method identified two
potential biomarkers, but further validations with alternative approaches, including the
cross-linked peptide identifications, are necessary to designate them as bona fide interactors
in statin induced TLR4 signaling pathways. Nevertheless, our method pinpointed these
two interactors for further explorations.

5. Conclusions

An immunoprecipitation-based chemical cross-linking proteomics approach was im-
plemented in an HA-TLR4 HEK293T cell line to decipher the interactome of TLR4 with
the treatment of pathogenic ligand and drug. For these studies, we utilized LPS, statin,
and both statin and LPS to understand the effect of pro- and anti-inflammatory responses
on TLR4 signaling pathways. Additionally, we used a compact ETD cleavable chemical
cross-linker to capture weak and transient interactions with TLR4 protein. The immunopre-
cipitated and cross-linked proteins were digested on beads, and the peptides were analyzed
through high-throughput liquid chromatography–mass spectrometry (LC-MS/MS). The
label-free quantitation technique using PSMs measured the proteins’ relative expression
between treated and untreated samples with or without a cross-linker. We identified a total
of 712 proteins altogether and generated TLR4-targeted protein networks using Ingenuity
Pathway Analysis (IPA) software. The outcomes suggested MacMARCKS and creatinine
protein potential involvement with a statin-induced anti-inflammatory response due to
possible interaction with the TLR4. Those candidate proteins need to be further validated
and evaluated concerning immune responses. That will help to understand the molecular
processes of TLR4-mediated protein interactions.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/proteomes10030031/s1. Table S1: Detailed information about list of
identified proteins in HEK293 cells upon treatment with Statin and/or LPS, alone or in combination
with or without cross-linker (XL); Table S2: Average Normalized PSMs percentage and Fold change
of PSMs were used for generating Heatmap and TLR4 signaling networks respectively; Table S3:
(a) Detailed information about list of exclusively identified proteins in HA-TLR4-HEK293T cells upon
the treatment of LPS along with ETD cross-linker; (b) Detailed information about list of exclusively
identified proteins in HA-TLR4-HEK293T cells upon the treatment of Statin along with ETD cross-
linker; (c) Detailed information about list of exclusively identified proteins in HA-TLR4-HEK293T
cells upon the treatment of Statin+LPS along with ETD cross-linker; Table S4: IPA network analysis
of the proteomics data upon the treatment of LPS and Statin and Statin-LPS in HA-TLR4-HEK293T
cells. This tables shows the classifications based on top diseases and functions including respective
focused molecules that are involved in various functions; Table S5: List of proteins expressed in each
conditions; Table S6: The gene ontology functional classification of the number of proteins identified
across different treatment condition.; Table S7: (a) Detailed information about list of identified
Proteoforms in HEK293 cells upon treatment with Statin and/or LPS, alone or in combination with
or without cross-linker (XL); (b) Detailed information about list of identified unique proteoforms
in HEK293 cells upon treatment with Statin and/or LPS, alone or in combination without cross-
linker (XL); (c) Detailed information about list of identified unique proteoforms in HEK293 cells
upon treatment with Statin and/or LPS, alone or in combination with cross-linker (XL); Figure S1.
Scatter plots and pairwise correlations among the biological replicates showing significant correlation
patterns among replicates of Control sample, LPS, Statin and LPS-Statin treated samples without
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cross-linker. The PSMs (Peptide Spectral counts) of replicates are plotted against each other across x
and y-axis, correspondingly. Every spot symbolizes the abundances of a proteins and corresponds
to Pearson’s correlation coefficient (R2) of 1. The scatter plot and pairwise correlation analysis was
performed by R package ver. 3.5.3.; Figure S2. Scatter plots and pairwise correlations among the
biological replicates showing significant correlation patterns among replicates of Control sample,
LPS, Statin and LPS-Statin treated samples with cross-linker treatment. The PSMs (Peptide Spectral
counts) of replicates are plotted against each other across x and y-axis, correspondingly. Every spot
symbolizes the abundances of a proteins and corresponds to Pearson’s correlation coefficient (R2)
of 1. The scatter plot and pairwise correlation analysis was performed by R package ver. 3.5.3.;
Figure S3. TLR4 targeted protein network with expression profile. The interaction network shown
was generated using IPA bioinformatics software upon treatment of LPS in HA-TLR4-HEK293 cells.;
Figure S4. TLR4 targeted protein network with expression profile. The interaction network shown
was generated using IPA bioinformatics software upon treatment of LPS-Statin in HA-TLR4-HEK293
cells.; Figure S5. The number of proteins identified with or without cross-linkers across each treatment
conditions where at least 1 or 2 peptides identified for each sample.
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