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Abstract

Background: Researchers in the field of bioinformatics often face a challenge of combining
several ordered lists in a proper and efficient manner. Rank aggregation techniques offer a general
and flexible framework that allows one to objectively perform the necessary aggregation. With the
rapid growth of high-throughput genomic and proteomic studies, the potential utility of rank
aggregation in the context of meta-analysis becomes even more apparent. One of the major
strengths of rank-based aggregation is the ability to combine lists coming from different sources and
platforms, for example different microarray chips, which may or may not be directly comparable
otherwise.

Results: The RankAggreg package provides two methods for combining the ordered lists: the
Cross-Entropy method and the Genetic Algorithm. Two examples of rank aggregation using the
package are given in the manuscript: one in the context of clustering based on gene expression, and
the other one in the context of meta-analysis of prostate cancer microarray experiments.

Conclusion: The two examples described in the manuscript clearly show the utility of the
RankAggreg package in the current bioinformatics context where ordered lists are routinely
produced as a result of modern high-throughput technologies.

Background
Rank aggregation has a long history with its roots tracing
back to the voting theory of the 18th century. The Borda
count is perhaps the most famous such method where
elements in the overall list are ordered according to the
average rank computed from the ranks in all individual lists.
Other rank aggregation schemes have been proposed over
the years and they differ greatly in both the underlying
philosophy, as well as mathematical complexity.

Two radically different philosophies on rank aggregation
exist. The first one is based on the majoritarian principles
and attempts to accommodate the "majority" of indivi-
dual preferences putting less or no weight on the
relatively infrequent ones. The final aggregate ranking

is usually based on the number of pairwise wins between
items within individual lists. If item "A" is ranked higher
than item "B" more often than not, then item "A" should
also be ranked higher than item "B" in the overall list.
Any method that satisfies this condition, known as the
Condorcet criterion, is called the Condorcet method. The
second philosophical approach to rank aggregation seeks
the consensus among individual ordered lists and is
usually based on some form of rank averaging. The
Borda count is a good representative of this category. It is
possible that the two approaches will produce different
aggregated lists if applied to the same problem.

Conceptually, rank aggregation techniques range from
quite simple (based on rank average or on a number of
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pairwise wins) to fairly complex which may employ
advanced computational methodologies to find a solu-
tion. Simple solutions are not necessarily desirable as
they usually rely on "ad hoc" principles and lack any
formal justification. Mathematical rigor brings certain
satisfaction and "security" at the expense of increased
complexity and intensive computation.

Rank aggregation methods have a lot of potential in the
field of bioinformatics. Ordered lists are routinely
produced by today's high-throughput techniques which
naturally lend themselves to a meta-analysis through
rank aggregation. [1, 2] proposed to use rank aggregation
methods to integrate the results of several microarray
studies (ordered lists of genes), [3, 4] suggested aggrega-
tion of miRNA targets predicted by three popular
software packages and [5] used rank aggregation to
order clustering algorithms evaluated by several valida-
tion measures. The list can easily be extended to other
potential applications, in particular, in proteomics for
the purpose of integrating biomarkers from different
studies or in the context of clustering analysis where the
unknown number of clusters, instead of the "best"
algorithm, needs to be determined. In this paper, we
present an R RankAggreg package available through
CRAN http://cran.r-project.org/web/packages/RankAg-
greg/ which provides two different algorithms for rank
aggregation: the Cross-Entropy Monte Carlo algorithm
(CE) [6, 7] and the Genetic algorithm (GA) [8]. Both
methods are available through the main function
RankAggreg. In addition, a brute force algorithm is also
provided through the BruteAggreg function which simply
tries all possible solutions and selects the one which is
optimal. What is meant by "optimal" and how to find
the "optimal" solution will be the discussion of the
Methods section.

Implementation
Rank aggregation as an optimization problem
To cast the rank aggregation in the framework of an
optimization problem, we first need to define the
objective function. In this context, we would like to
find a "super"-list which would be as "close" as possible
to all individual ordered lists simultaneously. This is a
natural requirement and the objective function, at least
in its most abstract form, is very simple and intuitive

Φ( ) ( , ),d d=
=
∑w d Li i
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where δ is a proposed ordered list of length k = |Li|, wi is
the importance weight associated with list Li, d is a
distance function which will be discussed in details
below, and Li is the ith ordered list [3, 5].

