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Abstract

Rocky Mountain elk (Cervus canadensis) populations have significant economic implica-

tions to the cattle industry, as they are a major reservoir for Brucella abortus in the Greater

Yellowstone area. Vaccination attempts against intracellular bacterial diseases in elk popu-

lations have not been successful due to a negligible adaptive cellular immune response. A

lack of genomic resources has impeded attempts to better understand why vaccination

does not induce protective immunity. To overcome this limitation, PacBio, Illumina, and Hi-C

sequencing with a total of 686-fold coverage was used to assemble the elk genome into 35

pseudomolecules. A robust gene annotation was generated resulting in 18,013 gene mod-

els and 33,422 mRNAs. The accuracy of the assembly was assessed using synteny to the

red deer and cattle genomes identifying several chromosomal rearrangements, fusions and

fissions. Because this genome assembly and annotation provide a foundation for genome-

enabled exploration of Cervus species, we demonstrate its utility by exploring the conserva-

tion of immune system-related genes. We conclude by comparing cattle immune system-

related genes to the elk genome, revealing eight putative gene losses in elk.

Introduction

Rocky Mountain elk (Cervus canadensis) were once distributed across much of North America

but now inhabit remote areas. Rocky Mountain elk were nearly exterminated from the Rocky

Mountains of Alberta and British Columbia in the early 1900s [1], but were restocked between

1916–1920 with elk from the Greater Yellowstone Area [2–5]. By 1940 elk populations

expanded so greatly, that periodic culling was necessary [3, 6]. While elk have been reintro-

duced to many areas, the densest populations are maintained in mountainous remote areas,

like the Greater Yellowstone Area.
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Elk typically avoid the presence of domesticated livestock, yet they will utilize the same

grounds for grazing when livestock are absent [7]. This can be problematic for ranchers occu-

pying areas near elk populations like the Greater Yellowstone Area. Elk are known reservoirs

for brucellosis, (Brucella abortus) a disease that is highly contagious and poses a risk to live-

stock and humans [8–10]. Because of the potential for causing abortion in cattle, the USDA

used vaccines and serologic testing to nearly eradicate B. abortus from domestic herds [11].

Yet in the last 15 years, over 20 cases of transmission to cattle have been traced to wild elk pop-

ulations in the Greater Yellowstone Area. Attempts to establish long-term immunity through

vaccination have proven unfruitful, as elk have negligible adaptive cellular immune responses

to existing Brucella vaccines [12]. Because the eradication of B. abortus from cattle herds can

cost hundreds of thousands of dollars and current tools make it unfeasible to control infection

in wild elk, there is a need to dissect the genetic nature of limited immune responses in elk.

With advances in sequencing technology (PacBio, Illumina and Hi-C), we are now able to

investigate difference in adaptive immune response at the genomic level by examining the

presence and absence of immune system-related genes. Here, we report a chromosomal level

reference genome assembly and annotation of the Rocky Mountain elk and perform a prelimi-

nary investigation of immune gene loss between elk and cattle.

Methods

Animal selection

A long-captive herd in Minnesota provided a healthy adult male Rocky Mountain elk for Pac-

Bio sequencing, and another for HiC and Chicago sequencing. White blood cells from six

females from the aforementioned herd and six females from Wyoming were used for paired

end sequencing, while an an elk calf, captive-born in Iowa, was used for RNA-seq. The

research protocol was approved by the National Animal Disease Center Animal Care and Use

committee and all animals under the protocol were maintained in accordance with animal

care regulations.

Sequencing

For the initial contig assembly we generated a hybrid data set with Illumina PCR-free 150bp

paired end reads and PacBio RSII reads produced with P6-C4 chemistry. Chicago and Hi-C

libraries were prepared as described previously [13, 14]. Both Chicago and Hi-C libraries were

prepared similarly, though Hi-C libraries were nuclear-fixed. Briefly, formaldehyde-fixed

chromatin was digested with DpnII, and 5’ overhangs were sealed with biotinylated nucleo-

tides. Blunt ends were ligated, followed by crosslink were reversed for DNA purification from

protein. We then removed biotin that was not internal to ligated fragments. DNA was sheared

to a mean length of ~350 bp for library construction with NEBNext Ultra enzymes and Illu-

mina-compatible adapters. Biotin-containing fragments were isolated using streptavidin beads

before PCR enrichment of the libraries. Both Chicago and Hi-C libraries were sequenced on

an Illumina HiSeqX at 2x150bp, attaining totals of 470 million and 500 million reads,

respectively.

