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THEBIGGERPICTURE Screening large pools of molecular candidates to identify thosewith specific design
criteria or targeted properties is demanding in various science and engineering domains. While a high-
throughput virtual screening (HTVS) pipeline can provide efficient means to achieving this goal, its design
and operation often rely on experts’ intuition, potentially resulting in suboptimal performance. In this paper,
we fill this critical gap by presenting a systematic framework that canmaximize the return on computational
investment (ROCI) of such HTVS campaigns. Based on various scenarios, we empirically validate the pro-
posed framework and demonstrate its potential to accelerate scientific discoveries through optimal compu-
tational campaigns, especially in the context of virtual screening.

Development/Pre-production:Data science output has been
rolled out/validated across multiple domains/problems
SUMMARY
The need for efficient computational screening of molecular candidates that possess desired properties
frequently arises in various scientific and engineering problems, including drug discovery and materials
design. However, the enormous search space containing the candidates and the substantial computational
cost of high-fidelity property prediction models make screening practically challenging. In this work, we pro-
pose a general framework for constructing and optimizing a high-throughput virtual screening (HTVS) pipe-
line that consists of multi-fidelity models. The central idea is to optimally allocate the computational re-
sources to models with varying costs and accuracy to optimize the return on computational investment.
Based on both simulated and real-world data, we demonstrate that the proposed optimal HTVS framework
can significantly accelerate virtual screening without any degradation in terms of accuracy. Furthermore, it
enables an adaptive operational strategy for HTVS, where one can trade accuracy for efficiency.
INTRODUCTION

In various real-world scientific and engineering applications,

the need for screening a large set of candidates to prioritize

a small subset that satisfies certain criteria or possesses tar-

geted properties arises fairly frequently. For example, since

the coronavirus disease 2019 (COVID-19) outbreak, there

have been significant concurrent efforts among various

groups of scientists to identify or develop drugs that can pro-

vide a potential cure for this extremely infectious disease. One
This is an open access article under the CC BY-N
such notable effort is IMPECCABLE (integrated modeling

pipeline for COVID cure by assessing better leads)1 whose

operational objective is to optimize the number of promising

ligands that potentially lead to the successful discovery of

drug molecules. To this aim, IMPECCABLE utilized deep

learning-based surrogates for predicting docking scores and

multi-scale biophysics-based computational models for

computing docking poses of compounds. Built on the

strength of massive parallelism on exascale computing plat-

forms combined with RADICAL-Cybertools (RCT) managing
Patterns 4, 100875, November 10, 2023 ª 2023 The Author(s). 1
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Figure 1. Illustration of a general HTVS pipeline (left) that consists of N screening stages for rapid and reliable identification of a set Y of

candidate molecules that likely possess the desired properties from a huge original set X

Stage Si evaluates all the molecules x˛Xi, which passed the previous stage Si� 1, via computational model fi . Si passes the sample x to the next stage Si+1 if

fiðxÞR li . Otherwise, it dcards the molecule. The proposed optimization framework shown on the right side predicts optimal screening policy c� =

½l�1; l�2;.; l�N� 1� that yields either the maximal screening throughput under a resource budget constraint C or strikes the optimal balance between the screening

throughput and efficiency according to the screening campaign scenario.
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heterogeneous workflows, IMPECCABLE identified promising

leads targeted at COVID-19.

Considering that severe acute respiratory syndrome coronavi-

rus 2 (SARS-CoV-2) responsible for COVID-19 is known to

rapidly mutate itself to create more infectious and deadlier vari-

ants,2 such a drug screening process to identify effective anti-

viral drug candidates against a specific variant may have to be

repeated as new variants emerge. However, considering that

there are about 1068 compounds that can be considered for

drug design in chemical space theoretically3 and the astronom-

ical amount of computation that was devoted to the screening of

drug candidates in IMPECCABLE1 to screen 1011 candidates,

this is without question a Herculean task that requires enormous

resources and one that cannot be routinely repeated.

While different in scale and complexity, such high-throughput

virtual screening (HTVS) pipelines have been widely utilized in

various fields, including biology,4–8 chemistry,1,9–13 engineer-

ing,14 and materials science.15,16 However, the construction of

suchHTVS pipelines and the strategies for operating themheavi-

ly rely on expert intuition, often resulting in heuristic methods

without systematic considerations for increasing the return on

computational investment (ROCI), a ratio of the number of

desired candidates to computational resource investment in

this context. It has remained a fundamental challenge to find a
2 Patterns 4, 100875, November 10, 2023
general strategy to better construct or modify a screening pipe-

line and identify its operational policy resulting in a higher ROCI

despite an enormous search space.

