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Metaproteome plasticity sheds light on the ecology of the
rumen microbiome and its connection to host traits
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The arsenal of genes that microbes express reflect the way in which they sense their environment. We have previously reported
that the rumen microbiome composition and its coding capacity are different in animals having distinct feed efficiency states, even
when fed an identical diet. Here, we reveal that many microbial populations belonging to the bacteria and archaea domains show
divergent proteome production in function of the feed efficiency state. Thus, proteomic data serve as a strong indicator of host
feed efficiency state phenotype, overpowering predictions based on genomic and taxonomic information. We highlight protein
production of specific phylogenies associated with each of the feed efficiency states. We also find remarkable plasticity of the
proteome both in the individual population and at the community level, driven by niche partitioning and competition. These
mechanisms result in protein production patterns that exhibit functional redundancy and checkerboard distribution that are tightly
linked to the host feed efficiency phenotype. By linking microbial protein production and the ecological mechanisms that act within
the microbiome feed efficiency states, our present work reveals a layer of complexity that bears immense importance to the current
global challenges of food security and sustainability.
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INTRODUCTION
In recent years, the relationship between the bovine host and its
rumen microbiome has emerged as a hallmark of host-microbe
symbiosis [1]. The rumen is the first compartment of the bovine’s
digestive tract and houses a complex microbial community
responsible for the fermentation of the ingested feed [2], thus
providing up to 80% of the host energy requirements [3]. In order
to convert the plant feed to fermentation products, rumen
microbes orchestrate a complex fiber degradation and fermenta-
tion process that is organized in a trophic-like network [4]. The
microorganisms forming these trophic networks maintain a
complex community consisting of hundreds of coexisting micro-
bial species from all domains of life with the vast majority
belonging to the bacterial domain.
Owing to the immense importance of milk as a nutritional

source in the human diet, the bovine host has long been studied
with the intent of identifying factors that contribute to animal
production. While selective breeding and diet optimization have
been the main strategies to improve milk production, studying the
rumen microbiome has revealed the link between the rumen
microorganisms with host function and production [5–7]. In this
context, several studies have emphasized the link between
specific microbial species and microbial coding capacity (i.e.,
metagenomic gene content) with important animal production
indices, such as feed efficiency in terms of residual feed intake

(RFI), milk yield, methane emission and more [7–12]. These studies
have deepened our understanding of the rumen ecosystem by
providing estimates regarding the extent to which a given host
trait is modulated by ruminal microbiome composition. They
further suggested specific microbe-trait links and proposed
mechanistic insights into the microbial pathways that distinguish
between animals that exhibit different energy harvest feed
efficiencies. Nevertheless, in order to better comprehend, predict
and potentially modulate the rumen ecosystem, we need to
determine how specific microbial populations perceive and
interact with the rumen environment. Consequently, we need to
deepen our exploration beyond the simple content of microbial
genes and delve into their expression characteristics -- i.e., to
determine how different microbial species adjust their levels of
specific protein production with regard to the microbiome state
that they inhabit and to discover how gene expression stands in
conjunction with host features, such as feed efficiency.
Previously, we studied the microbial composition, gene content

and metabolic output within the rumen of 78 animals and
classified them into two host phenotypes with regards to their
feed efficiency: efficient and inefficient animals [7]. We found that
these two host feed efficiency states were associated with
different microbiome states. Specific microbial metabolic path-
ways and metabolites enriched within feed efficient animals were
linked to better energy harvesting and carbon usage
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characteristics, while reducing methane emission. The two distinct
host feed efficiency states arose despite the strictly controlled
parameters of the study, with the animals studied belonging to
the same breed and from the same herd, reared in the same
facility, and fed the same diet. These identical parameters should
have eliminated environment-derived variations, further suggest-
ing potential involvement of historical contingency effects and
microbial interactions as driving factors [1, 13]. Therefore, our
understanding of the actual functions that are implemented by
the microbiome members and how individual microbes perceive
and interact in these two compositional microbiome states,
subjected to the same controlled environmental parameters, is
lacking. Indeed, while the study from Shabat et al. [7], sheds
important light over the role of individual microbial species and
their coding capacities as determinants of feed utilization and
methane emission, our capacity to incorporate knowledge
concerning the expression level of microbial functions is now
imperative.
Here, we investigate whether protein production levels are

predictive of host traits and whether microbial taxa differently
perceive and interact with their environments in these two
community states. Furthermore, we aimed to uncover the
potential ecological mechanisms that underlie these community
states both in single microbial populations as well as the entire
microbial community, by studying microbial proteome production
and its relationship to the host feed efficiency state. We therefore
selected extreme phenotypes from our previous cohort as
subjects in our study [7]. Thus, six highly feed efficient animals
and six low feed efficient animals were investigated for their
ruminal metaproteomic content, in order to further understand
how these ecosystems function and to link microbial activity to
their host state. Our results unveiled an unexpected level of
plasticity of protein production at the single genotype to the
community level that sheds light on both the ecology of these
ecosystems as well as the connection to host traits. Finally, our
work substantially contributes to the development of currently
critically lacking workflows linking metagenomes assembled
genomes databases to proteomic data.