The idea is to find δ* which would minimize the total
distance between δ* and Li's
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Selecting the appropriate distance function d to measure
the "distance" between ordered lists is very important.
Though many choices for a distance function can be
found in the literature, we concentrate on the two most
popular ones: Spearman footrule distance and Kendall's
tau distance. The two distances usually produce slightly
different aggregated lists which is mainly due to the
differences in the two philosophical paradigms discussed
in the Background section.

Spearman footrule distance
Before defining the two distance measures, let us
introduce some necessary notations. Let Mi(1),..., Mi(k)
be the scores associated with the ordered list Li, where
Mi(1) is the best (can be the largest or the smallest
depending on the context) score, Mi(2) is the second
best, and so on. Let r Li (A) be the rank of A in the list Li
(1 means "best") if A is within the top k, and be equal to
k + 1, otherwise; rδ (A) is defined likewise. The
Spearman's footrule distance between Li and any ordered
list δ can be defined as
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It is nothing more than the summation of the absolute
differences between the ranks of all unique elements
from both ordered lists combined. It is rather a very
intuitive metric for comparing two ordered lists of
arbitrary length. The smaller the value of the metric,
the more similar the lists. For Spearman's footrule
distance, the maximum value when comparing two
top-k lists is k(k + 1). It is attained when the two lists
have no elements in common.

The appeal of the Spearman footrule distance comes
from its simplicity and it is adequate in many situations
when the only information available about the indivi-
dual lists is the rank order of their elements. In a case
when additional information which was used to rank the
lists in the first place is available, it would be beneficial
and prudent to incorporate this information into our
aggregation scheme [5].

Thus, we define the Weighted Spearman's footrule
distance between Li and any ordered list δ which makes
use of the quantitative information available in many
cases. It is given by this weighted sum representation
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One can intuitively think of WS(δ, Li) in terms of sum of
penalties for moving an arbitrary element of the list Li, t,
from the position rδ (t) to another position r Li (t) within
the list (second term of the products) adjusted by the
difference in scores between the two positions (first
term).

Kendall's tau distance
The Kendall's tau distance takes a different approach at
measuring the distance between two ordered lists. It
utilizes pairs of elements from the union of two lists and
is defined
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Here, p Œ [0, 1] is a parameter that needs to be specified
for Kendall's tau. If p is set to 0, the maximum value that
the distance can achieve is k2 and this happens when the
intersection of the two lists compared is an empty set.
Intuitively, Kendall's tau can be thought about in the
following way. If the two elements t and u have the same
ordering in both lists, then no penalty is incurred (a good
scenario). If the element t precedes u in the first list and u
precedes t in the second list, then a penalty of 1 is imposed
(a bad scenario). A case when both t and u do not appear
in either one of the lists (their ranks are k + 1) can be
handled by selecting p on a spectrum ranging from very
liberal (0) to very conservative (1). That is, if we have no
knowledge of the relative position of t and u in one of the
lists, we have several choices in the matter. We can either
impose no penalty (0), full penalty (1), or a partial
penalty (0 < p < 1). The following three choices are
common: 0, 1, and 0.5. It is a matter of a philosophical
taste as to which option one chooses. We use p = 0 in the
internal Kendall function of the package.

Somewhat analogously to the Weighted Spearman
distance, the Weighted Kendall's tau is defined by
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in which the penalty imposed is adjusted by the absolute
difference in the scores for elements t and u. Here, K tu

p is
defined identically as above.

Normalization of scores from each list Li before
computing WS and WK is necessary. The weights must
be comparable otherwise disproportionately large or
small weights can benefit a particular list and pull the
"optimal" list δ* towards it. A number of normalization
schemes that map the scores from the real line to the
interval [0, 1] were considered. Unfortunately, most of
them resulted in transformed scores occupying a very
narrow portion of the interval. We settled for a simple
normalization which spread the scores "evenly" between
0 and 1

M
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We would like to make one last comment on the reasons
behind introducing weighted distance measures here.
Quite obviously they are motivated by the desire for a
more efficient use of the data, in this case, the numerical
scores which underlie the rankings. But that is not their
sole purpose. When using the original Spearman and
Kendall distances we noticed that in many situations no
clear winner exists as two or more ordered lists have the
same objective function score due to the discrete nature
of ranks. This brought computational instability into the
iterative aggregation process. The algorithm would never
converge but would simply oscillate between the two
"best" lists, understandably not knowing which one to
pick. When continuous weights are used to adjust the
discrete ranks, the possibility of such ties is almost
eliminated and the algorithm is much more computa-
tionally stable. In addition, we obtain a clear winner in
an objective and rigorous way.

