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Inflammation is a driven force in modulating microbial communities, but little is known

about the interplay between colonizing microorganisms and the immune response in

periodontitis. Since local and systemic inflammation may play a whole role in disease,

we aimed to evaluate the oral and fecal microbiome of patients with periodontitis and to

correlate the oral microbiome data with levels of inflammatory mediator in saliva.

Methods: Nine patients with periodontitis (P) in Stage 3/Grade B and nine age-matched

non-affected controls (H) were evaluated. Microbial communities of oral biofilms (the

supra and subgingival from affected and non-affected sites) and feces were determined

by sequencing analysis of the 16SrRNA V3–V4 region. Salivary levels of 40 chemokines

and cytokines were correlated with oral microbiome data.

Results: Supragingival microbial communities of P differed from H (Pielou’s

evenness index, and Beta diversity, and weighted UniFrac), since relative

abundance (RA) of Defluviitaleaceae, Desulfobulbaceae, Mycoplasmataceae,

Peptostreococcales-Tissierellales, and Campylobacteraceae was higher in P, whereas

Muribaculaceae and Streptococcaceae were more abundant in H. Subgingival

non-affected sites of P did not differ from H, except for a lower abundance of

Gemellaceae. The microbiome of affected periodontitis sites (PD ≥ 4mm) clustered

apart from the subgingival sites of H. Oral pathobionts was more abundant in sub

and supragingival biofilms of P than H. Fecal samples of P were enriched with

Acidaminococcus, Clostridium, Lactobacillus, Bifidobacterium, Megasphaera, and

Romboutsia when compared to H. The salivary levels of interleukin 6 (IL-6) and

inflammatory chemokines were positively correlated with the RA of several recognized

and putative pathobionts, whereas the RA of beneficial species, such as Rothia aeria

and Haemophilus parainfluenzae was negatively correlated with the levels of Chemokine

C-C motif Ligand 2 (CCL2), which is considered protective. Dysbiosis in patients
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with periodontitis was not restricted to periodontal pockets but was also seen in

the supragingival and subgingival non-affected sites and feces. Subgingival dysbiosis

revealed microbial signatures characteristic of different immune profiles, suggesting a

role for candidate pathogens and beneficial organisms in the inflammatory process

of periodontitis.

Keywords: periodontitis, oral microbiome, fecal microbiome, 16SrRNA sequencing, dysbiosis

INTRODUCTION

The dysbiotic microbiota in periodontitis-affected subgingival
sites is characterized by an increased abundance of pathogens
and pathobionts whereas the abundance of genera considered as
beneficial to the host is decreased [1, 2]. Animal experimental
studies suggested that the periodontal pathogen, Porphyromonas
gingivalis might induce dysbiosis not only in the oral cavity, but
also in the gut, which affects the integrity of the gut epithelial
barrier, and consequently increases systemic inflammation [3,
4]. Furthermore, dysbiosis found not only in the oral cavity,
but also in the gut is a frequent finding in most of the
conditions associated with periodontitis, such as arthritis [5],
obesity [6, 7], diabetes [8], and inflammatory bowel disease
[9]. However, to date, most studies on the microbiome of
periodontitis have focused on the comparison between microbial
communities of subgingival biofilms from periodontal pockets
and those from healthy subjects [1, 2, 10] with few exceptions
[11, 12].

There is also evidence of altered gut microbiome in Grade
B periodontitis (previously known as chronic periodontitis)
[12], and Grade C periodontitis of the molar incisor pattern
(previously known as localized aggressive periodontitis) [13].
These observations led to the hypothesis that alterations in the
gutmicrobiome play a key role in periodontitis and its association
with inflammatory diseases [14–17].

When the balance between the host and the subgingival
microbiome is disrupted, pathogens and pathobionts trigger
host-defense mechanisms, leading to inflammation and bone
resorption [18]. Inflammation is a driven force to modify
the microbial community resulting in a continuous cycle of
dysbiosis, an immune response, and tissue breakdown [19,
20]. The environmental conditions of inflamed periodontal
pockets, such as low oxygen levels, enriched nutrition derived
from the breakdown of host proteins, and high gingival fluid
volume, together with synergistic microbial interactions, favor
inflammophilic, anaerobic, proteolytic, and fastidious organisms.
Gingival inflammation also influences the microbial composition
of supragingival plaque [21], and the microbial composition
of subgingival sites is profoundly affected by the supragingival
dental plaque [22].

Thus, unresolved exacerbated inflammation characteristic
of chronic periodontitis is associated with high levels of
inflammatorymediators in the gingival tissues [23, 24], crevicular
fluid [25], and saliva [26, 27]. However, little is known about
the contribution of the microbial community to the pattern of
the inflammatory mediator seen in subjects with periodontitis,

with few exceptions [28], as most data rely on the role of selected
pathogens [29].