MATERIALS AND METHODS
Shotgun sequencing and generation of metagenome-
assembled genomes
In our previous study, 78 Holstein Friesian dairy cows were sampled for
rumen content, metagenomic shotgun sequencing was carried out, and
raw Illumina sequencing reads were assembled into contigs using megahit
assembler using default settings [7]. We used a pooled assembly of the
original 78 samples to increase the quality of the metagenome-assembled
genomes (MAGs) with the syntax: megahit [14] -t 60 -m 0.5 −1 [Illumina R1
files] −2 [Illumina R2 files]. Next, the assembled contigs were indexed using
BBMap [15]: bbmap.sh threads= 60 ref= [contigs filename]. Thereafter,
reads from each sample were mapped to the assembled contigs using
BBTools’ bbwrap.sh script. In order to determine the depth (coverage) of
each contig within each sample, the gi_summarize_bam_contig_depths
tool was applied with the parameters: gi_summarize_bam_contig_depths
--outputDepth depth.txt --pairedContigs paired.txt *.bam --outputDepth
depth.txt --pairedContigs paired.txt.
Using the depth information, metabat2 [16] was executed to bind genes

together into reconstructed genomes, with parameters: metabat2 -t40 -a
depth.txt.
To evaluate genomic bin quality, we used the CheckM [17] tool, with

parameters: checkm lineage_wf [in directory] [out directory] -x faa --genes -t10.

Preparing proteomic search library
We generated 93 unique high-quality MAGs, and further increased our
MAG database by including phyla that were not represented in our set of
MAGs. In order to do so, we used the published compendium of 4,941
rumen metagenome-assembled genomes [18] and dereplicated those
MAGs using dRep [19]. We then selected MAGs from phylum Spirochaetes,

Actinomycetota, Proteobacteria, Firmicutes, Elusimicrobia, Bacillota, Fibro-
bacteres and Fusobacteria, which had the highest mean coverage in our
samples as calculated using BBMap and gi_summarize_bam_contig_depths
as described above [15]. This strategy minimized the false discovery rate
(FDR), that would have been obtained if larger and unspecific databases
would have been employed [20] and allowed the addition of 14 MAGs to
our database.
In order to create the proteomic search library, genes were identified

along the 107 MAGs using the Prodigal tool [21], with parameters: prodigal
meta and translated in silico into proteins, using the same tool. Replicates
sequences were removed. Protein sequences from the hosting animal (Bos
taurus) and common contaminant protein sequences (64,701 in total) were
added to the proteomic search library in order to avoid erroneous target
protein identification originating from the host or common contaminants.
Finally, in order to subsequently assess the percentage of false-positive
identifications within the proteomic search [22], the proteomic search
library sequences were reversed in order and served as a decoy database.

Proteomic analysis
The bacterial fraction from rumen fluid of the 12 selected animals selected
from extreme feed efficiency phenotypes, were obtained at the same time
as the samples analyzed for metagenomics and stored at −20 °C until
extraction. To extract total proteins, a modified protocol from Deusch and
Seifert was used [23]. Briefly, cell pellets were resuspended in 100 µl in 50
mM Tris-HCl (pH 7.5; 0.1 mg/ml chloramphenicol; 1 mM phenylmethylsul-
fonyl fluoride (PMSF)) and incubated for 10min at 60 °C and 1200 rpm in a
thermo-mixer after addition of 150 µl 20mM Tris-HCl (pH 7.5; 2% sodium
dodecyl sulfate (SDS)). After the addition of 500 µl DNAse buffer (20mM
Tris-HCl pH 7.5; 0.1 mg/ml MgCl2, 1 mM PMSF, 1 μg/ml DNAse I), the cells
were lysed by ultra-sonication (amplitude 51–60%; cycle 0.5; 4 × 2 min) on
ice, incubated in the thermo-mixer (10min at 37 °C and 1,200 rpm) and
centrifuged at 10,000 × g for 10 min at 4 °C. The supernatant was collected
and centrifuged again. The proteins in the supernatant were precipitated
by adding 20% pre-cooled trichloroacetic acid (TCA; 20% v/v). After
centrifugation (12,000 × g; 30 min; 4 °C), the protein pellets were washed
twice in pre-cooled (−20 °C) acetone (2 × 10min; 12,000 × g; 4 °C) and
dried by vacuum centrifugation. The protein pellet was resuspended in 2×
SDS sample buffer (4% SDS (w/v); 20% glycerin (w/v); 100mM Tris-HCl pH
6.8; a pinch of bromophenol blue, 3.6% 2‑mercaptoethanol (v/v)) by 5min
sonication bath and vortexing. Samples were incubated for 5 min at 95 °C
and separated by 1D SDS-PAGE (Criterion TG 4-20% Precast Midi Gel, BIO-
RAD Laboratories, Inc., USA).
As previously described, after fixation and staining, each gel line was cut

into 10 pieces, destained, desiccated, and rehydrated in trypsin [24]. The
in-gel digest was performed by incubation overnight at 37 °C. Peptides
were eluted with Aq. dest. by sonication for 15min The sample volume was
reduced in a vacuum centrifuge.
Before MS analysis, the tryptic peptide mixture was loaded on an Easy-

nLC II or Easy-nLC 1000 (Thermo Fisher Scientific, USA) system equipped
with an in-house built 20 cm column (inner diameter 100 µm; outer
diameter 360 µm) filled with ReproSil-Pur 120 C18-AQ reversed-phase
material (3 µm particles, Dr. Maisch GmbH, Germany). Peptides were eluted
with a nonlinear 156min gradient from 1 to 99% solvent B (95%
acetonitrile (v/v); 0.1% acetic acid (v/v)) in solvent A (0.1% acetic acid (v/v))
with a flow rate of 300ml/min and injected online into an LTQ Orbitrap
Velos or Orbitrap Velos Pro (Thermo Fisher Scientific, USA). Overview scan
at a resolution of 30,000 in the Orbitrap in a range of 300-2,000m/z was
followed by 20 MS/MS fragment scans of the 20 most abundant precursor
ions. Ions without detected charge state as well as singly charged ions
were excluded from MS/MS analysis. Original raw spectra files were
converted into the common mzXML format, in order to further process it in
downstream analysis. The spectra file from each proteomic run of a given
sample was searched against the protein search library, using the Comet
[25] search engine with default settings.
The TPP pipeline (Trans Proteomic Pipeline) [26] was used to further