Cross-Entropy Monte Carlo algorithm
The details of the CE algorithm are given in [5]. [3]
explore the CE algorithm for rank aggregation in the
context of microRNA analysis and a very useful tutorial
on the CE algorithm with several examples is presented
in [7]. Here, we only briefly describe the main steps. The
CE is a stochastic search algorithm in the space of
matrices with 0–1 valued entries with columns summing
to one and rows summing to at most one since any
ordered list can be uniquely mapped to such a matrix.

1. Initialization: Start with the uniform multinomial cell
probabilities.

2. Sampling: At each stage, generate a random sample of
such matrices via restricted (truncated) multinomial
sampling with the current cell probabilities.

3. Updating: Based on the current sample and the value
of the objective function at the corresponding ordered
list update the multinomial cell probabilities such that
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the objective functions at the next batch of sample values
tend to be smaller.

4. Convergence: Stop the search when the smallest
values of the objective function do not change in a given
number of iterations.

The CE algorithm requires users to set a number of
parameters. Convergence to a global optimal solution in
many ways depends on the parameters chosen. It is
recommended that the number of samples N for each
stage is to be set to at least 10k2 (in case, n >> k, 10kn,
where n is the total number of unique elements being
ordered k at a time) and the rarity parameter r used in
updating the cell probabilities is to be set to 0.01 if N is
relatively large or 0.1 if N is small (less than 100).

Genetic algorithm
Genetic algorithms are another set of tools suitable for
solving complex combinatorial problems [8]. Their main
advantage is their inherent simplicity in both conceptual
understanding and software implementation. In our
experience, the GA performs reasonably well for the
aggregation problem but one has to be careful with the
selection of important tuning parameters which control
the rate of the learning process.

As implemented in this package, the GA has the
following steps:

1. Initialization: Randomly select popSize ordered lists of size
k which form the initial population of possible solutions to
our optimization problem. The population size popSize is
important and, obviously, the larger the population size, the
better chance of it containing, at some point, the optimal
solution. It should ideally be a function of k and the number
of unique elements in the original ordered lists Li, but
computational feasibility has to be considered here.

2. Selection: Depending on which distance is used,
compute the objective function for each member of the
population. Then randomly select current members for
the next generation using weighted random sampling
where the weights are determined by the member's
fitness (the objective function score).

3. Cross-over: The selected members are then crossed-
over with the probability of CP (the cross-over prob-
ability), i.e. two random ordered lists can swap their tails
which start at a random position with the CP prob-
ability. Only 1-point cross-overs are allowed.

4. Mutation: Crossing-over will allow only for the
mixing of ordered lists but a rather drastic event is

required to bring radically new solutions to the popula-
tion pool. These are introduced by mutations which
happen with the probability of MP (mutation prob-
ability). Thus, any list in the pool can randomly change
one or more of its elements.

5. Convergence: The algorithm is stopped if the
"optimal" list remains optimal for convIn consecutive
generations (default is 15). To ensure that the algorithm
stops running eventually, the maximum number of
generations can be set in advance which will terminate
the execution regardless of the first condition being true.
If neither the maximum number of iterations has been
reached nor the "optimal" list stayed untouched during
the last convIn generations, continue to step Selection.

As was mentioned previously, the choice of the
parameters popSize, CP, and MP is crucial for the success
of the GA. If one is too conservative and selects small CP
and MP probabilities, the GA will have a hard time
exploring the space of possible solutions in a reasonable
time, particularly, when the space is extremely large. On
the other hand, choosing large values for CP and MP will
results in a "haste" decision, perhaps getting trapped in a
local minimum without a chance to explore the whole
search space.