Thus, we evaluated the microbiome of oral dental plaque and
feces of patients in Stage III, Grade B periodontitis (previously
known as chronic periodontitis) and compared these data with
those of age-matched periodontally healthy subjects. In addition,
we evaluated the salivary levels of inflammatory mediators and
correlated them with the oral microbiome.

METHODS

Study Design and Groups
This study was conducted according to the Declaration of
Helsinki of 1975 on experimentation involving human subjects
and approved by the Research Ethics Committee of the
Biomedical Sciences Institute of University of São Paulo (CAAE
42056614.3.0000.5467) and associated institutions. Subjects were
informed about the study objectives and signed an “Informed and
Free Consent Form.” Patients, aged between 35 and 55 years and
healthy age-matched, were selected at the School of Dentistry of
University of São Paulo (São Paulo, SP, Brazil), the Periodontal
Clinic of Guarulhos University (Guarulhos, SP, Brazil), and the
School of Dentistry of Nove de Julho University (São Paulo,
SP, Brazil).

Clinical Assessments
Clinical measurements were performed by calibrated
periodontists. The clinical parameters evaluated were bleeding
on probing (BoP) (no= zero/ yes= 1), probing depth (PD), and
clinical attachment level/loss (CAL), measured at six sites per
tooth in all teeth (excluding third molars), using a periodontal
probe (Hu-Friedy R©, Chicago, IL, USA).

Eligibility Criteria
Subjects (n = 9) with periodontitis Stage III and a moderate
rate of progression (Grade B) (P) [30, 31] comprised patients
aged between 35 and 55 years, with at least 20 teeth,more
than 30% of sites with CAL and PD >3mm, at least one site
with CAL ≥5mm and radiographic bone loss extending at least
to the middle third of the root, percentage of bone loss/age
ranging from 0.25 to 1.0. The control group (H) consisted of
periodontally healthy subjects (n = 9) without sites with PD and
CAL measurements >3mm, <20% of sites exhibiting BoP and
no extensive caries of lesions and at least 28 permanent teeth
[32]. Exclusion criteria included pregnancy, smoking, current or
previous periodontal treatment, presence of systemic diseases,
use of medications that could affect the periodontium or immune
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response, and use of systemic antibiotics and/or mouthwashes
containing antimicrobials in the previous 3 months. All subjects
diagnosed with periodontitis received the required periodontal
treatment after sample collection.

Microbiome Sample Collection
Biofilm samples of P subjects were collected as follows: the
supragingival biofilm was obtained from the buccal or the
lingual non-affected sites (PD = 0–3mm); the subgingival
samples of non-affected (PD = 0–3mm) and affected sites
(PD > 4mm) were obtained at the interproximal sites,
after the removal of the supragingival biofilm. Supragingival
and subgingival biofilm samples were collected from healthy
individuals from randomized sites. Samples collected using
Gracey mini-five curettes (Hu-Friedy R©, Chicago, IL, USA)
were obtained from four teeth at each location (the supra or
the subgingival) and condition (affected or non-affected sites)
from each individual and pooled according to the site and
location in Tris -EDTA buffer (TE) (10mM Tris-HCl, 0.1mM
ethylenediaminetetraacetic acid, pH7.6). Fecal samples were self-
collected using a sterilized recipient. Individuals were asked to
store the specimen at −20◦C and transported it in a styrofoam
box with recyclable ice. All samples were stored at −80◦C
until manipulation.

DNA Extraction and 16SrRNA Gene
Sequencing
Total genomic DNA of oral biofilms was extracted using Meta-
G-NomeTM DNA Isolation Kit (Epicentre Biotechnologies,
Madison, WI, USA) according to the protocol of the
manufacturer. Stool DNA was extracted using the QIAamp R©

DNA Stool Mini Kit (Qiagen, Hilden, Germany). DNA
quality and amount were determined using Qubit dsDNA
HS Assay Qubit Fluorimeter 2.0 (ThermoFisher Scientific,
Carlsbad, CA, USA).

The hypervariable V3–V4 region of 16SrRNA was amplified
using the primers, Bakt_341F CCTACGGGNGGCWGCAG and
Bakt_805R GACTACHVGGGTATCTAATCC [33]. Amplicons
were sequenced by Macrogen (Seoul, Republic of Korea) by
high-throughput sequencing using Illumina MiSeq 2 × 250
platforms (Illumina Inc., CA, USA). The sequence data are
available at https://www.ncbi.nlm.nih.gov/bioproject/735261.

Sequencing Data Processing and
Statistical Analyses
Sequencing data were analyzed using Quantitative Insights into
Microbial Ecology (QIIME2) 2020.6 [34]. The demultiplexed
sequences were merged and the sequences were trimmed in the
region flanked by sequencing primers, Bakt_341F and Bakt_805R
[35]. Sequencing reads were filtered for the length of 230 bp
and with a minimum overlap of 8 bp and analyzed using the
DADA2 software package [36]. Checking, filtering for chimera,
and clustering were performed using VSEARCH (https://github.
com/torognes/vsearch).