process the Comet [25, 27] search results and produce a protein
abundance table for each sample. In detail, PeptideProphet [28] was
applied to validate peptide assignments, with filtering criteria set to
probability of 0.001, accurate mass binning, non-parametric errors model
(decoy model) and decoy hits reporting. In addition, iProphet [28, 29] was
applied to refine peptide identifications coming from PeptideProphet.
Finally, ProteinProphet [28–30] was applied to statistically validate peptide
identifications at the protein level. This was carried out using the
command: xinteract -N[my_sample_nick].pep.xml -THREADS= 40 -p0.001
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-l6 -PPM -OAPd -dREVERSE_ -ip [file1].pep.xml [file2].pep.xml.. [fileN].pep.xml >
xinteract.out 2 > xinteract.err. Then, TPP GUI was used in order to produce a
protein table from the resulting ProtXML files (extension ipro.prot.xml).
Subsequently, proteins that had an identification probability < 0.9 were

also removed as well as proteins supported with less than 2 unique
peptides (see Supplementary Table 1).

Quantifying metagenomic presence of MAGs
A reference database containing all 107 MAGs’ contigs was created
(bbmap.sh command, default settings). Then, the paired-end short reads
from each sample (FASTQ files) were mapped into the reference database
(bbwrap.sh, default settings), producing alignment (SAM) files, which were
converted into BAM format. Subsequently, a contig depth (coverage) table
was produced using the command jgi_summarize_bam_contig_depths
--outputDepth depth.txt --pairedContigs paired.txt *.bam. As each of the
MAGs span on more than one contig, MAG depth in each sample was
calculated as contig length weighted by the average depth. Finally, to
account for unequal sequencing depth, each MAG depth was normalized
to the number of short sequencing reads within the given sample.

Correlating metagenomic and proteomic structures
In order to compare metagenomic and proteomic structures, we first
calculated the mean coding gene abundance andmean production levels of
each of the 1629 detected core proteins over all 12 cows. Both mean gene
abundance andmean production level were translated into ranks using the R
rank function. The produced proteins were ranked in descending order and
the coding genes in the gene abundance vector were reordered accordingly.
The two reordered ranked vectors then plotted using the R pheatmap
function, and colored using the same color scale.

Selection of proteins for downstream analysis
As our goal was to analyze plasticity in microbial protein production in
varying environments, e.g., as a function of host state, only MAGs that were
identified in all of the 12 proteomic samples were kept for further analysis.
Consequently, only proteins that were identified in at least half of the
proteomic samples (e.g., in at least six samples) were selected. This last
step aimed to reduce spurious correlation results. These filtering steps
retained 79 MAGs coding for a total of 1,629 measurable proteins.

Feed efficiency state prediction and ordination
In order to calculate the accuracy in predicting host feed efficiency state
based on the different data layers available (16S rRNA (Supplementary
Table 2), metagenomics, metaproteomics), the principal component
analysis (PCA) axes for all the samples based on the microbial protein
production profiles were calculated. Then, twelve cycles of model building
and prediction were made. Each time, the two first PCs of each of five cows
along with their phenotype (efficiency state) were used to build a Support
Vector Machine (SVM) [R caret package] prediction model and one sample
was left out. The model was then used to perform subsequent prediction
of the left-out animal phenotype (feed efficiency) by feeding the model
with that animal’s first two PCs. This leave-one-out methodology was then
repeated over all the samples. Finally, the prediction accuracy was
determined as the percent of the cases where the correct label was
assigned to the left-out sample. For the proteomics data, this procedure
was applied on both the raw protein counts, and the protein production
normalized based on MAG abundance, which enabled us to compare the
prediction accuracies of the microbial protein production to that of the raw
protein counts.

Identification proteins associated with a specific host state
In order to split the proteomics dataset into microbial proteins that tend to
be produced differently as a function of the host feed efficiency states,
each microbial protein profile was correlated to the sample’s host feed
efficiency measure (as calculated by RFI) using the Spearman correlation (R
function cor), disregarding the p value. Proteins that had a positive
correlation to RFI were grouped as inefficiency associated proteins. In
contrast, proteins that presented a negative correlation to RFI were
grouped as efficiency associated proteins. To test for equal sizes of these
two protein groups, a binomial test was performed (R function binom.test)
to examine the probability to get a low number of feed efficient proteins
from the overall proteins under examination, when the expected
probability was set to 0.5.

Functional assignment of proteins
Protein functions were assigned based on the KEGG (Kegg Encyclopedia of
Genes and Genomes) [31] database. The entire KEGG genes database was
compiled into a Diamond [32] search library. Then, the selected microbial
proteins were searched against the database using the Diamond search
tool. Significant hits (evalue < 5e-5) were further analyzed to identify the
corresponding KO (KEGG Ortholog number). Annotations of glycoside
hydrolases were performed using dbcan2 [33].

Protein level checkerboard distribution across the feed
efficiency groups
The checkerboard distribution in protein production profiles was estimated
separately within the feed efficient and inefficient animal groups. To
enable the comparison between the two groups’ checkerboardness level,
we chose a standardized C-score estimate (Standardized Effect Size C-score
- S.E.S C-Score), based on the comparison of the observed C-score to a null-
model distribution derived from simulations. The S.E.S C-score was
estimated using the oecosimu function from R vegan package with
100,000 simulated null-model communities.