Results and Discussion
We illustrate our R package with two different rank
aggregation problems, one in the context of unsuper-
vised learning where there is an intrinsic difficulty of
choosing the best clustering algorithm for a particular
problem, and another one in the context of meta-
analysis of several microarray cancer studies where the
goal is to determine the combined set of genes indicative
of the cancer status.

To start using the RankAggreg package, it must be loaded
into R [9] with the regular library( ) function, library
(RankAggreg). Package documentation, examples, and
additional information are available through help(pack-
age = "RankAggreg") and vignette("RankAggreg") func-
tions.

Aggregation of clustering validation measures
Rank aggregation in the clustering context was intro-
duced by [5]. Numerous clustering algorithms are
available in R and other statistical and data mining
software packages, each one having its relative strengths
and weaknesses in terms of how successfully they can
handle certain types of data. Thus, it is often difficult to
select the "best" algorithm for a particular clustering task.
Validation (performance) measures come to rescue to
some extent and offer an objective way of ranking
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clustering algorithms according to their assessment of
what a "good" clustering result is. If k clustering
algorithms are validated with m validation measures, m
ordered lists of size k are produced as a result. Even
though desirable, the order of clustering algorithms
within each list is rarely the same. Rank aggregation is
helpful in reconciling the ranks and producing the
"super"-list which determines the overall winner and
also ranks all clustering algorithms based on their
performance as determined by all m validation
measures simultaneously. Clustering validation is
implemented in the clValid package [10]. After loading
the package, we bring in a mouse microarray dataset
and select the first 100 genes from it. Assuming that
those 100 genes form 5 natural clusters (this is an ad-
hoc assumption but it is not essential for the rank
aggregation demonstration), we evaluate 10 clustering
algorithms with 6 validation measures. Available
clustering algorithms are: SOM (SM), SOTA (ST),
FANNY (FN), K-Means(KM), PAM(PM), Hierarchical
(HR), Agnes(AG), CLARA(CL), Diana(DI), and Model-
based(MO). Further details can be obtained from the
clValid package documentation.

For each validation measure, 10 clustering algorithms
can now be ranked based on the performance scores
which are sorted either in ascending or descending order
depending on whether larger or smaller scores corre-
spond to better performance under the measure. Here,
the Dunn index and the Silhouette Width measures give

higher scores with better performance and for the other
measures the smaller scores are desirable.

The 7 ordered lists of 10 algorithms are shown in
Table 1. Their corresponding weights (validation mea-
sure scores) which were used to rank the 10 algorithms
within each ordered list (in rows) are shown in Table 2.
We can see that both SOM and Hierarchical clustering
are performing quite well and each is ranked first by
three different validation measures. If we had to pick the
overall winner, it would probably be SOM as it performs
better overall. For this particular aggregation problem it
is feasible to determine the best performer without
resorting to advanced computational techniques, but it is
rather difficult to obtain the overall ordered list in this
case. Since the number of possible solutions is not that
large (k! = 10! = 3, 628, 800), it is feasible to use the
brute force approach to find the optimal solution. This
can be done using the BruteAggreg( ) function provided
in the package. Please note that even for this relatively
small problem it takes hours to perform the necessary
computations. The approach is limited to toy examples
only and should not be attempted if k is larger than 10.

The R code to perform the brute force rank aggregation is

> BruteAggreg(ranks, 10, weights, "Spearman")

Here, the first argument is the matrix of ordered lists (in
rows), the second argument is the size of the resulting

Table 2: Validation scores

1 2 3 4 5 6 7 8 9 10

APN 0.11 0.12 0.15 0.15 0.17 0.17 0.17 0.18 0.18 0.26
AD 1.63 1.67 1.70 1.71 1.71 1.74 1.83 1.85 1.85 2.50
ADM 0.28 0.31 0.37 0.47 0.48 0.48 0.57 0.63 0.63 0.85
FOM 0.57 0.58 0.58 0.59 0.59 0.59 0.60 0.68 0.68 0.80
Connectivity 23.91 23.91 35.44 36.09 37.49 38.40 38.82 39.58 39.84 49.93
Dunn 0.17 0.17 0.12 0.11 0.11 0.11 0.08 0.08 0.08 0.06
Silhouette 0.39 0.39 0.38 0.36 0.35 0.35 0.33 0.31 0.30 0.16

Clustering validation scores for each validation measure as produced by the clValid package. Please note that the rows are ordered in either ascending
or descending order depending whether larger or smaller scores are desirable for a particular validation measure.