Alpha-diversity indices, such as Faith’s phylogenetic diversity
(community richness) and Pielou’s evenness (community
evenness) were calculated.

Beta-diversity group analysis was performed using aWeighted
UniFrac matrix [37], and divergence between the groups
was highlighted by Principal Coordinates Analysis (PCoA).
Differences between groups of samples of Periodontitis and
H were estimated by the analysis of similarity using UniFrac.
Taxonomy was assigned to each amplicon sequence variant
(ASV) based on Silva 138 database [38]. Oral ASVs were then
identified by using HOMD 15.1 database [39].

Oral and fecal core microbiomes were estimated with ASVs
present in at least 70% of the samples and the Venn diagram was
applied [40].

Saliva Collection and Cytokine and
Chemokine Analysis
Unstimulated whole saliva samples were obtained. The levels
of chemokines and cytokines in the saliva samples were
evaluated by a Bio-Plex ProTM Human Chemokine assay kit
(Bio-Rad, Hercules, CA, USA) following the instructions of the
manufacturer, as described in http://www.bio-rad.com/webroot/
web/pdf/lsr/literature/Bulletin_6499.pdf. Detailed information
on these procedures was previously described [27].

Statistical Analyses
Sample calculation for microbiome and inflammatory mediators
was based on data from a pilot study using four samples from
each group. The relative abundance (RA) at the phylum level
was taken as an endpoint, considering 0.37 ± 0.23 (mean ±

SD) for the P group and 0.49 ± 0.41 for the H group. The pro-
inflammatory/anti-inflammatory ratio was taken as the endpoint,
considering 1.45 ± 0.7 (P group) and 0.78 ± 0.2 (H group).
Considering a power of 80% and a significance level of 5%,
a minimum of nine individuals per group would be required.
Analysis was performed using the BioEstat R© software V5.3.

Wilcoxon-Mann-Whitney test was performed to detect the
differences in alpha, diversity, clinical parameters, and differences
in RA between groups, considering the statistical difference
when p < 0.05.

Weighted UniFrac similarity matrices were calculated to
compute the similarities between the groups, and the distances
were compared using Permutational Multivariate Analysis
of Variance (PERMANOVA) in Qiime2. After testing the
distribution by Shapiro-Wilk normality tests, a binomial test
was applied to analyze the inter-group differences. Correlation
between the RAs of the species in the subgingival samples
pooled according to the site condition, in order to evaluate the
differences between the affected and non-affected sites, cytokines,
and the salivary levels of chemokines was calculated using
Spearman’s rank coefficient, considering a significance level of p
< 0.05. For these analyses, R Studio 3.6 Software with packages
Rstatix, Survive, ggplot2 and dplyr, corrplot, andHmisc was used.

RESULTS

Clinical Characteristics
Eighteen subjects aged 35–55 years, who had never been
submitted to periodontal treatment, formed the studied
population. As expected, periodontal clinical parameters
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TABLE 1 | Clinical characteristics of the study population.

Condition Periodontitis (n = 9) Health (n = 9)

Age (years) 43.5 (±5.88) 40.62 (±3.37)

Gender (%) Male 77.77 66.66

Female 22.22 33.33

BoP (mm) 54.88 (±26.49)** 12.05 (±10.15)

CAL (mm) 4.44 (±0.79)*** 2.01 (±0.66)

PD (mm) 4.18 (±0.59)*** 2.02 (±0.66)

Statistical difference was considered when p < 0.05. For results with p < 0.01** and for

p < 0.001*** by Wilcoxon-Mann-Whitney test.

differed significantly between periodontitis and the health
group (Wilcoxon-Mann-Whitney test, p < 0.05), as shown in
Table 1.

Sequence Profile Analysis of the Oral and
Feces Microbiome
Sixty-one samples were evaluated, 45 pooled oral biofilms (nine
from the supragingival biofilm from each group, nine from the
subgingival non-affected sites, nine from the affected sites of P,
and nine from the subgingival sites of (H) and 16 fecal samples,
which demultiplexed the sequences and generated 7,108,527
paired-end reads. Two fecal samples (one from each group) were
lost due to a lack of collaboration from the subjects.

After filtering to the specific region of sequence primers,
Bakt_341F and Bakt_805R and removing the denoised reads,
2,340,642 paired-end reads were generated, with an average of
38,371.18 reads per sample (min 15,177 and maximum 64,435
reads). The average of reads per sample was 39,832.02 in oral
and 34,262.56 in fecal samples. Rarefaction analysis determined
that 14,000 reads were needed for sampling depth, according
to the number of observed ASVs and number of samples
(Supplementary Figure 1).

A total of 691 ASVs were detected, distributed among 17
phyla, 32 classes, 81 orders, 108 families, and 234 genera in fecal
and oral samples, and classified using the SILVA138 database.
With the HOMD15 database, 519 ASVs were distributed at
the phylum level (12), class (23), order (39), genus level (118),
and species (410). The remaining 172 ASVs were not classified
by HOMD15.