In general, HTVS pipelines consist of multiple stages, where

each stage consists of a scoring function that evaluates the

property of the molecules with a different accuracy/fidelity and

computational cost (e.g., one of the multi-fidelity computational

models or surrogate models of a high-fidelity computational

model). This is illustrated on the left side of Figure 1. At each

stage in the pipeline, the molecular candidate is evaluated to

determine whether the evaluation result appears promising

enough to warrant passing it to the next—often more computa-

tionally expensive but more accurate—stage without unneces-

sarily wasting computational resources and time. In this way,

the HTVS pipeline narrows down the number of candidate mol-

ecules, while sensibly allocating the available resources for

investigating those that are promising andmore likely to possess

the desired property. The most promising candidates that

remain at the end of screening may proceed to experimental

validation, which is often more laborious, costly, and time-

consuming. For example, an HTVS pipeline8 based on multi-fi-

delity surrogate models combined with an experimental platform

successfully selected and reported a novel non-covalent inhibi-

tor, MCULE-5948770040. The reported inhibitor has been
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identified by screening over 6.5 million molecules, and it has

been shown to inhibit the SARS-CoV-2 main protease. HTVS

pipelines have been also widely used for materials screening.

For example, a first-principles high-throughput screening pipe-

line for non-linear optical materials16 consisting of several

computational predictors, based on density functional theory

(DFT) calculations as well as data transformation and extraction

methods, successfully identified deep-ultraviolet non-linear opti-

cal crystals that were reported in previous studies.17–23

Although previous studies have demonstrated the advantages

of constructing an HTVS pipeline for rapid screening of a huge

set of molecules to narrow down the most promising molecular

candidates that are likely to possess the desired properties,

the problem of optimal decision-making for maximally increasing

the ROCI in such screening pipelines has not been extensively

investigated to date. For example, how should one decide

whether or not to pass a molecular candidate at hand to the

next stage, given the score of the current stage? More specif-

ically, in the HTVS example shown on the left side of Figure 1,

how do we optimally determine the screening threshold li of

each stage Si for a given HTVS structure to maximize the

ROCI? Furthermore, if we were to modify the HTVS structure

or construct it from scratch by interconnecting multi-fidelity

computational or surrogate models, what would be an advanta-

geous structure of such an HTVS pipeline that is likely to lead to a

higher ROCI? This requires selecting the proper subset of the

available multi-fidelity models, arranging them in the optimal or-

der, and then exploring the interrelations among their predictive

outcomes to make optimal operational decisions for the con-

structed HTVS pipeline.

To answer the aforementioned questions, we propose a

computational framework for the optimization of HTVS pipelines

that consist of multiple computational models with different

costs and fidelity. The key idea is to estimate the joint probability

distribution of predictive scores that result from the different

stages constituting the HTVS pipeline, based on which we opti-

mize the screening threshold values. We consider two optimiza-

tion scenarios. First, we consider the case where the total

computational budget is fixed, and the goal is to maximize the

screening throughput defined as the number of promising candi-

dates with the desired property within the given budget. Second,

we assume that the computational budget is liquid and consider

the case where we aim to balance the screening throughput and

screening efficiency defined as a ratio of the number of prom-

ising candidates to the total computational consumption. We

demonstrate the performance of the proposed HTVS pipeline

optimization framework based on both simulated data as well

as real data. In the simulated example, the joint distribution of

the predictive scores from the multi-fidelity models at different

stages is assumed to be known, based on which we extensively

evaluate the performance of the proposed approach under

various scenarios. As a second example, we consider the prob-

lem of screening for long non-coding RNAs (lncRNAs). In this

example, we first construct an HTVS pipeline by interconnecting

existing lncRNA prediction algorithms with varying costs and ac-

curacy and apply our proposed framework for performance opti-

mization. Both examples clearly demonstrate the advantages of

our proposed scheme, which leads to a substantial reduction of

the total computational cost at virtually no degradation in overall
screening performance. Furthermore, we show that the pro-