Table 1: Clustering algorithms ranks

1 2 3 4 5 6 7 8 9 10

APN SM FN ST KM PM HR AG CL DI MO
AD SM FN KM PM CL ST DI HR AG MO
ADM FN SM ST KM CL PM DI HR AG MO
FOM SM CL KM PM FN ST DI HR AG MO
Connectivity HR AG DI KM MO SM FN CL PM ST
Dunn HR AG KM PM DI SM CL MO FN ST
Silhouette HR AG KM SM CL PM ST DI FN MO

10 clustering algorithms ranked by 7 validationmeasures (in rows). The rank of 1means that the algorithm received the best scored from a particular validation
measure. For example, SOM is deemed to be the best algorithm by APN, AD, and FOM measures, while MO is ranked last by 5 out of 7 measures.
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top list which is 10 in this case, the third argument
specifies the matrix of weights which is normalized by
the procedure (note that there is no need to worry about
mixing both ascending and descending orders; the only
requirement is that the rows must be sorted), and the last
argument indicates that we want to use the Spearman
footrule distance as the measure of similarity between
two ordered lists. The best overall list as determined by
trying all possible solutions with the weighted Spearman
footrule distance is SM HR KM FN AG PM CL DI ST MO
with the minimum objective function score of 5.552256.
As expected, SOM and Hierarchical clustering are the top
two performers, followed by the K-Means algorithm. We
will now see whether the CE algorithm can quickly
discover the solution without resorting to an exhaustive
search.

The RankAggreg( ) function performs rank aggregation
using either the CE algorithm or the GA algorithm. If the
verbose argument of the RankAggreg( ) function is set to
TRUE (it is by default), R console window outputs
information at each iteration to keep the user updated.
In addition, a plot similar to Figure 1 is shown and
updated at each iteration to monitor convergence.

Running the following code in R

> RankAggreg(ranks, 10, weights, seed = 123)

performs the rank aggregation using the CE algorithm.
We get exactly the same solution in only 13 iterations
and in about 40 seconds by examining mere 13000
potential candidates. The CE algorithm was run 20 times
using the default values with 20 different seeds. Only 1
out of 20 times it failed to discover the optimal solution,
switching the K-Means and SOM algorithms.

To get a visual representation of the results, a convenient
plot( ) function is provided. It takes the object returned
by the RankAggreg( ) function as its first argument and
outputs three side-by-side plots with useful information
on the convergence properties and the final ranking.
From these plots we see that already after 7 iterations the
CE algorithm found the optimal solution. The distribu-
tion of the final Monte Carlo sample is shown in the
second plot. Most of the mass is put on the optimal
value (most of the candidate lists are the same "optimal"
list). The last plot visualizes ordered lists to be combined
and the resulting solution.

Figure 1: Visual Representation of the aggregation results
through the plot( ) function. The first plot in the top row
shows the path of minimum values of the objective
function over time. The global minimum is shown in the
top right corner. The histogram of the objective function

scores at the last iteration is displayed in the second plot.
Looking at these two plots, one can get a general idea
about the rate of convergence and the distribution of
candidate lists at the last iteration. The third plot at the
bottom shows the individual lists and the obtained
solution along with optional average ranking.

Weighted Kendall's tau distance can also be used, though
it is much more expensive to compute.

> RankAggreg(ranks, 10, weights, "CE", "Kendall", seed = 123)

The overall list is given by KM SM PM FN HR AG CL DI
ST MO with the value of 1.241372. Thus, the SOM is put
in the second position with K-Means occupying the first
place. Maybe somewhat surprisingly, the Hierarchical
clustering (HR) algorithm is ranked fifth despite the fact
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Figure 1
Rank aggregation in the clustering context using the
CE algorithm. Visual Representation of the aggregation
results through the plot( ) function for the Clustering
example using the CE algorithm and the Spearman footrule
distance. The first plot in the top row shows the path of
minimum values of the objective function over time. The
global minimum is shown in the top right corner. The
histogram of the objective function scores at the last
iteration is displayed in the second plot. Looking at these two
plots, one can get a general idea about the rate of
convergence and the distribution of candidate lists at the last
iteration. The third plot at the bottom shows the individual
lists and the obtained solution along with optional average
ranking.
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that it was ranked number 1 in 3 out of 7 lists. The
rational explanation behind this decision is given by its
poor performance according to the other four measures
which rank it towards the end.