Dysbiosis in the Supragingival Microbiome
of Periodontitis
Alpha diversity indices of richness [Faith’s PD)] revealed no
differences in the supragingival microbial communities between
P and H (Figure 1A, Supplementary Table 1). However, the
supragingival microbiome of P showed a higher Pielou’s index
(evenness) than that of H (Figure 1B). (Wilcoxon-Mann-
Whitney test, p ≤ 0.05).

Beta diversity analysis revealed that the supragingival
microbiomes of periodontitis subjects clustered apart from those

of healthy subjects [Weighted UniFrac, PERMANOVA test, p ≤

0.05] (Figure 2A).
At the phylum level, Firmicutes were more abundant in

H, whereas Bacteroidota and Campilobacterota were more
abundant in P than H (Figure 3A).

The families Defluviitaleaceae, Desulfobulbaceae,
Mycoplasmataceae, Peptostreococcales-Tissierellales, and
Campylobacteraceae were more abundant in P, whereas
Muribaculaceae and Streptococcaceae were more abundant in H
(Supplementary Figure 2A). At the genus level, Porphyromonas,
Fusobacterium, Parvimonas, Campylobacter, Mycoplasma,
Desulfobulbus, Oribacterium, Veillonella, and Defluviitaleaceae
UCG-011 were more abundant in P than H, whereas
Streptococcus and Actinobacillus were more abundant in H
(Supplementary Figure 2B). The ASVs classified at the species
level, which differed in abundance between P and H, are shown
in Figure 3B.

Dysbiosis in the Subgingival Biofilm of
Periodontitis
Alpha (Figure 1, Supplementary Table 1) and Beta diversities
analysis did not reveal differences between the subgingival
microbial communities of non-affected sites of P and H
(Figure 2B). The RA of different bacterial groups at these sites did
not differ at the phylum and class levels. However, the subgingival
sites of H revealed a higher abundance of Gemellaceae than
the non-affected sites of P [median (interquartile range) =

0.02 (0.02–0.04) in H vs. 0.008 (0.005–0.01) in P]. The
genera Parvimonas, Atopobium, and Fusobacterium were more
abundant in the subgingival non-affected sites of P than
H, whereas Actinobacillus was more abundant in health
(Supplementary Figure 2C). There were also differences in the
RA between the groups at the species level (Figure 3C).

Alpha diversity indices of richness and evenness did not differ
when the microbiome of the affected sites of P was compared to
the subgingival sites of H (Figure 1, Supplementary Table 1).
However, Beta diversity analysis indicated that the subgingival
samples from the affected sites of P differed from the subgingival
samples of periodontally healthy subjects (H) (Weighted
UniFrac, p < 0.01, PERMANOVA test), as shown in Figure 2C.
The RA of bacterial groups of the affected sites of P and the
subgingival sites of H differed in all the taxonomic levels.
The phyla, Bacteroidota, Desulfobacterota, Fusobacteriota,
Spirochaetota, Synergistota, and Chloroflexi weremore abundant
in the affected sites of P, whereas Actinobacteriota and Firmicutes
were more abundant in H (Wilcoxon-Mann-Whitney test, p <

0.05) (Figure 3A). Differences in RA between the two groups
at the family level are described in Supplementary Figure 2D.
The genera, Atopobium, Porphyromonas, Prevotella, Tannerella,
Flexilinea, Desulfobulbus, Mycoplasma, Pseudoramibacter,
Oribacterium, Stomatobaculum, Mogibacterium, Filifactor,
Parvimonas, Fusobacterium, Streptococcus, Treponema, and
Fretibacterium were more abundant in the diseased sites
of P while Actinomyces, Rothia, Bergeyella, Abiotrophia,
Granulicatella, Gemella, Lautropia, Neisseria, Actinobacillus,
and Haemophilus were more abundant in H, as shown in
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FIGURE 1 | Alpha diversity analysis of microbiome of oral (supragingival, subgingival non-affected sites; subgingival affected sites) and fecal samples of periodontitis

(P) and health (H) subjects. In (A) richness (Faith’s PD) index and (B) evenness (Pielou) index analysis. Differences were considered significant when p ≤ 0.05 using

Wilcoxon-Mann Whitney test.

Supplementary Figure 2E. The RA of several species differed
between the subgingival affected sites of P and the subgingival
sites of H (Figure 3D).

Correlation Between Cytokines and
Chemokines in Saliva and the Oral
Microbiome
Data of the mean levels of cytokines and chemokines (pg/ml) are
described in Supplementary Table 2. Abundances of species at
the subgingival affected sites of P and subgingival sites of H were
correlated with the levels of salivary inflammatory mediators (as

shown in Figure 3D and detailed in Supplementary Table 2).
Furthermore, only the species detected in seven out of nine
patients of each group were evaluated (binomial test, p > 0.4).