Calculating functional redundancy
The functional redundancy within a given group of proteins was measured
as the mean number of times a given KO occurred within a given group,
while neglecting proteins that have not been assigned a KO level
functional annotation.
In order to test whether a given group of proteins exhibits more or less

functional redundancy than would have been expected, a null distribution
for functional redundancy was created, based on the number of proteins in
the given group. A random group of proteins was drawn from the entire
set, keeping the same sample size as in the tested group, and the process
was repeated 100 times. Then, the functional redundancy for each random
protein group was calculated. Thereafter, the null distribution was used to
obtain a p value to measure the likelihood of obtaining such a value under
the null.

Examining functional divergence
Examining the functional divergence between the two groups of proteins,
e.g. the feed efficiency and inefficiency associated proteins, was done by
first counting the amount of shared functional annotations, in terms of KOs
between the two groups. Thereafter, a null distribution for the expected
count of KOs was built by randomly splitting in an iterative manner the
proteins into groups of the same sizes and calculating the number of
shared KOs. A p value for the actual count of shared proteins was obtained
by ranking the actual count over the null distribution.

Calculating average nearest neighbor ratio (ANN ratio)
ANN Ratio analysis was carried out independently for each protein function
(KO), containing more than 14 proteins with at least 5 proteins within each
feed efficiency group. Initially, all proteins assigned to a given KO were split
into two sets, in accordance to their feed efficiency affiliation group.
Thereafter, proteins within each set were independently projected into
two-dimensional space by PCA applied directly to Sequence Matrix [34].
Average nearest neighbor ratio within each set was then calculated within
the minimum enclosing rectangle defined by principal component axes
PC1 and PC2, as defined by Clark and Evans [35].

MAG feed efficiency score calculation
Microorganism feed efficiency score was calculated for each MAG
individually by first ranking each protein being produced by the given
microbe along the 12 animals, based on the normalized protein
production levels. Thereafter, a representative production value for the
microbe in each animal was calculated as the average of the ranked
(normalized) protein production levels in that animal (using R rank
function). This ranking allowed us to alleviate the potential skewing effect
of highly expressed proteins. The microorganism’s Feed Efficiency Score
was calculated as the difference between its mean representative
production value within feed efficient animals to that within feed
inefficient animals. Values close to zero will reflect similar distribution
between the two animal groups, positive values will indicate higher
expression among efficient animals, and negative values will indicate
higher expression among inefficient animals. To calculate significance, the
actual feed efficiency score was compared to values in a distribution
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derived from a permutation based null model. Each of the permuted Feed
Efficiency Scores (10,000 for each microbe) was obtained by independently
shuffling each of the proteins produced by the MAG between the animals,
prior to calculating the actual microorganism feed efficiency score. By
positioning the absolute score value over its distribution under permuted
assumptions (absolute values), we obtained a significance p value.

MAG phylogenetic tree construction and phylogenetic signal
estimation
In order to assess the link between phylogenetic similarity between the
MAGs and their association with feed efficiency, phylogenetic tree
estimating evolutionary relationships between the MAGs was constructed
using the PhyloPhlAn pipeline [36]. The phylogenetic signal for Micro-
organism Feed Efficiency Score was estimated by providing the
phylogSignal function from R phylosignal [37] package with MAGs
phylogenetic tree and respective values. Pagel’s Lambda statistics was
chosen for the analysis, owing to its robustness [38].

Plot generation
All bar plots, scatter plots and other point plots were generated with R
package ggplot2. Heatmaps were produced by either ggplot2 [39] or
pheatmap [https://cran.r-project.org/web/packages/pheatmap/index.html]
R packages. KEGG map was produced using the online KEGG Mapper tool
[40]. Phylocorrelogram was produced with phyloCorrelogram function
from R package phylosignal [37].

MAG differential production analysis
MAGs that contain a minimal number of proteins (50 functions) were
selected for differential protein production analysis, in order to have
sufficient data to perform statistical tests. For each MAG, the relative
production was used in order to calculate the Jaccard pairwise dissimilarity
for core protein production between feed efficient and inefficient cows
using the R vegan package. Analysis of similarity between efficiency and
inefficiency associated proteins for each MAG (ANOSIM) values and p
values were then calculated using the same package.

Predicting animal feed efficiency state according to GH family
counts
Using all GH annotated proteins, a feature table that sums the count of
each GH family within each sample was produced. Thereafter a leave-one-
out cross-validation (LOOCV) [R caret package] was performed, each time
building a Random Forest (RF) prediction model from the GH family counts
and efficiency state of 11 samples, leaving one sample outside. Each one of
the RF models, in its turn, was applied on the left-out animal to predict its
efficiency state. Model accuracy and AUC curve were calculated based on
the LOOCV performance.

RESULTS
Proteome structure is incongruent with metagenome
structure and is more predictive of host traits
To delineate the link between the rumen microbial composition,
feed efficiency phenotype and other host traits, we examined
whether and how the protein production patterns of the rumen
microbiome can explain host traits via metaproteomic analysis of
a cohort of 12 animals on the most extreme end of the feed
efficiency phenotypes, with 6 animals exhibiting the highest feed
efficiency and 6 animals exhibiting the lowest feed efficiency.
Protein search and identification was performed using assembled
metagenomic assembled genomes (MAGs) from metagenomic
reads that originated from these samples as a reference database.
Our metagenomic assembly effort resulted in 93 unique high-
quality MAGs, mostly affiliated with the Firmicutes and Bacter-
oidetes phyla, as well as Actinobacteria, Tenericutes, Proteobac-
teria, Elusimicrobia and Euryarchaeota (Supplementary Fig. 1),
these MAGs were augmented with 14 additional MAGs from a
rumen genome collection [18] selected to expand the phyloge-
netic diversity and better represent the typical rumen metage-
nomic content as described before [38] [https://cran.r-project.org/
web/packages/pheatmap/index.html]. Using the predicted open