The Genetic Algorithm can also be used with either one
of the two distance measures. Both results agree with the
ones obtained using the CE algorithm. Besides the
jaggedness of the minimum path in the first plot of
Figure 2, it is easy to notice that the GA algorithm takes
significantly larger amount of cycles to converge but they
take less time to complete. Even given that, the
population distribution of the last generation is much
more heterogeneous than that of the CE.

Figure 2: Visual representation of rank aggregation using
the GA algorithm with the Weighted Spearman distance.

Meta-analysis of microarray experiments
Microarray cancer studies often attempt to identify genes
related to a specific cancer. Their most common output is
a list of genes ordered by corresponding p-values.
Different studies, even the ones analyzing the same
cancer type (for example, lung cancer), almost never
produce identical gene lists. Meta-analysis of multiple
microarray studies is difficult, especially if different
experimental platforms have been used. Rank

aggregation, however, avoids the issue of multiple
experimental conditions by dealing with the final
product: the ordered list of genes.

Recently, we carried out a meta-analysis of 20 microarray
studies on multiple cancers using the proposed rank
aggregation algorithms [2]. Our goal was to identify
genes which would be important in development of
multiple cancers. Further details can be found in the
original article. Here, we present a smaller example
described by [1] who used three different Monte Carlo
algorithms for rank aggregation of 5 prostate cancer
microarray datasets. Two experiments were conducted
using the Affymetrix chip technology and the other three
studies used custom cDNA chips. Each individual study
tried to identify genes which are either up or down-
regulated in prostate cancer patients, resulting in ordered
lists of upregualated genes shown in Table 3 (the lists
appear in Table 4 in [1]).

As shown in Table 3, there are 89 unique genes in all 5
gene lists. The only gene that appears in all of them is
HPN, while genes AMACR, GDF15, and NME1 appear in
4 lists. 66 genes appear in just one list. The goal of rank
aggregation is to combine these lists into the overall top-
25 gene list which hopefully would be more accurate
than any individual list by itself.
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Figure 2
Rank aggregation in the clustering context using the
GA algorithm. Visual representation of rank aggregation
for the Clustering example using the GA algorithm with the
Weighted Spearman distance.

Table 3: Top-25 prostate cancer gene lists

Luo Welsh Dhana True Singh

1 HPN HPN OGT AMACR HPN
2 AMACR AMACR AMACR HPN SLC25A6
3 CYP1B1 0ACT2 FASN NME2 EEF2
4 ATF5 GDF15 HPN CBX3 SAT
5 BRCA1 FASN UAP1 GDF15 NME2
6 LGALS3 ANK3 GUCY1A3 MTHFD2 LDHA
7 MYC KRT18 0ACT2 MRPL3 CANX
8 PCDHGC3 UAP1 SLC19A1 SLC25A6 NACA
9 WT1 GRP58 KRT18 NME1 FASN
10 TFF3 PPIB EEF2 COX6C SND1
11 MARCKS KRT7 STRA13 JTV1 KRT18
12 OS-9 NME1 ALCAM CCNG2 RPL15
13 CCND2 STRA13 GDF15 AP3S1 TNFSF10
14 NME1 DAPK1 NME1 EEF2 SERP1
15 DYRK1A TMEM4 CALR RAN GRP58
16 TRAP1 CANX SND1 PRKACA ALCAM
17 FM05 TRA1 STAT6 RAD23B GDF15
18 ZHX2 PRSS8 TCEB3 PSAP TMEM4
19 RPL36AL ENTPD6 EIF4A1 CCT2 CCT2
20 ITPR3 PPP1CA LMAN1 G3BP SLC39A6
21 GCSH ACADSB MAOA EPRS RPL5
22 DDB2 PTPLB ATP6V0B CKAP1 RPS13
23 TFCP2 TMEM23 PPIB LIG3 MTHFD2
24 TRAM1 MRPL3 FM05 SNX4 G3BP2
25 YTHDF3 SLC19A1 SLC7A5 NSMAF UAP1

Top-25 upregulated genes from 5 different prostate microarray
experiments (as reported in [1]). HPN is the sole gene that appears in all
five lists.
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Since no p-values were reported, we use the regular
Spearman distance for both the CE and the GA
algorithms.