Data on positive and negative correlations between RA of
AVS in the subgingival affected sites and the salivary levels of
inflammatory mediators of the Periodontitis group are shown
in Figure 4. Only correlations with Rho values >0.67 or <-0.67
were considered when p ≤ 0.05.

Other positive and negative correlations were seen in healthy
subjects when the RA of AVS of the subgingival sites differing
between H and P and the inflammatory levels of mediators were
evaluated (Supplementary Figure 4).
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FIGURE 2 | Principal coordinate analysis based on weighted UniFrac distance metric. Graphics represents beta diversity analysis between samples of P and H

groups: (A) supragingival sites; (B) subgingival non-affected sites; (C) subgingival affected sites of P and subgingival sites of H (D) feces of H and P. Red dots

correspond to samples of Periodontitis patients and blue dots to samples of health subjects. A significance level of 5% was applied by using PERMANOVA test.

Altered Gut Microbiome of Patients With
Periodontitis
Alpha (Figure 1, Supplementary Table 1) and beta diversities
indices revealed no differences between the fecal microbial
communities of H and P (Figure 2). There were no differences
in the abundance of different Phyla and Orders in the fecal
samples between P and H. Nevertheless, the classes, Bacteroidia
and Actinobacteria were more abundant in H than in P [Median
(interquartile range)]: [Bacteroidia 1.49 (1.41–1.68) in H and
1.17 (1.03–1.27) in P, p ≤ 0.05] [Actinobacteria 0.002 (0–0.004)
in H and 0.02 (0.012–0.03) in P, p ≤ 0.05]. Furthermore, the
fecal samples from P were enriched in several families and
the genera of Firmicutes when compared to H, as shown in
Figures 3E,F, respectively.

Oral and Fecal Core Microbiomes
Core microbiome analysis showed differences in the distribution
of several genera in feces (Figure 5A), and on the distribution of
several genus and species in the oral cavity when patients with

periodontitis and health individuals were compared (Figure 5B).
Abundances of oral and gut bacteria in both groups were
correlated (Supplementary Figure 5). Moreover, site-specificity
was accessed by comparing the oral and fecal microbiome
of P and H (Supplementary Figure 3). Streptococcus and
Prevotella were found both at the oral cavity and feces of H
and P (Supplementary Figures 3A,B), whereas Veillonella and
Haemophilus were common to both sites only in the P group
(Supplementary Figure 3A), andClostridiaUCG14was detected
at the oral cavity and feces of H (Supplementary Figure 3B).

DISCUSSION

Thus, we aimed to evaluate the microbial communities of non-
treated patients with periodontitis by accessing the microbiomes
of supra and subgingival sites, and feces and to correlate the oral
microbiome with levels of inflammatory mediators in saliva.

The studied population comprised periodontitis subjects who
were compared to age-matched periodontal healthy subjects,
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FIGURE 3 | Phylum distribution in samples of the oral sites and feces (A); (B–D): Fold changes (log2) relative abundance of species in periodontitis samples (positive

values) compared to control (negative values)—in: (B) supragingival biofilm (C) subgingival non- affected sites of periodontitis patients and health patients; (D)

subgingival affected sites of periodontitis patients compared to subgingival sites of H; (E) fold changes of Relative abundance of families in feces and (F) genera in

feces. Only species which the relative abundance differed between P and H (B–D) are shown (Wilcoxon-Mann Whitney test, p ≤ 0.05).

in consonance with other studies [2, 41, 42]. Only grade B
patients with periodontitis (moderate rate of progression) were
selected and age was limited at 55 years. These approaches
were relevant due to the increased inflammation with the aging
process, which may compromise the evaluation of inflammatory
mediators, and their influence on the resident microbial
communities [43].

Our data revealed that the microbiome of periodontal pockets
clustered apart from that of the gingival crevice of health subjects
(Figure 2C). The health-associated subgingival microbiome
was characterized by a higher abundance of Actinobacteriota
and Firmicutes, whereas periodontitis sites harbored a higher
abundance of Bacteroidota, Desulfobacterota, Fusobacteriota,
Spirochaeota, Synergistota, and Chloroflexi. Richness and
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FIGURE 4 | Spearman Rho correlation among RA values of subgingival bacteria and cytokines/chemokines levels in saliva of periodontitis subjects. Only species

more or less abundant in subgingival affected sites of periodontitis than in subgingival sites of the healthy patients were evaluated.
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FIGURE 5 | Venn diagram of core microbiome representing bacteria genera or specie present in at least 70% of subjects. In (A) genera in feces of periodontitis

patients (Feces_P) and periodontally healthy individuals (Feces_H); in (B) species in oral biofilm of periodontitis patients (Oral_P) and oral biofilm periodontally healthy

individuals (Oral_H). For (*) genera that were more abundant in feces of periodontitis patients in comparison of feces of H; ( ) genera more abundant in P when

subgingival affected sites of P group were compared to shallow sites of H; (◦) genera more abundant in H when subgingival affected sites of P group were compared

to subgingival sites of H; (+) genera more abundant in P when supragingival sites of P were compared to supragingival sites of H; ($) genera more abundant in H when

supragingival sites of P were compared to supragingival sites of H; (1) genera more abundant in P when subgingival shallow sites of P were compared to subgingival

shallow sites H; (α) species more abundant in supragingival sites of P than supragingival sites of H; (&) species more abundant in subgingival non-affected sites of P

than subgingival sites of H; (♦) species more abundant in subgingival affected sites of P group when were compared to subgingival sites H; (#) species more

abundant in subgingival sites of H when compared to subgingival affected sites of P group.