reading frames (ORFs) of these MAGs we identified a total of 5574
proteins in our samples, of which 1629 were defined “core”
proteins (Supplementary Table 3). We defined proteins as “core”
proteins if they were present in at least six of the twelve animals
and are expressed by microbes that were metagenomically
identified in all samples.
The proteomic data corroborated patterns highlighted in our

previous study [7]. We have previously reported that there is a
higher short chain fatty acid production in the efficient animals [7],
here we could also detect higher production of proteins involved
in propionate and acetate productions in feed efficient animals
(Supplementary Fig. 2).
The overall structure of the identified core proteome, as

determined by the individual protein production levels, was
found to be highly conserved across the 12 samples, regardless of
their feed efficiency phenotypes (Fig. 1A). Interestingly, the
observed recurring structure of the proteome did not correspond
to the structure of the metagenome, where the protein
production levels of individual proteins did not match their
corresponding gene abundance (Fig. 1B). Following this observa-
tion, we asked whether proteome structure more strongly reflects
ecosystem function rather than its gene content and could serve
as a better predictor to distinguish host phenotype.

Proteomics overpowers metagenomics and taxonomic
composition as an accurate predictor for feed efficiency state
To assess whether protein production can serve as a predictor for
animal feed efficiency states, we analyzed and compared its
discriminating potential, with respect to those of our additional
datasets (e.g., 16S rRNA amplicon sequencing, metagenomes). For
the proteome dataset, we applied either raw (absolute) protein
production abundances or protein abundance normalized by MAG
abundance, the latter, termed normalized protein production. This
normalization procedure was performed in order to dissociate
between the activity of a given bacterial population to its
abundance in the ecosystem (Fig. 1C). The results of our analysis
show that the most discriminating data layer for the two host feed
efficiency states is the normalized protein production (Fig. 1C (i),
accuracy= 0.83 and p= 0.02). We performed the same analysis
using 16 S rRNA amplicon sequencing, genome abundance of the
examined MAGs, ORF abundance of the 5574 proteins that were
shown to be produced in the metaproteomic analysis (shotgun
metagenome) and abundance of 5574 produced proteins
(metaproteome). These analyses revealed an overall lower
discriminatory power for these datasets compared to the normal-
ized proteome originating from the examined MAGs but with
superior accuracy for the metaproteome and the 16S rRNA
amplicon sequencing datasets (SVM/LOO 16S rRNA amplicon,
p= 0.07, accuracy = 0.75 Supplementary Fig. 3A; MAGs genomes
abundance, p= 0.61, accuracy = 0.5 Fig. 1C (ii); metaproteome
abundance with total protein production p= 0.07 accuracy =
0.75, Supplementary Fig. 3B; and shotgun metagenome abun-
dance, p= 0.61 accuracy = 0.5, Supplementary Fig. 3C). The non-
normalized protein production data also encompassed a less
accurate discriminator of the two host feed efficiency phenotypes
as determined by support vector machine classification with a
leave-one-out (SVM/LOO) approach (Supplementary Fig. 3D and
Fig. 1D), we find that feed efficiency state prediction clearly
exhibited higher accuracy, based on the normalized protein
counts compared to absolute counts where the prediction
accuracy dropped to about 50%, which constitutes random
chance. This emphasizes the importance of the individual
population function decoupled from its abundance to accurately
predict host feed efficiency state based on protein production
(Supplementary Fig. 3B and Fig. 1D). To increase the resolution of
prediction and to measure the extent by which the metaproteome
production profile predicts the feed efficiency state with a minimal
set of proteins, we randomly sampled 10 to 100% of the 1629
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produced core proteins to predict host phenotype. Our results
revealed that even a randomly selected subset of 10% of the
proteins identified can be used to predict the host feed efficiency
state with an accuracy of up to 80% (the test was performed ten
times, each time a subset of 162 proteins was randomly selected)
(Fig. 1D). To further determine if indeed 10% of the proteins are
representative of the overall variance attributed to the examined
MAGs, we examined how well the 10% subset of the proteins
(10%) correlates with the remaining 90% by creating two
Bray–Curtis similarity matrices, one based on 10% of the core
proteins and the other based on the 90% of core proteins, and
performed a Mantel test between them. We obtained a substantial
correlation (r= 0.856 as opposed to r= 0.004 for the null model,
p < 0.001). These results suggest that a small proportion of
the proteome is sufficient to represent most of the variance of
the overall proteome and could be due to coexpression of the
majority of the proteins in each of the microbiome states
therefore creating a statistical linkage.
We next used a decision tree-based approach for determining

the importance of produced KEGG Orthology groups (KOs) for
their ability to discriminate between the feed efficiency pheno-
types. For this purpose, we used the random forest algorithm to
rank all the normalized produced KOs for their importance in
predicting the association of a given animal to the two groups