> data(geneLists)

> RankAggreg(geneLists, 25, seed = 100, rho = 0.01)

Using the CE algorithm with the Spearman distance, the
following ordered list was produced: HPN AMACR
GDF15 FASN NME2 UAP1 SLC25A6 0ACT2 KRT18
NME1 EEF2 STRA13 GRP58 CANX SND1 ALCAM
MRPL3 TMEM4 CCT2 MTHFD2 SLC19A1 PPIB FM05
ENTPD6 KRT7. The algorithm converged in 38 iterations
with the minimum of 319.6. In the overall list, HPN, as
expected, is in the first place, followed closely by the two
other genes that appear in four lists.

In a case when there would be an indication that some
microarray studies are more reliable than others, we
could set the importance parameter available in the
RankAggreg function to reflect these beliefs. By default,
it assigns equal weights to all ordered lists, but one, for
example, could set importance = c(1, 2, 1, 1, 2) placing
stronger emphasis on the Affymetrix arrays which are
considered to have higher sensitivity rates.

> RankAggreg(geneLists, 25, seed = 100, importance =

+ c(1,2,1,1,2), rho = 0.01)

This produces the following combined list which is
slightly different from the one obtained treating all five
studies equally:

HPN AMACR 0ACT2 GDF15 FASN NME2 KRT18
SLC25A6 EEF2 UAP1 CANX NME1 GRP58 SND1
STRA13 TMEM4 ALCAM PPIB NACA CCT2 RPL5
SLC39A6 MTHFD2 MRPL3 SLC19A1.

The objective function score here is 295.43, being a little
smaller than 319.6. Clearly, OACT2 is ranked higher
now (3rd) due to being at the top (also 3rd) in the Welsh
study which received more weight. Similarly, the KRT18
gene moved up a couple spots due to being present in
both Welsh and Singh top lists which are both
Affymetrix.

The GA algorithm can also be applied. We increased the
maximum number of iterations to allow for a longer
evolution process. Increasing the convIn (converge in)
argument to 50 will assure that we do not stop the
algorithm too soon. The algorithm did not converge
(due to setting a rather stringent criteria) and was
stopped after 3000 generations. The final list had an

objective function score of 320.8, which was slightly
worse than what we obtained using the CE algorithm.
Here is the list found by the GA algorithm:

HPN AMACR SLC25A6 FASN NME2 GDF15 0ACT2
UAP1 KRT18 EEF2 STRA13 NME1 MTHFD2 SND1
CANX GRP58 ALCAM TMEM4 PPIB CCT2 SLC19A1
CBX3 SAT FM05 SNX4.

Based on the value of the objective function, we prefer
the list identified by the CE algorithm in this case. From
that list, 9 genes were previously linked to prostate
cancer development in the literature: HPN, AMACR,
GDF15, FASN, SLC25A6, KRT18, ALCAM, CCT2, and
MTHFD2. Note that 6 of them are among the top-10
genes in the obtained list. [11] find strong evidence for
HPN's association with prostate cancer susceptibility and
tumor aggressiveness, AMACR was shown to be over-
expressed in prostate cancer by [12], and [13] propose to
use FASN, which is also overexpressed, as a therapeutic
target for prostate cancer. If we, for example, ignored the
overall list for a moment and concentrated on the
individual lists, we would miss a clearly important gene
FASN 2 out of 5 times as it does not appear in Luo and
True top-25 lists. The overall list, which borrows the
information across the studies, places FASN in the fourth
place making it impossible to overlook.

Lin and Ding [4] also used the CE algorithm to aggregate
the same five gene lists with the results presented in
Table 2 in their original manuscript. The obtained list for
the unweighted Spearman column is very similar to the
one obtained using the RankAggreg( ) function. On their
supplementary website, the authors made available an R
function that performs rank aggregation using the CE
algorithm; the underlying code is written in C. At this
time, it is somewhat faster than the RankAggreg( )
function but it lacks the user-friendliness and exibility
that our package offers. In addition, it provides no
alternatives to the CE algorithm and does not make use
of the weighted distance functions that we proposed.