evenness (Pielou) diversity indices did not differ between
the samples of the periodontal pockets and the subgingival
sites of H, as previously reported [11, 44]. These data are
in contrast to studies that indicated a lower [45, 46], or a
higher diversity and richness [1, 2, 10] in disease than in
health, possibly due to differences in sampling methods and/or

disease severity. Previous studies described higher abundances
of the phyla, Spirochaeota, Synergistota, Bacteroidota, and
Fusobacteriota in disease [10, 44, 47], although this is still
not a consensus [1, 46]. Our data confirmed the association
of periodontitis with increased levels of pathobionts of the
genera, Atopobium, Porphyromonas, Prevotella, Tannerella,
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Flexilinea, Desulfobulbus, Mycoplasma, Pseudoramibacter,
Oribacterium, Stomatobaculum, Mogibacterium, Filifactor,
Parvimonas, Fusobacterium, Treponema, and Fretibacterium
and the decreased abundance of Actinomyces, Rothia, Bergeyella,
Abiotrophia, Granulicatella, Gemella, Lautropia, Neisseria,
Actinobacillus, and Haemophilus when compared to health. The
association of most of these genera with disease or periodontal
health has been previously shown [10, 11, 41, 45–50]. Although
most of the organisms which abundantly increased in health
were previously considered beneficial, the data on Gemella
morbillorum are conflicting [10, 12, 51, 52].

Not surprisingly, the microbial composition of the
supragingival biofilms also differed between periodontitis
and health groups, differing from data reported by Galimanas
et al. [11]. Supragingival plaque of diseased subjects was enriched
by recognized pathobionts of the genera, Porphyromonas,
Fusobacterium, Parvimonas, Mycoplasma, Desulfobulbus,
Oribacterium, and Campylobacter, but also by Veillonella,
which was not previously related to the disease and not yet
characterized by Defluviitaleaceae UCG-011. On the other
hand, the supragingival biofilm of health subjects exhibited
a higher abundance of Streptococcus and Actinobacillus than
the supragingival biofilm of P subjects. Several ASVs are more
abundant in the supragingival biofilm of periodontitis subjects,
such as Tannerella forsythia, Fusobacterium nucleatum subsp.
vincentii, Porphyromonas endodontalis, Campylobacter gracilis,
Eikenella corrodens, Leptotrichia hongkongensis, Desulfobulbus
HMT 041, and Treponema amylovorum were previously
associated with periodontal pockets [1, 10, 42, 47, 52–54].

Early studies using target microbial techniques indicated
that the supragingival biofilm can be a source of pathobionts
[55, 56], whose growth would possibly be supported by
inflammatory conditions in the nearby gingival tissues [57].
Thus, our data extend the repertoire of organisms considered
as biomarkers of supragingival plaque in periodontitis [11],
and include organisms, such as Veillonella, with no pathogenic
potential, but which may find the suitable conditions for growth
in the supragingival plaque of P [56]. Nevertheless, further
studies should demonstrate whether regular supragingival plaque
control and subgingival mechanical treatment can reestablish the
supragingival microbiome compatible with health.

The microbial compositions of non-affected subgingival sites
of P and healthy subjects were similar. Indeed, only the family,
Gemellaceae and the genus, Actinobacillus were more abundant
in the subgingival sites of H than in the non-affected sites of
P, whereas known pathobionts, such as Parvimonas, Atopobium,
and Fusobacterium were more abundant in the subgingival non-
affected sites of P. Thus, our data suggested that the subgingival
non-affected sites in patients with periodontitis, even those
without signs of inflammation (no BoP) could be a transitory
ecosystem to the disease, since deeper pockets of diseased subjects
act as reservoirs for the spread of infection to healthy sites, as
hypothesized in the early studies [58].

The association of Rothia, Haemophilus, Neisseria,
Streptococcus, Actinobacillus, Gemella, Abiotrophia, Lautropia,
and Granulicatella with health, as reported previously
[10, 41, 45, 48, 49], was reinforced by their decreased abundance,

not only in periodontal pockets but also in the supra and
subgingival healthy sites of the P group.