To prepare samples for PacBio and Illumina sequencing, DNA from purified peripheral

blood mononuclear cells was isolated using a Gentra Puregene Blood Kit (Qiagen) and

Genomic-tip 500/G kit (Qiagen), respectively, in accordance with manufacturer recommen-

dations. Resulting DNA preparations were quantified using Qubit Broad Range Assay (Ther-

moFisher) and assessed for quality via Nanophotometer Pearl (Implen). Prior to Pacific

Biosciences (PacBio) library preparation, DNA fragment size was evaluated using the HS

Large Fragment 50 Kb method on fragment analyzer (Advanced Analytical Technologies,
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Inc.) and determined to have an average size of approximately 40 kb. The DNA was sheared

to approximately 20kb, size separated using a Blue Pippin using the PAC-30 KB cassette

(Sage Science). Libraries were prepared for PacBio sequencing using the large insert library

protocol and Illumina sequencing using the TruSeq PCR-free kit per manufacturer recom-

mendations. Long read sequencing was conducted on the Pacific Biosystems RS II. Illumina

short read sequencing (150 bp PE) was conducted on the HiSeq 3000 platform in accordance

with manufacturer recommendations.

For preparation of RNAseq data tissue samples (skeletal muscle, spleen, kidney, lung, pre-

scapular lymph node and mesenteric lymph node) were collected and stored in RNAlater™
(Ambion) at 4˚C. Excess RNAlater™ was removed following overnight incubation, and samples

were stored at -80˚C. For RNA isolation, approximately 50 mg of each tissue were added to 1

ml of TRIzol© (ThermoFisher) and processed according to manufacturer’s instructions. Fol-

lowing collection of the aqueous phase, samples were purified using the Purelink© RNA Mini

kit (ThermoFisher), following manufacturer’s recommendations. RNA quality was assessed

using an Agilent Bioanalyzer using the RNA 6000 Nano kit. RNA concentrations were deter-

mined using a Nanodrop (ThermoFisher). Sequencing libraries were prepared after ribosomal

RNA depletion using the Ribo-Zero H/M/R kit (Illumina) and stranded total RNA-seq librar-

ies were prepared using the Ultra II RNA library prep kit (New England Biolabs) per manufac-

turer’s recommendations. Resulting libraries were sequenced using a HiSeq 3000 (Illumina)

and 100 cycle paired-end chemistries.

Genome assembly

An initial genome assembly was generated with Masurca version 3.2.3 [15], attaining a 2,559.8

Mbp genome size in 29,125 contigs with N50 size of 1,224,689bp. Dovetail Genomics scaf-

folded this assembly using an iterative HiRise analysis informed via alignments of Chicago and

then Hi-C libraries with a modified SNAP aligner (http://snap.cs.berkeley.edu). This assembly

contained 2,560.5 Mb, with an L90 of 31 scaffolds, and a N90 of 43.374 Mb. 1,004,453,472 Chi-

cago and Hi-C reads were used to scaffold this Dovetail assembly with a Juicer 1.5.6, 3D-DNA

180922, and JuiceBox 1.9.8 [16, 17]. Reads were extracted from bam files with Picard 2.9.2

[18]. The Dovetail assembly was masked using RepeatModeler 4.0.7 [19] and RepeatMasker

1.0.8 [20], prior to the alignment of Hi-C reads with BWA mem 0.7.17 [21]. Alignments were

processed using Juicer, 3D-DNA [22], and Juicebox [16, 17]. The Juicebox assembly strategy

consisted of: manually placing all contigs greater than 10kb, incorporating scaffolds at the

highest Hi-C signal, placing scaffolds in non-repetitive regions when Hi-C signal was equal

between a repetitive and non-repetitive region, repeats were clustered whenever possible, and

only obvious mis-joins were edited. The initial Juicebox scaffolding created 34 pseudomole-

cules, which was then compared to the Cervus elaphus hippelaphus genome assembly

(GCA_002197005.1) [23] to reveal the merger of the X and Y chromosomes. A BLASTn [24]

of the C. elaphus hippelaphus genome sequence was used to identify coordinates, allowing the

correct separation the X and Y chromosome via the heatmap in Juicebox. The 3D-DNA

assembly finished with 22,557 scaffolds.