(Fig. 1E). Interestingly, our analysis shows from the top 10 most
discriminating functions revealed by random forest, 7 belong to
the KEGG “metabolism” level, and include specifically carbohy-
drate metabolism of polysaccharide and simple sugar utilization
and fermentation (Supplementary Fig. 4). These findings indicate
that despite the conserved structure of the proteome across cows,
differences in protein production led to a strong discriminatory
power of the normalized proteome of the examined MAGs to
predict the feed efficiency state of the animal. Moreover, these
findings also reveal that individual microbial populations have
specific and consistent protein production profiles unique for each
of the two feed efficiency states. Indeed, when we assessed the
similarity in rumen proteome structure across animals, we found
that microbiomes belonging to the same feed efficiency group
exhibit a significantly higher similarity and correlation to one
another, when compared to similarity and correlation between the
groups (Fig. 1F, F(i)). Furthermore, the portion of KOs shared
between the feed efficiency and inefficiency associated proteins
was significantly lower than expected by chance (Supplementary
Fig. 5). In addition, the low feed efficiency animal group exhibited
a higher correlation and similarity among the animals, compared
to the high feed efficiency group (Fig. 1F). These overall findings
directed our attention towards exploring potential ecological
mechanisms that could play a role in producing such patterns.
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Evidence of lower redundancy and higher niche partitioning
in feed efficient cows
In our previous study, we demonstrated that feed inefficient
animals are characterized by higher microbial diversity both in
terms of taxa and coding capacity compared to feed inefficient
animals [7]. We therefore asked whether or not this pattern
remains at the protein production level. By correlating animal feed
efficiency as RFI values to each individual protein, we indeed
identified that more proteins are associated with feed inefficiency
in animals (i.e., positively correlated with RFI; n= 932) compared
to those associated with the feed efficient phenotype (negatively
correlated to RFI; n= 691). This distribution of proteins associated
with each phenotype significantly deviates from the null
expectation (p < 2.40e− 09, binomial test) (Fig. 2A). Following
this finding, we explored our data for a potential functional or
ecological mechanism which may explain this recurrent observa-
tion across the different data layers. To this end, we analyzed the
protein production patterns of the different produced proteins
within the context of their functions. We found that proteins
coding for the same function exhibited a significantly higher
correlation between their normalized counts, compared to
proteins that code for different functions (r= 0.528, p value
< p < 5.1439e− 25 compared to r= 0.3) (Fig. 2B). Hence, the data
suggest that protein production is likely driven by environmental
conditions, thereby dictating similar functions to be expressed
across individual microorganisms.

Following this notion, we asked whether the observed higher
richness of produced proteins in the feed inefficient microbiomes
is associated with a higher number of different or similar functions
which would therefore reflect either increased functional richness
or increased functional redundancy. To delineate these two
scenarios, we counted the number of produced proteins that
are assigned to identical orthologous groups (functionally
redundant) versus those that belong to different orthologous
groups (functionally different) within each of the feed efficient
animal phenotypes. We observed significantly higher counts of
feed inefficiency associated proteins than feed efficiency asso-
ciated ones (Supplementary Fig. 6A). Furthermore, even if both
feed efficient and inefficient animals contained proteins involved
with carbon and additional metabolism, feed inefficient animals
almost systematically exhibited higher counts for each of the
functional categories (Supplementary Fig. 6A).
In addition, we find that proteins that were classified as feed

inefficiency associated exhibited a higher functional redundancy,
i.e., ORFs that code for the same function co-occur significantly
more than expected by random chance in the same sample (p
value < 0.03, Fig. 2Ci). In contrast, functional redundancy of
proteins classified as feed efficiency associated had a lower than
expected co-occurrence pattern, suggesting a higher functional
richness in feed efficient proteomes (p < 0.01, Fig. 2Cii). When we
measured the phylogenetic distance of proteins assigned to the
same orthologous protein groups, we found that they exhibited a
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higher phylogenetic distance in the high feed efficiency
associated proteins (Wilcoxon paired rank-sum test p < 0.044,
Fig. 2D). Together with our results of lower functional redundancy
in the high feed efficiency associated proteins, the finding of
orthologous proteins that exhibit a higher phylogenetic distance
could potentially suggest a higher degree of niche partitioning at
the enzyme level in the feed efficient microbiome state that might
reduce competition. We therefore used the Checkerboard score
(C-score) [41] as an indicator of competition at the protein level.
Indeed, we found that proteins in the feed efficient microbiome
states exhibit a significantly lower C-score compared to those from
feed inefficient states (Fig. 2E), further indicating lower competi-
tion at the protein level. Thus, our results show that inefficient
cows’ proteome is characterized by a higher redundancy
compared to efficient cows while efficient cows are characterized
by a higher functional diversity and lower competition at the
protein level.

Protein production profile diverges on the taxonomic and
functional level as a function of feed efficiency state
Are the different ecological mechanisms acting on each of the
feed efficient microbiome states reflected in the protein produc-
tion profile of single genomes and their specific phylogenies? To
address this question, we analyzed the individual protein
production profile of each MAG as an input for principal
component analysis (PCA). Our analysis indicated that individual
MAG protein production profiles are significantly clustered
according to their phylum, thus suggesting that rumen microbial
taxonomy and expressed functionality are interconnected (ANO-
SIM 0.38; p < 0.001; Fig. 3A). We next asked to what extent the
variance of MAG protein production along the microbial expres-
sion PCA (PC1, 26% of the variation) correlates to the microbes’
feed efficiency score (Fig. 3B). This analysis revealed a high and
significant correlation between the feed efficiency state and the
protein production profile of the different MAGs, which was also
associated with their phylogeny. We found that the protein
production profile of MAGs associated with the Firmicutes phylum
corresponds to lower feed efficiency states, while the protein
production profile of MAGs belonging to the Bacteroidetes,
Actinobacteria and Proteobacteria phyla is associated with high
feed efficiency (Fig. 3B, Supplementary Fig. 6B). Hence, MAGs
which are more closely phylogenetically related exhibit the same
association with the feed efficiency state. More globally, when we
examined all pairwise phylogenetic distances between the MAGs
(Fig. 3C), we found that phylogenetically closer species typically
associate with the same feed efficiency state - i.e., the more
phylogenetically similar the species, the more likely they are to
associate with the same feed efficiency phenotype, as indicated
by a substantial and significant phylogenetic signal, Lambda =
0.2498 (p < 0.0001; Fig. 3C). Interestingly, when we examine the
protein production profile from the single genome level, we find
that MAGs have a significant tendency to produce proteins
associated with a given feed efficiency state (Fig. 3D and
Supplementary Fig. 6B). This finding was obtained by counting
the proteins produced from a given genome that are either
positively or negatively correlated to feed efficiency and whether
we could identify a tendency per genome to produce proteins
that are associated with one state over the other compared to
random distribution (Fig. 3D and Supplementary Fig. 6B). We also
observed that the actual distribution of the proteins that are
produced from a given genome significantly deviates from
randomness (permutations p value < 0.001, Supplementary Fig. 7).