Oral dysbiosis in patients with periodontitis was followed by
an altered gut microbiome, despite the absence of other diseases
in this group. Our data are in accordance with a study that
reported no differences in diversity in the fecal microbiome
of periodontitis, gingivitis, and H subjects [12]. However, the
classes, Bacteroidia and Actinobacteria were more abundant in
the fecal samples of H than in P. On the other hand, the fecal
samples of P were enriched with several Firmicutes, including the
families Lactobacillaceae, Clostridiaceae, Peptostreptococcaceae,
and Veillonellaceae whereas the abundance of Oscillospiraceae
was increased in the fecal samples of health subjects.

Despite the association of Bifidobacterium and Lactobacillus
with health [59, 60], increased abundance of these genera
is associated with ulcerative colitis and Crohn’s disease [61].
Moreover, the increased abundance of Lactobacillus has been
reported in the fecal samples of subjects with rheumatoid arthritis
[17, 62, 63], type 2 diabetes in pregnancy [64], and low fiber
diet [65]. Other organisms more abundant in the fecal samples
of the Periodontitis group than in H, such as Megasphaera
was previously associated with the dysbiotic gut microbiome,
in pancreatic cancer [66] and Type 2 diabetes mellitus [67],
whereasAcidaminococcus sp. was associated with Type 2 diabetes
mellitus [68].

The reasons for dysbiosis at the oral and gut mucosae in
patients with periodontitis are still not clear. They may comprise
host susceptibility, such as seen in rheumatoid arthritis [17],
or maybe due to the translocation of oral organisms to the
gut, leading, under certain circumstances, to gut dysbiosis and
contributing to systemic inflammation [69, 70].

Oral and stool communities are especially diverse [71], as
shown by the distinct core microbiomes of the oral cavity and
feces, and correlation analysis did not lead to the detection of an
oral organism where the abundance was directly correlated with
the microbial shift in the gut. However, oral pathobionts may still
elicit an immune response in animal models, leading to other
diseases [72].

We have earlier shown that these patients with periodontitis
had higher salivary levels of interleukin 6 (IL-6) and IL-
1β, and elevated pro-inflammatory: anti-inflammatory ratio
compared to H [27]. The present analyses indicated that the
subgingival microbiome correlated with the salivary levels of
certain mediators in patients with periodontitis (Figure 4) and in
healthy subjects (Supplementary Figure 4), an observation that
should contribute to the understanding of the role of specific
members of the microbial community and the disease. We have
chosen to correlate the inflammatory mediator levels in saliva
with microbiome data of a pool of subgingival sites, as recently
performed [73] but differing from other studies [28, 74].

Our strategy was based on the fact that mediators in saliva
differing between periodontitis and healthy subjects should
be produced in the periodontal pockets, triggered by the
subgingival microbiome, but differences in the single sites were
minimized by evaluating a pool of sites with similar periodontal
conditions. Furthermore, the correlation analysis was performed
separately to the periodontitis groups and health groups, since
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several species and mediators were not detected in one of the
two groups.

In the context of infection, several chemokines are induced
to recruit innate immune cells aiming to kill pathogens, prevent
microbial dissemination, drive inflammation, and help repair
damage [75]. However, periodontitis is featured by a typical
inflammatory imbalance induced by the pathobionts, with
increased levels of pro-inflammatory mediators in a Th1 cell
response [76].

The integration of microbiome data of gingival bleeding
periodontitis with inflammatory mediator levels indicated that
the abundance of Parvimonas micra, Selenomonas sputigena,
F. nucleatum subsp. vincentii, Fretibacterium fastidiosum,
Tannerella forsythia, and Treponema maltophilum and
less studied organisms, such as Oribacterium HMT 078 (a
Firmicutes of the family Lachnospiraceae), and Anaerolineae
HMT 439 (a member of the Chloroflexi phylum) positively
correlated with the salivary levels of several cytokines and
chemokines in periodontitis subjects, although each organism
yielded a unique correlation profile. On the other hand,
the abundance of the recognized pathogen, P. gingivalis
did not correlate with the levels of any studied mediator.
These results should be expected since pathogens, such
as P. gingivalis and Treponema denticola stimulated low
levels or even inhibited the expression of inflammatory
cytokines and chemokines in in vitro models, and their
proteases degraded these factors, whereas F. nucleatum
subsp. vincentii and other species considered less pathogenic
induced high expression of inflammatory mediators by gingival
fibroblasts [77].

The saliva of the studied patients with periodontitis yielded
higher levels of IL-6 than that of health controls [27]. The
IL-6 is associated with chronic inflammation [78], and is
considered to be a biomarker for chronic periodontitis [26].
The integrated data showed that salivary levels of IL-6 positively
correlated with the RA of P. micra, Selenomonas sputigena,
F. nucleatum vincentii, Fretibacterium fastidiosum, Tannerella
forsythia, Treponema maltophilum, and Oribacterium HMT
078. These correlations are in accordance with in vitro data
which indicated that IL-6 is produced by different host cells
after challenge with whole bacteria or their components using
P. micra [79], F. nucleatum [80, 81], T. forsythia [82], or T.
maltophilum [83].