posed framework enables one to make an informed decision

to balance the trade-off between screening efficiency and

screening throughput, where one could trade accuracy for

higher efficiency, and vice versa.
RESULTS

In this section, we first formally describe the operational process

of a general HTVS pipeline and provide a high-level overview of

the proposed optimization framework. Two different scenarios

will be considered. In the first scenario, the objective is to maxi-

mize the expected throughput of the HTVS pipeline under a fixed

computational budget. In the second scenario, the objective is to

jointly optimize the screening throughput and the computational

efficiency of the pipeline. We validate the proposed optimization

framework based on both synthetic and real data. First, we eval-

uate the performance of our optimization framework based on a

four-stage HTVS pipeline, where the joint probability distribution

of the predictive scores is assumed to be known. Next, we

construct an HTVS pipeline for lncRNAs by interconnecting ex-

isting lncRNA prediction algorithms with different prediction ac-

curacy and computational complexity. In this example, the joint

distribution of the predictive scores from the different algorithms

at different stages is learned from training data, based on which

the proposed HTVS optimal framework is used to identify the

optimal screening policy.
Overview of the proposed HTVS pipeline optimization
framework
Weassume that an HTVSpipeline consists ofN screening stages

Si : ðfi : X/R; li; ciÞ, i = 1; 2; .; N, connected in series as

shown in Figure 1 (left), where fi : X/R is a computational model

for predicting the property of interest for a given molecule and li

is the screening threshold. The average computational cost per

sample for fi associated with the ith stage Si is denoted by ci.

For simplicity, we will use Si and fi interchangeably. At each

stage Si, the corresponding surrogate model fi is used to eval-

uate the property of all molecules x˛Xi that passed the previous

screening stage Si� 1, where Xi is given by:

Xi = fxjx ˛ Xi� 1 andfi� 1ðxÞ R li� 1g: (Equation 1)

By definition, we haveX1bX, which contains the entire set of

molecules to be screened. At stage Si, every molecule x˛Xi

whose property score yi = fiðxÞ is below the threshold li is dis-

carded such that only the remaining molecules x˛Xi+1 that

meet or exceed this threshold are passed on to the next stage

Si+1. We assume that all molecules in Xi at each stage Si are

batch processed to select the set of molecules Xi+1 that will be

passed to the subsequent stage Si+1, as it is often done in

practice.24–26

Although every stage Si in the screening pipeline performs a

down-selection of the molecules by assessing their molecular

property based on the computational model fiðxÞ and comparing

it against the threshold li, we assume only the threshold values

l1; l2;/; li� 1 of the first N � 1 stages will need to be deter-

mined while the threshold lN for the last screening stage SN is

predetermined. This reflects how such screening pipelines
Patterns 4, 100875, November 10, 2023 3
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are utilized in real-world scenarios. For example, in the

IMPECCABLE pipeline,1 as well as in many other computational

drug discovery pipelines, potentially effective lead compounds

that pass the earlier stages based on efficient but less accurate

models will be assessed using computationally expensive yet

highly accurate molecular dynamics (MD) simulations to eval-

uate the binding affinity against the target. Only the molecules

whose binding affinity estimated by the MD simulations exceeds

a reasonably high threshold set by domain experts may be

further assessed experimentally as further steps are time

consuming and labor intensive. Similarly, in a materials

screening pipeline, the last screening stage may involve expen-

sive calculations based on DFT, a quantum mechanical

modeling scheme that is widely used for predicting material

properties.27–35

Based on this setting, our primary objective is to predict the

optimal screening policy c� = ½l�1; l�2;.; l�N� 1� that leads to the

optimal operation of the HTVS pipeline. We consider two

different scenarios. In the first scenario, we assume that the total

computational budget for screening the candidate molecules is

fixed, where the design goal would then be to identify the optimal

screening policy that maximizes the screening throughput,

namely, the percentage (or number) of potential molecules that

meet or exceed the qualification in the last stage SN (i.e.,

fNðxÞR lN). In the second scenario, we consider the case

when the computational budget is not fixed and where the goal

is to design the optimal policy that balances the screening

throughput and screening efficiency (i.e., a ratio of the screening

throughput to the required computational resource). This is done

by defining and optimizing the objective function, which is a

convex combination of the number of desired samples that we

will miss and the overall computational cost.

Figure 1 (right) shows a flowchart summarizing the proposed

approach for identifying the optimal screening policy c� =

½l�1; l�2;.; l�N� 1� for the optimal operation of a given HTVS pipe-

line under the two screening scenarios described above. First,

we estimate the joint distribution pðy1; y2;.; yNÞ of the predictive
scores from the N stages based on the available training data. In

the case where the probability density function (PDF)

pðy1; y2;.; yNÞ is known a priori, this PDF estimation step will

not be required. Given pðy1;y2;.;yNÞ, we can predict the optimal

screening policy c� = ½l�1; l�2;.; l�N� 1� that leads to the optimal

operational performance of the HTVS pipeline. Specifically, in

the case where the total computational budget C is fixed, we

find the optimal policy c� = ½l�1; l�2;.; l�N� 1� that maximizes the

screening throughput of the pipeline—i.e., the proportion of mol-

ecules that pass the last (and the most stringent/accurate)