Microbial activity and plasticity at the single genome level
underlie the host feed efficiency state
Our findings raise the question of whether differential protein
production within the same MAG can be observed as a function of
the two feed efficiency states. Indeed, when we examined the

protein production profile at the single MAG level, we found that
single MAGs show differential production in the two states
(Figs. 3D and 4A), despite the fact that the MAGs exist in all
animals that are fed the same diet. This phenomenon is reflected
in the total level of proteome production from a single MAG based
on the normalized absolute abundance of proteins produced in
each MAG (Fig. 3D) and in the different identity of the produced
proteins as exhibited by the PCoA based on the Jaccard presence
absence dissimilarity metric of the produced proteome from
single MAGs (Fig. 4A, B). In the latter analysis, 15 out of 48 MAGs
for which at least 50 functions could be identified, and that are
present in all animals showed a significant clustering of the
produced proteome as a function of the feed efficiency state
(ANOSIM p ≤ 0.05; Fig. 4A, B). Permutation test, between the
ANOSIM R values obtained and random permutations on each
MAGs show that the average values deviate from random
(Supplementary Fig. 8).
This differential protein production can be also seen in the

functions associated with the different feed efficiency states.
Using KEGG and CAZy annotations, we observed that the feed
efficiency differential protein production from single MAGs is
distributed across various functional categories, including
carbohydrate-degrading functions, which are central for rumen
metabolism (Fig. 5A). We found that the protein production profile
of the glycoside hydrolases (GH) from a given MAG present in all
the cows exhibited specificity to one of the feed efficiency states,
ie, a specific GHs is either associated with the feed efficient state
or the feed inefficient state but not in both (Fig. 5A). This analysis
also revealed an interesting observation of specificity of some of
the GH functions to a feed efficiency state. For example, amylases
GH57 and GH97 were specifically associated with the feed efficient
state together with putative cellulases or related enzymes (e.g.,
GH6 and GH94; Fig. 4B). Interestingly, this analysis of individual
microbial populations also highlighted a niche partitioning pattern
among the different MAGs at the single enzyme level. Such niche
partitioning is apparent when analyzing the production of the
total KOs or GHs (Fig. 5A and Supplementary Fig. 9). A total of 120
functions out of 269 (45%) were associated with both feed
efficiency states but never from the same MAG, despite the MAG
occurrence in the two microbiome states (Supplementary Fig. 9).
This phenomenon is very apparent for GH13, a GH family that is
present in many MAGs (see Fig. 5A), both in feed efficiency- and
inefficiency-correlated proteins but is highly associated with
different MAGs between the two feed efficiency groups. This GH
family includes starch- and pullulan-degrading enzymes, i.e.,
polysaccharides encompassing the largest proportion of the
animal concentrate feed. For this GH family, MAGs 126, 180,
353, 372, 426, 133 and 321 produced GH13 proteins in the feed
efficient state, while MAGs 101, 292 and 306, produced GH13
proteins in the feed inefficient state only. Similarly, GH77 and
GH133, were also associated with both host states, but produced
from different MAGs (Fig. 5A). This differential production
phenomenon was also apparent for GH101 proteins (lysozyme
enzymes) which were produced by different MAGs that are
present in both feed efficiency states, such as MAG 131 and 295
that produced them in the feed efficient state, while in the feed
inefficient state they were produced by MAGs 322, 105 and 299. In
addition, we observed more MAGs producing more diverse GH
families and specific types of starch-degrading enzymes in the
feed efficient animals than in the feed inefficient animals (Fig. 5B).
Moreover, the raw abundances of GHs detected in the samples
serve a remarkable predictor of the animal feed efficiency state
with a calculated accuracy of 0,916 (p value < 1.13e− 7) (Fig. 5C).
Finally, the protein production profile from the MAGs exhibited a
taxonomic tendency, where, in most cases, Firmicutes-associated
MAGs produced more feed inefficiency associated GHs, and
Bacteroidetes MAGs produced more feed efficiency associated
GHs (Fig. 5A).
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DISCUSSION
Our previous work and that of others have established that
specific host traits related to production feed efficiency in
ruminants can be strongly linked to the structure and gene
content of the microbial community of the rumen [1, 7, 8, 42].
However, differences between genomic potential, actual microbial
activity and protein production are subject to a myriad of factors,
which may result in vast discrepancies between what is seen
within the microbes’ genomes and what is produced in a given
host or microbiome state [10, 43]. Depending on local abiotic

factors, such as individual animal’s physiology and biotic
interactions between microbes, an individual microbe may sense
vastly different environmental conditions, which could affect its
protein production patterns [43–45].
In the current work, we optimize the procedure for extraction