Tannerella forsythia and F. nucleatum subsp. vincentii present
a synergic relation with biofilm formation [84], and these
two species yielded a similar correlation pattern since their
abundance was positively correlated with the salivary levels of IL-
6 and IL-10, CCL27, and CXCL13. As mentioned, not only IL-6
levels but also CCL27 and CXCL13 high levels were previously
associated with periodontitis [27, 85].

The abundance of other organisms, such as Anaerolineae
HMT 439, Oribacterium HMT 078, P. micra, and S. sputigena
positively correlated with the levels of the cytokines, IL-2 and
IL-10; and chemokines, CCL7, CCL11, CXCL12, and CXCL16.
In the context of the pathogenesis of periodontitis, these
chemokines should contribute to the inflammatory process.

Indeed, high levels of CCL11, also named Eotaxin-1/C-C motif
chemokine 11 [86, 87], CXCL12, also referred to as stromal
cell-derived factor-1 (SDF-1) [88] and CCL7, also known as
monocyte chemotactic protein-3 (MCP-3) [89] were suggested as
biomarkers for periodontitis. The CXCL12 promotes chemotaxis
of T lymphocytes and monocytes, whereas CCL7 recruits
monocytes [90], and CXCL16 controls the attraction and
migration of activated T cells to the inflamed periodontal
tissues [91].

Tannerella forsythia, F. nucleatum, S. sputigena, P. micra, F.
fastidiosum, and T. maltophilum are recognized as candidate
pathogens in human periodontitis [92], indicating the potential
of the integrative approach to distinguish species within the
bacterial community involved in the disease process. Others,
such as Oribacterium HMT 078 and Anaerolineae HMT439
are still uncultivated, and little is known about their roles
in periodontitis.

Regarding organisms associated with health, the abundance of
R. aeria and H. parainfluenzae positively correlated with (MCP-
1) CCL2 levels, whereas the abundance of H. parainfluenzae
was negatively correlated with the levels of CCL13 and
CCL24, CXCL11 and CXCL13 (Figure 4). Chemokines whose
levels were negatively correlated with the abundance of H.
parainfluenza may also contribute to periodontal destruction.
The CCL24 induces M1 macrophage chemotaxis [93]. The
CCL13 (also called Monocyte Chemoattractant Protein 4-
MCP4) is involved in the inflammatory process of several
diseases [94] and its levels are increased in the gingival
crevicular fluid (GCF) of patients with periodontitis [95] whereas
CXCL11 is related with Th1 cell accumulation in inflamed
mucosa [96].

The correlation of CCL2 (MCP-1) salivary levels with the
abundance of beneficial oral bacteria corroborate with other
data indicating its protective role. Locally delivered CCL2
prevented alveolar bone loss in a periodontitis mice model
due to its ability to decrease macrophage M1:M2 ratio in the
gingival tissues, leading to the resolution of inflammation [97].
Furthermore, our group reported that salivary levels of CCL2
were diminished in aggressive periodontitis of the incisor-molar
phenotype [27]. However, other data reported that CCL2 levels
were increased in the serum of patients with periodontitis [86],
indicating that the role of CCL2 in periodontitis should still
be addressed.

These data suggest that R. aeria and H. parainfluenzae are
beneficial to the host. On the other hand, a longitudinal study
on periodontitis subjects submitted to periodontal treatment
reported that the abundance of Rothia showed negative
associations with Selenomonas, Fusobacterium, and Prevotella
[73]. Thus, it is possible that Rothia and/orH. parainfluenzae did
not directly trigger CCL2 production or inhibit the production
of inflammatory mediators but would meet suitable conditions
for growth under an environment where inflammation
is resolved.

Our data should be interpreted under certain limitations,
especially due to the low number of subjects in each group.
However, both groups were homogeneous with regard to
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age, differing from other studies where inflammation may
account as a confounding factor [98]. Furthermore, all
periodontitis subjects had moderate progressive disease
(Grade B), similar disease severity, and the number of
affected sites, indicating a similar contribution to salivary
mediator levels. Only the abundance of single species
was correlated with the levels of inflammatory mediators;
therefore, the synergic effect of the microbial community
could not be evaluated. Since the production of inflammatory
mediators is not the result of signaling by single organisms,
other correlations would be possible by combining
different organisms, such as those used in certain in vitro
models [99].

The present study pointed out that dysbiosis does not occur
only in periodontal pockets, but the dysbiotic community
of biofilms of supragingival and subgingival healthy sites
of patients with periodontitis may serve as a reservoir for
pathogens. Our data also indicated the dysbiosis of the gut
microbiome in periodontitis, similar to other inflammatory
diseases. Furthermore, microbial signatures were associated
with inflammatory mediators in saliva, evidencing the
potential of candidate pathogens [100] and other less-studied
organisms, as well the potential benefit promoted by R. aeria
and H. parainfluenzae.
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