screening stage that meet the condition fNðxÞR lN—under the

budget constraint C. The formal definition of the given optimiza-

tion problem is shown in Equation 4. Otherwise, we predict

optimal screening policy c� = ½l�1; l�2;.; l�N� 1� that jointly opti-

mizes the screening throughput and screening efficiency based

on a weighted objective function of the screening throughput

and the computational efficiency. The formal definition of this

joint optimization problem can be found in Equation 6. In this

case, the balancing weight a can be used to trade throughput

for computational efficiency, or vice versa. We note that

the training dataset is only used for estimating the PDF

pðy1; y2;.; yNÞ and not (directly) for finding the optimal screening
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policy. In fact, the optimal policy c� = ½l�1; l�2;.; l�N� 1� is deter-

mined by a function of up to three parameters: the joint score dis-

tribution pðy1;y2;.;yNÞ, jXj (the number of potential molecules to

be screened), and the total computational budget C (in the first

screening scenario, where the computational budget is assumed

to be limited).

Comprehensive performance analysis of the HTVS
pipeline optimization framework
For comprehensive performance analysis of the proposed HTVS

pipeline optimization framework, we consider a synthetic HTVS

pipeline with four stages (i.e., N = 4), where the joint PDF of

the predictive scores from all stages is assumed to be known.

We vary the correlation levels between the scores from neigh-

boring stages to investigate the overall impact on the perfor-

mance of the optimized HTVS pipeline.

Specifically, we assume that the computational cost for

screening a single molecule is 1 at stage S1, 10 at S2, 100 at

S3, and 1;000 at SN. As the per-molecule screening cost is fairly

different across stages, the given setting for the synthetic HTVS

pipeline allows us to clearly see the impact and significance of

optimal decision-making on the overall screening throughput

and efficiency of the screening pipeline.

Here, we consider the case when we have complete knowl-

edge of the joint score distribution pðy1;y2;y3;y4Þ. The score dis-

tribution is assumed to be amultivariate uni-modal Gaussian dis-

tribution Gð0; SðrÞÞ, where the covariance matrix SðrÞ is a

Toeplitz matrix defined as follows:

SðrÞ =

2
664

1 r r � 0:1 r � 0:2
r 1 r r � 0:1

r � 0:1 r 1 r

r � 0:2 r � 0:1 r 1

3
775;

(Equation 2)

where r is the correlation between neighboring stages Si and

Si+1 for i = 1;2;3. We assumed that the score correlation is

lower between stages that are further apart, which is typically

the case in real screening pipelines that consist of multi-fidelity

models.

The primary objective of the HTVS pipeline is to maximize the

number of potential candidates (i.e., screening throughput) that

satisfy the final screening criterion (i.e., f4ðxÞR l4) based on

the highest-fidelity model at stage S4. The total number of all

candidate molecules in the initial set X is assumed to be 105.

We assume that we are given l4 = 3:0902 as prior information

set by a domain expert, which results in 100 promisingmolecules

(among 105 in X) that satisfy the final screening criterion (i.e.,

jfxjf4ðx ˛XÞ R l4gj = 100). We validate the proposed HTVS

optimization framework for two cases: first, for r = 0:8, where

the neighboring stages yield scores that are highly correlated,

and next, for r = 0:3 where the correlation is very low. Perfor-

mance analysis results based on various other covariance

matrices can be found in the supplemental information.

Performance of the optimized HTVS pipeline under
computational budget constraint
Figure 2 shows the performance evaluation results for different

HTVS pipeline structures optimized via the proposed framework
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Figure 2. Performance assessment of the optimized HTVS pipelines

The number of candidate molecules that meet the desired screening criterion is shown as a function of the available computational budget. Results are shown for

the case when the stages are highly correlated (A and B, r = 0:8) as well as when they have low correlation (C and D, r = 0:3). Note that (B and D), respectively,

show identical contents of (A and C) in a logarithmic scale. The performance of the best-performing four-stage pipeline and the best-performing three-stage

pipeline is shown. For comparison, we also show the performance of all two-stage pipelines. Note that only the best-performing configurations are shown

for NR3.
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under a fixed computational resource budget. The total number