The contigs that could not be integrated into the pseudomolecules were eliminated based

on repetitiveness, duplicated heterozygous contigs, RNA-seq mapping potential, and contig

size (>500 bp). BEDTools 2.25.0 [25] was used to merge coordinates from mapping these con-

tigs to the pseudomolecules with BLAST+ 2.9 (score>300) and RepeatMasker 1.0.8 [20] mask-

ing coordinates. 22,065 contigs were eliminated that were less than 1kb, had at least 90% query

coverage, and lacked a single unique mapping RNA-seq read, leaving 35 pseudomolecules, 457

contigs, and a mitochondrial genome.
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The assembly was polished with Pilon 1.23 [26] using CCS PacBio reads and paired end

Illumina DNA-seq. CCS PacBio reads were created from the PacBio subreads using bax2bam

[27] and Bamtools 2.5.1 [28] and then aligned using Minimap 2.6 [29]. Paired end reads were

aligned using Hisat2 2.0.5 [30], followed by bam conversion and sorting with Samtools 1.9

[31]. Due to uneven and excessive coverage in repetitive regions, paired end alignments were

set at a max coverage of 30x using jvarkit [32]. Due to the excessive repetitiveness of Chromo-

some_14, 50Mbp of this chromosome was not polished.

After polishing, another round of small contig elimination was performed by merging

RepeatMasker [20] coordinates and coordinates from BLAST+ 2.9 [24] (score>300, width

1000bp) to the pseudomolecules with Bedtools 2.25.0 [25]. If 90% of query length was repeti-

tive and contained within the pseudomolecules, it was eliminated. BlobTools 1.11 [33] was run

with PacBio subread alignments to the genome, and contigs annotated with BLAST [24] to the

NT database (S1 Fig). All scaffolds passed contamination screening, resulting in a final assem-

bly containing 35 pseudomolecules, 151 contigs, and the mitochondrion.

Mitochondrial identification and annotation

BLAST+ 2.9 [24] was used to identify the mitochondrial genome by querying the mitochon-

drial scaffold of the C. elaphus hippelaphus GCA_002197005.1 [23]. Though the mitochondrial

genome was identified, it contained three juxtaposed mitochondrial genome duplications. The

scaffold was manually corrected using genomic coordinates with faidx in Samtools 1.9 [31].

Genes were annotated in the mitochondrial genome using the Mitos2 webserver [34] with

RefSeq 89 Metazoa, a genetic code of 2, and default settings.

Repeat prediction

A final version of predicted repeats was obtained using–sensitive 1 and–anno 1 for EDTA

1.7.9 [35] and with default parameters for RepeatModeler 1.0.8 [19] with RepeatMasker 4.1.0

[20].

Gene prediction

A total of 753,228,475 RNA-seq reads aligned to the genome using Hisat2 2.0.5 [30] followed

by bam conversion and sorting with Samtools 1.9 [31]. RNA-seq read counts were obtained

using Subread 1.5.2 [36]. The alignments were assembled into genome-guided transcriptomes

using Trinity 2.8.4 [37–39], Strawberry 1.1.1 [40], Stringtie 1.3.3b [41, 42], and Class2 2.1.7

[43]. The RNA-seq alignments were also used for a gene prediction via Braker2 2.1.4 [44] with

Augustus 3.3.3 [45] on a genome soft-masked by RepeatMasker 1.0.8 [20] with a custom

RepeatModeler 4.0.7 [19] library. High confidence exon splicing junctions were identified

using Portcullis 1.1.2 [46]. Each of these assemblies were then supplied to Mikado 2.0rc6 [47]

to pick consensus transcripts, while utilizing Cervus-specific proteins from Uniprot [48]

(downloaded 12-28-19). This mikado prediction was filtered for transposable elements using