and identification of rumen proteins that, when compared to
previous studies, allowed us to substantially improve the number
of proteins identified [23, 46–48]. We investigated the rumen
microbiome state through its produced proteome profile and its
link to the host feed efficiency phenotype, previously
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characterized as containing different coding potential [1, 7, 8, 42].
We asked whether different rumen ecosystems are supported by a
divergent microbial physiology, as reflected by their microbial
gene production, and whether the latter more accurately reflects
host phenotypic state, compared to microbial taxa and gene
composition. These questions arose from the initially observed
clear dissociation between proteome rank profiles compared to
metagenome rank abundance of genes in this study, Indeed the
proteome profile of examined prokaryotic rumen MAGs was
shown to be significantly more predictive of the feed efficiency
phenotype of the cows sampled than any other data layer
suggesting that the protein level carries more information relating
to the feed efficiency state of the host and ecosystem function.
These conclusions that refer only to the examined MAGs,
represent specific markers for determining the feed efficiency
state. Furthermore, the protein production pattern associated with
each of the microbiome states enabled us to accurately predict
the host feed efficiency state and also pinpointed specific
discriminating functions, encompassing several genes related to
carbon and fermentation metabolism, that could be further used
as microbiome biomarkers for improving sustainability of husban-
dry protocols by selecting for more feed efficient microbiomes.
These results highlight the importance of multi-level omics
analyses, capable of discerning such genome-level nuances in
protein production, in light of host phenotype. Moreover, these
results led to the hypothesis that ecological forces may enforce
different gene expression patterns at the single microbial
population level between these two states that will ultimately
reflect its environmentally driven realized niche.
Our results indeed revealed that, beyond the globally different

protein production patterns found across different animals with
contrasting feed efficiency phenotypes, an unexpected plasticity

in protein production exists at the single genome level. Strikingly,
the same individual MAG found in all of the animals exhibited
different protein production between the two feed efficiency
states, as well as significantly different overall levels of protein
production. Additionally, we find that across the MAGs, the host
state is demarcated by different phylogenies, with Bacteroidetes
genomes exhibiting increased protein production in the efficient
state, whereas Firmicutes genomes are more active in feed
inefficient cows (Fig. 3).
These findings suggest that microbial populations at the two

microbiome states are subjected to different external stimuli,
leading a given microbe to produce different genes. Such stimuli
can either be the result of abiotic factors such as intrinsic features
of the host that might partly be connected to its genome (e.g., pH
regulation via saliva production, retention time via rumen size) or
may be due to biotic interactions between the rumen microbiome
members. Our results strongly suggest that in each of the
microbiome states, the additional biotic effects of the general
microbial populations in the surroundings may play a significant
part in defining the protein production patterns of the individual
population. Hence, although the environmental conditions such as
diet and husbandry regimes are similar, the microbial environ-
ment that the same microbial populations are experiencing in the
two efficiency states is different as reflected by the differential
expression of their proteomes. We also identify evidence for niche
partitioning at the protein production level, where a given enzyme
such as a fiber-degrading enzyme will be produced only from one
population and not the other, despite the potential of both to do
so in a given host state. Moreover, it seems that different
ecological mechanisms play a role in defining specific gene arrays
that are produced in each feed efficiency state. In a feed efficient
microbiome state, microbes exhibited a significantly lower
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functional redundancy in protein production compared to the
feed inefficient state. The latter state also exhibited a high C-score,
suggesting an increased level of competition. Furthermore, even
when microbial genes from a feed efficient animal are assigned to
the same putative function, they exhibit a larger phylogenetic
distance, suggesting more divergent functions and enzyme
specialization [49], as was shown for diversification of orthologous
microbial enzymes [50]. Overall, these results suggest that niche
partitioning at the enzyme level leads to divergent specialized
functions and is connected to the feed efficiency phenotype.
Recently, niche compartmentalization was also suggested by
Hagen et al. [20], while studying cow rumen metaproteome.
Indeed, the authors observed that the fungal population produces
distinct and complementary fiber-degrading enzymes, and
cellulose-degrading genes in particular, than the bacterial
populations. Functional redundancy has often been suggested
to represent a mechanism of ecosystem stability [51]. Here, we
propose that it could also lead to less feed efficient microbial
communities (in the context of agriculture as opposed to
ecological productivity, which refers to the rate of generation of
biomass in an ecosystem). An explanation for this observation
could be that lower functional redundancy reflects a more
coordinated inter-microbial interaction. With less competition
over resources, more energy could instead be utilized into higher
yield of final fermentation products, as was measured at the feed
efficient state in our previous work [7]. Such products, as
important short chain fatty acids like propionate and acetate,
then affect, in their availability, the growth and yield of the host
animal. The increase in stability, concomitant with functional
redundancy, may also explain the significantly higher correlation
in protein production in feed inefficient cows compared to feed
efficient cows, thus suggesting that feed inefficiency is character-
ized by a narrower functional state, while feed efficiency may be
accompanied by differing functional states [52, 53].
This study strengthens our current understanding of the

ecological forces that are in play within the rumen microbiome
and their connection to host feed efficiency. As hypothesized,
protein production pattern is a more robust indicator of animal
phenotype when compared to taxonomic composition and
coding potential, i.e., the metagenome. More surprisingly, the
high predictive ability of the proteome to categorize animals
based on the main phenotype studied here, i.e., feed efficiency is
based on global features of protein production, which means that
accurate categorization can be made using only a defined subset
of proteins. We also propose microbial functional redundancy and
competition as drivers of broad phenotypic variation between
hosts, which may be of relevance for any ecosystem, not
necessarily limited to host-associated ones. These results can
potentially be leveraged for future design of synthetic microbial
communities. Future studies should focus on the mapping of
inter-microbial behavioral interactions, along with experimental
validations, in order to integrate and exhaust current omic
technologies and control and improve sustainable agriculture.
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