To give a reader some perspective on whether the
computational overhead is well justified in this case,
we aggregated the five lists using the Borda count
method described in the Background section. According
to this simple procedure, the overall list is

HPN AMACR GDF15 FASN NME1 EEF2 KRT18 NME2
0ACT2 SLC25A6 UAP1 CANX GRP58 STRA13 SND1
OGT ALCAM CYP1B1 MTHFD2 ATF5 CBX3 SAT BRCA1
MRPL3 ANK3.

The first four genes are the same when compared to the
result obtained using the CE algorithm with equal
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weights. The order of other genes, however, is different.
The lists share 18 common genes among the two of
them. Using the Spearman distance, we calculated the
objective function score for the list obtained from the
Borda count and it turned out to be 333.6, which is a
little worse than 319.6 that we get using the CE
algorithm. Thus, the extra cost in computing may be
well justified as we obtained a better list with a smaller
score.

Figure 3: Plots created by the plot( ) function for the GA
rank aggregation of the gene lists. We can see that
algorithm stabilized after roughly 500 iterations. The
distribution of the population in the final generation is
concentrated just to the right of the optimal solution.
The bottom plot clearly shows why the solution makes
sense. Genes ranked high in the final list usually come
from several individual lists as indicated by the presence

of multiple intersecting lines. The genes at the end of the
final list are the ones included in a single list but
somewhere close to the top. The rank of 26 is artificial in
our procedure and it simply indicates that that particular
gene is not present in the individual list.

Conclusion
The RankAggreg package provides an easy and convenient
interface to handle complex rank aggregation problems.
It performs rank aggregation using two different algo-
rithms with a choice of two different distances. The brute
force approach is also available for small-scale problems.
A simple plot function helps to visualize the rank
aggregation problem and the obtained solution.

The effectiveness of the CE and the GA algorithms in
discovering optimal lists is certainly limited by the size
of the aggregation problem. As both algorithms need to
effectively search the solution space, which even in
moderate aggregation problems (for example, discover-
ing a top-25 list) is extremely large, there exists a
practical limitation as to what problems can be handled.
The examples presented in this article are rather of a
moderate size but larger problems can definitely be
tackled. Top-100 lists with a significant amount of
overlap in terms of their content can certainly be
aggregated using either one of the proposed algorithms.
How well they will perform in aggregation of much
larger problems remains to be investigated. In the
bioinformatics context, however, researchers are often
interested in a relatively small number (20–50) of
significant discoveries and their aggregation is within
the limits of the proposed methodology.

We would like to stress that using either the CE or the GA
algorithms for large problems does not "guarantee" an
optimal solution. Performance of both of these algo-
rithms is quite sensitive to the tuning parameters, in
particular the sample size N for the CE algorithm and the
cross-over (CP) and mutation (MP) probabilities for the
GA algorithm. The user is encouraged to run the
RankAggreg( ) function several times. If different optimal
lists are produced, increasing sample size is probably
necessary. Tuning additional parameters as discussed
above may also prevent local minima traps. That said,
however, we are quite impressed by the ability of both
algorithms, the CE in particular, in discovering the
optimal ordering of the elements in the combined list.

Availability and requirements
Project name: RankAggreg

Project home page: http://cran.r-project.org/web/
packages/RankAggreg/
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Figure 3
Rank aggregation of gene lists using the GA
algorithm. Plots created by the plot( ) function for the GA
rank aggregation of the gene lists. We can see that algorithm
stabilized after roughly 500 iterations. The distribution of the
population in the final generation is concentrated just to the
right of the optimal solution. The bottom plot clearly shows
why the solution makes sense. Genes ranked high in the final
list usually come from several individual lists as indicated by
the presence of multiple lines intersecting. The genes at the
end of the final list are the ones included in a single list but
somewhere close to the top. The rank of 26 is artificial in our
procedure and it simply indicates that that particular gene is
not present in the individual list.
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Operating system(s): Windows, Unix

Programming language: R

Other requirements: R-2.4.0 or newer

License: LGPL

The RankAggreg package can be installed from the CRAN
using the install.packages("RankAggreg") command. The
local zip file can be installed using R GUI by selecting
Packages and then Install package(s) from local zip files.
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