Bedtools 2.25.0 intersect [25] and filtered for pseudogenes via removing genes with five or

fewer mapping RNA-seq reads. With Bedtools 2.25.0 [25] intersect these filtered Mikado gene

models were used to find corresponding Braker2 2.1.4 [44] gene models. Both of these predic-

tions, together with a Genomethreader 1.7.1 [49] alignment of Uniprot proteins from the

Pecora infraorder (downloaded 02-07-20) were used for a final round of Mikado gene predic-

tion. The predicted transcripts and proteins were generated using Cufflinks [50] gffread

(2.2.1), and subjected to functional annotation to: Interproscan 5.27–66.0 [51, 52] and BLAST

[24] searches to NCBI NT and NR databases downloaded on 10-23-19, as well as Swissprot/

Uniprot databases downloaded on 12/09/2019.
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BUSCO

Universal single copy orthologs were assessed using BUSCO 4.0 [53, 54], with the eukaryo-

ta_odb10 and cetartiodactyla_odb10 datasets in both genome and protein mode.

Synteny

With the predicted proteins from B. taurus (GCF_002263795.1_ARS-UCD1.2) [55], C. elaphus
(GCA_002197005.1) [23] and C. canadensis genome assemblies, we inferred gene orthology

using BLASTp [24], at cutoffs of an e-value of 1e-5, 50% query cover, and 70% identity. Gene-

based synteny was predicted using iAdHoRe 3.0.01 [56] with prob_cutoff = 0.001, level 2 mul-

tiplicons only, gap_size = 5, cluster_gap = 15, q_value = 0.01, and a minimum of 3 anchor

points. Synteny figures were produced using Circos (0.69.2) [57]. Dot plots were produced

using MCScanX 20170403 [58].

Identification and verification of immune system-related genes

Immune system-related genes from Bos taurus were found in the GENE-DB database of the

International ImMunoGeneTics website (www.imgt.org) [59]. This database is comprised of

immunoglobulins (IG), T cell receptors (TR) and major histocompatibility (MH) genes from

vertebrate species. A tblastn (2.9.0+) [24] was performed against the elk and cattle genome

assembiles (GCF_002263795.1_ARS-UCD1.2) [55], with an e-value cutoff of 1e-3. We

removed candidate missing genes based on whether a similar isoform was present in the elk

genome. To continue finding candidate missing genes in the elk genome, not found by

tBLASTn, we investigated using Bedtools 2.25.0 extracted cattle nuceotide sequences with a

BLASTn to the elk genome. Those genes that were still not found via BLASTn [24], were modi-

fied to retain 20 bp border sequences with Bedtools 2.25.0, and subjected to another BLASTn

[24] to the elk genome. If a gene was still not found, hit sequences in the cattle genome were

expanded by 100bp with Bedtools 2.25.0, combined with the elk genome, and used for Hisat2

2.0.5 [30] RNAseq mapping and Minimap2 2.6 [29] Pacbio mapping. Read counts were dis-

cerned using FeatureCounts from the Subread package 1.5.2 [36].

Results and discussion

Here we present the first pseudomolecule assembly of C. canadensis, generated with 1.7 trillion

base pairs of sequencing at a 686-fold coverage of the genome.

Genome assembly

An initial assembly was created with MaSuRCA [15, 60] generating 23,302 contigs, an L90 of

2,500 contigs, and an N90 of 197,963bp. Through collaboration with Dovetail Genomics and

then additional implementation of the Juicer/JuiceBox/3D-DNA pipeline [16, 17, 22], we gen-

erated an assembly of 33 autosomes, an X chromosome, a Y chromosome, a mitochondrial

genome, and 151 unincorporated contigs. This result is supported by published cytological

studies revealing a haploid set of 34 chromosomes [61]. We utilized synteny to identify homol-

ogous chromosomes between elk and red deer, and found that nearly always, elk chromosome

sizes fell within the estimated size of the red deer’s assembled chromosomes [23] (S1 Table).

The only exception is the Y chromosome, which was nearly twice (7.6 Mb) the largest pre-

dicted size (4 Mb) of the red deer chromosome. We investigated all putative contaminant con-

tigs from Blobtools [33], and ruled out contamination (S1 Fig), but also took additional steps

to ensure the completeness of the genome by mapping reads back to the assembly. We found

that we captured the majority of genome, with 90.7% and 87.3% of PacBio CCS reads Illumina
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DNA-seq aligning to the genome (S2 Table). To evaluate the completeness of the genome we

ran BUSCO 4.0.2 [54] (Benchmarking Universal Single Copy Orthologs) on genome. Of the

possible 255 and 13,335 genes in the eukaryota and certartiodactyla odb10 datasets, 62% and

88.1% were complete, 2.4% and 2.1% were duplicated, and 3.1% and 2.1% were fragmented,

and 32.5% and 9.8% were missing, respectively.

Genome annotation

To obtain a high-quality elk gene prediction, we pursued an extensive annotation of repeats in

the genome using two repeat predictors. While EDTA [35] utilizes a comprehensive set of

repeat prediction programs to create a repeat annotation, Repeatmodeler/Repeatmasker [19,

20] is a long-standing and comparable annotator of repeats that is more reliant on copy num-

ber. With EDTA, 25.8% of the genome was marked repetitive, with DNA transposons com-

prised the largest percentage of repeats in the genome, at 16% (S3 Table). In contrast,

RepeatMasker assessed 36.5% of the genome as an interspersed repeat, with 28.8% of the

genome being comprised LINE retrotransposons. We merged these repeat annotations with

BEDTools [25] to reveal that 38% of the genome is repetitive. This is in contrast to the repeti-

tive content in red deer, estimated at 22.7%. This difference could be due to technological

improvements and could stem from the large proportion of gaps in the red deer genome

(1.5Gbp) [23]. While together these differences could account for a large disparity in chromo-

some sizes, only the elk Y chromosome was outside the gapped and sequence length range in

red deer chromosomes [23].

To annotate the genes in the genome we generated 1.5 billion paired end reads of sequenc-

ing from six tissues, including kidney, lung, mesenteric lymph node, muscle, prescapular

lymph node, and spleen. After masking repeat sequences using Repeatmodeler [19] and

Repeatmaker [20], we performed five de novo transcript/gene predictions with a soft-masked

genome and RNA-seq. The best transcripts were discerned using Mikado [47], followed by

clustering with Cufflinks [50] using B. taurus mRNAs to cluster transcripts into gene loci.

Using this approach 18,013 genes were predicted to encode 33,433 mRNAs (S4 Table). The

functional annotations of these genes were extremely high, with 17,938 of the 18,013 genes or

99.6% being annotated by at least one of: Interproscan or BLAST to NR, NT, and Uniprot (S5

Table). The gene annotation was evaluated for completeness with BUSCO in protein mode. A

remarkable “Complete” score improvement is seen in both eukaryota and cetartiodactyla at

97.7% and 92.1%, respectively. These results together suggest that both the genome and the

gene prediction are of high quality.

Fig 1. Synteny and Hi-C plot of elk chromosomes. A. Gene-based synteny between C. elaphus hippelaphus and C. canadensis. B. Hi-C

plot of elk chromosomes in JuiceBox. C. Gene-based synteny between B. taurus and C. canadensis.

https://doi.org/10.1371/journal.pone.0249899.g001
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Comparison to related species

By utilizing these new gene predictions we evaluated the conservation of chromosome struc-

ture between C. canadensis, C. elaphus hippelaphus, and B. taurus using gene-based synteny

with i-ADHoRe [56]. All elk chromosomes were syntenic with all C. elaphus and B. taurus
chromosomes, though Y chromosome lacked the genes required for gene-based synteny (Fig

1, Table 1). As has been seen in previous Cervus assemblies [23], multiple pairs of chromo-

somes are tandemly fused in B. taurus and vise-versa (Table 2). We confirmed previous reports

Table 1. Chromosome statistics of the Rocky Mountain elk assembly compared to red deer, with syntenic relationships to red deer, sika deer, cattle, sheep and

human.

Cervus canadensis Total length (bp) Repetitive elements (bp) Gene Frequency Red Deer Gene Frequency Chromosomal Relationships

Red deer Sika deer Cattle Sheep Human

1 127,605,827 46,694,602 1,460 1,698 5 2 17, 19 17, 11 4, 12, 17

2 114,865,875 43,848,496 999 1,132 20 3 3 1 1

3 114,606,702 42,403,479 631 626 18 4 4 4 7

4 105,318,381 40,480,415 925 1,025 9 5 7 5 5, 19

5 101,869,976 36,732,257 864 910 11 8 11 3 2, 9

6 96,780,817 34,856,794 718 794 12 16 10 7 14, 15

7 94,470,602 36,360,279 554 619 19 7 1 1 3, 21

8 92,076,199 33,431,109 602 712 15 9 26, 28 22, 25 1, 10

9 84,228,583 32,593,999 358 382 30 10 12 10 13

10 82,287,371 29,138,716 705 687 23 1q 13 13 10, 20

11 78,153,912 31,079,399 603 622 1 11 15 15 11

12 77,654,944 28,351,493 432 409 21 13 14 9 8

13 76,089,960 28,668,740 563 587 14 14 16 12 1

14 74,494,459 26,159,099 320 307 29 15 8 2 9

15 74,380,151 29,044,063 280 463 33 12 2, 22 2 2, 3

16 67,981,682 25,953,664 304 289 25 20 20 16 5

17 65,378,136 25,514,684 475 472 13 21 21 18 14, 15

18 64,413,554 22,951,146 971 1,035 4 1p 18 14 19

19 62,010,818 24,221,065 204 246 17 16 6 6 4

20 60,444,953 24,378,692 215 245 28 17 9 8 6, 9

21 59,747,184 22,203,178 560 520 22 19 5 3 22

22 59,530,028 20,562,536 498 519 24 26 22 19 3

23 58,383,784 20,478,363 276 321 27 24 24 23 18

24 54,121,439 19,309,984 480 455 8 18 2 2 1, 2

25 53,619,048 20,223,354 382 530 3 27 5 3 12

26 52,893,355 19,063,751 287 333 6 22 6 6 4

27 52,039,427 21,233,487 164 193 31 25 1 1 21

28 51,438,166 17,786,547 534 492 7 23 23 20 6

29 48,396,561 18,012,957 521 541 2 29 29 21 11

30 44,123,562 16,926,467 302 327 16 32 8 2 8, 9

31 42,799,129 15,135,670 211 196 32 28 27 26 4, 8

32 40,102,283 14,331,760 611 702 10 30 25 24 7, 16

33 38,432,887 12,811,166 223 240 26 31 9 8 6

X 146,388,637 74,117,965 744 716 X X X X X

Y 7,618,728 4,865,392 27 23 Y Y Y Y Y

Unplaced 1,865,887 19,491 10 10

Total 2,526,613,007 959,944,259 18,013 19,378

https://doi.org/10.1371/journal.pone.0249899.t001
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of chromosome fusions and fissions indicated that twelve cervus chromosomes fused into six

in B. taurus, as well as four chromosomes in B. taurus are fused into two cervus chromosomes

(Table 2).

Two inter-chromosomal translocations were inferred between the two Cervus species, both

having strong Hi-C support in elk (Fig 1, Table 3). Chromosome_15 and Chromosome_24 of

elk, comprised large portions of C. elaphus Ce_Chr_33 and a minor portion of Ce_Chr_8.

With the majority of Chromosome_24 homologous to C. elaphus hippelaphus Ce_Chr_8, a 17

MB region of Ce_Chr_33 may have been falsely attached to Ce_Chr_8 in C. elaphus hippela-
phus. Another smaller chromosome translocation of 13.6 MB occurred between Ce_Chr_22

and Ce_Chr_3 of C. elaphus, attributed to chromosomes 21 and 25 in C. canadensis. A small

region of Ce_Chr_22 was likely falsely attached to Ce_Chr_3 in C. elaphus hippelaphus. Inter-

estingly, both of these translocations are between chromosomes in elk that are fused chromo-

somes in B. taurus, Bt_Chr_2 and Bt_Chr_5 (Table 3). While it is possible that these

translocations occurred since the divergence of these two species, because the B. taurus assem-

bly was used to orient and join scaffolds in the C. elaphus hippelaphus genome assembly, it is

likely that these translocations are misassemblies in the C. elaphus hippelaphus genome.

Immune gene loss

A total of 36 Bos taurus immune coding sequences from the IMGT GENE-DB database [59]

were lacking from initial investigations of the elk genome, and yet were identified in cattle

genome. Despite extensive attempts to identify these genes in the elk genome with tBLASTn,

BLASTn of cattle hit sequences, and BLASTn of cattle hit sequences with 20bp borders, we

were unable to identify putative elk orthologs (Table 4, S6 Table). However, seventeen putative

gene loci were identified in elk using a BLASTn of cattle nucleotide sequences hit by the

tBLASTn, an additional twelve were found using the broadened cattle hit sequences with 20bp

borders, and seven were confirmed missing from the genome (S6 Table, Table 4). We found a

Table 2. Chromosomal fissions and fusions between elk and cattle genomes.

C. canadensis B. taurus
25,21 5

19,26 6

14,30 8

20,33 9

24,15 2

7,27 1

1 17,19

8 26,28

https://doi.org/10.1371/journal.pone.0249899.t002

Table 3. Inter-chromosomal translocation comparisons among Cervus species and cattle.

C. canadensis C. elaphus B. taurus
15 33,8 2p

24 8 2q

21 22,3 5p

25 3 5q

Ce_Chr_8 has a 17Mbp region of Ce_Chr_33, and Ce_Chr_3 has a 13.6Mb region of Ce_Chr_22. P is proximal, q

represents distal.

https://doi.org/10.1371/journal.pone.0249899.t003
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complete lack of genomic gaps in these regions, confirming the contiguity of these suspected

gene regions. However, RNA-seq aligned to 27/36 of these suspected loci, indicating genomic

variation in these regions may prevent their identification. Nevertheless, nine genes lacked a

translatable sequence in the elk genome and could not align RNAseq, confirming their

absence from both genomic and transcriptomic data. These genes were AY644517_TRGC4,

IMGT000049_TRAJ8-1, IMGT000049_TRAJ3, IMGT000049_TRAJ17, IMGT000049_TRAJ42,

IMGT000049_TRAJ49, IMGT000049_TRAJ56, KT723008_IGHD, and a homolog of

(AY149283_IGHJ1-2,KT723008_IGHJ2-2,NW_001494075_IGHJ1-2) (S6 Table). All of these

loci encode components of the T cell receptor: (gamma constant 2), (T cell receptor alpha join-

ing), and (delta chain) or are heavy chains in the immunoglobulin complex (S6 Table).

Ruminants, including elk, differ from rodents and humans by the high proportion (some-

times 40–50%) of T cells circulating in the peripheral blood expressing γδ receptors. In all spe-

cies, γδ T cells are involved in diverse and important roles in not only adaptive, but also innate

immune responses [62]. Rearrangements of V (variable), J (joining) and C (constant) regions

of the γ chain when combined with the δ chain contribute to the repertoire diversity of the γδ
T cell receptor. While future work will be necessary to understand how the loss of these genes

affects the cellular immune response in elk, certainly the loss of T-cell receptor diversity is an

important consideration in discerning why elk does not develop protective immunity after B.

abortus vaccination. Because B. abortus is a facultatively intracellular bacteria, stages of the dis-

ease cannot be accessed by antibodies, and thus cellular immune responses must be activated

by T cell receptors interacting with antigens on the surface of infected cells [63, 64]. In cattle,

protection to some bacterial diseases via vaccines is mediated by memory T cells activating

effector T cells and some specific cases, effector T cell populations bearing gamma-delta chain

receptors. A reduction in the number of available T cell receptor variants could limit or hinder

immune responses to some antigens. Thus, this investigation provides a foundation for the

development of a viable vaccination strategy in elk, a step towards developing long-term

immunity to Brucella.

Conclusions

This genome assembly and annotation of the Rocky Mountain elk is the most contiguous

assembly of a Cervus species and will serve as an important tool for genomic exploration of all

related Cervids. Elk’s loss of immune system-related genes in relation to cattle, may provide a

clue to establishing a successful vaccination strategy. This chromosomal assembly of the elk

genome will provide an excellent resource for investigating genes involved in elk’s poor adap-

tive cellular immune response to Brucella vaccines.
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