of the desirable candidates detected by the pipeline is shown

as a function of the available computational budget for two

cases: (1) HTVS pipelines that consist of highly correlated stages

(r = 0:8, Figures 2A and 2B) and (2) HTVS pipelines comprised

of stages with low correlation (r = 0:3, Figures 2C and 2D). Note

that Figures 2B and 2D, respectively, show identical contents of

Figures 2A and 2C in a logarithmic scale for a better distinction

between the curves with similar performance. The black horizon-

tal and vertical dashed lines depict the total number of true can-

didates that meet the screening criterion (100 in this simulation)

and the total computational budget required when screening all

molecules in X only based on the last stage S4 (i.e., the highest-

fidelity and most computationally expensive model), respec-

tively. Figure 2 shows the performance of the best-performing

N = 4 stage pipeline and that of the best-performingN = 3 pipe-

line. In addition, the performance of all N = 2 stage pipelines is

shown for comparison.

First, as shown in Figures 2A and 2B, the performance curves of

the pipelines consisting of only two stages (shown in red with

different shapes of markers) demonstrate how each of the lower-

fidelity stages S1–S3 improves the screening performance when

combinedwith the highest-fidelity stageS4 and performance opti-
mized by our proposed framework. As shown in Figures 2A and

2B, the correlation between the lower-fidelity/lower-complexity

stage Si, i = 1;2;.;N � 1, at the beginning of the HTVS pipeline

and highest-fidelity/highest-complexity stage SN at the end of the

pipeline has a significant impact on the slope of the performance

curve. For example, in the two-stage pipeline ½S3;S4�, where the

two stages are highly correlated to each other, we can observe

the steepest performance improvement as the available computa-

tional budget increases.On theother hand, for the two-stagepipe-

line ½S1;S4�, which consists of less correlated stages, the perfor-

mance improvement is more moderate in comparison as the

available computational budget increases. Note that theminimum

required computational budget to screen all candidates is larger

for the pipeline ½S3;S4� compared with that for ½S1;S4�, which is

due to the assumption that all candidates are batch processed

at each stage. For example, with the minimum budget needed

by pipeline ½S3;S4� to screen all candidates, the other pipelines

½S1;S4� and ½S2;S4� are capable of completing the screening and

detecting more than 80% of the desirable candidates. Neverthe-

less, the detection performance improves with the increasing

computational budget for all two-stage pipelines.

It is important to note that we can in fact simultaneously attain

the advantage of using a lower-complexity stage (e.g., ½S1;S4�)
Patterns 4, 100875, November 10, 2023 5
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that allows a ‘‘quick-start’’ with a small budget as well as the

merit of using a higher-complexity stage (e.g., ½S3;S4�) for rapid
performance improvement with the budget increase by con-

structing a multi-stage HTVS pipeline and optimally allocating

the computational resources according to our proposed optimi-

zation framework. This can be clearly seen in the performance

curve for the four-stage pipeline ½S1;S2;S3;S4� (blue dashed

line). The optimized four-stage pipeline consistently outperforms

all other pipelines across all budget levels. Specifically, the opti-

mized pipeline ½S1;S2;S3;S4� quickly evaluated all the molecular

candidates in X through the most efficient stage S1 and sharply

improved the screening performance through the utilization of

more complex yet also more accurate subsequent stages in

the HTVS pipeline in a resource-optimizedmanner. For example,

the optimized four-stage pipeline detected 97% of the desirable

candidates that meet the target criterion at only 10% of the total

computational cost that would be required if one used only the

last stage (which we refer to as the ‘‘original cost’’). To detect

99% of the desired candidates, the optimized four-stage pipe-

line ½S1;S2;S3;S4� would need only about 14% of the orig-

inal cost.

Among all three-stage pipelines (i.e., N = 3), pipeline

½S2;S3;S4� yielded the best performance when performance-

optimized using our proposed optimization framework (green

dotted line in Figures 2A and 2B). As we can see in Figures 2A

and 2B, the screening performance sharply increases as the

available computational budget increases, thanks to the high

correlation between S4 and the prior stages S2 and S3. However,

due to the higher computational complexity of S2 compared with

that of S1, the optimized pipeline ½S2;S3;S4� required a higher

minimum computational budget for screening all candidate mol-

ecules compared with theminimumbudget needed by a pipeline

that begins with S1. Despite this fact, when the first stage S2 in

this three-stage HTVS pipeline is replaced by the more efficient

S1, our simulation results (see Figure S41 in the supplemental in-

formation) show that the screening performance improves rela-

tively moderately as the budget increases. Empirically, when all

stages are relatively highly correlated to each other, the best

strategy for constructing the HTVS pipeline appears to place

the stages in increasing order of complexity and optimally allo-

cate the computational resources to maximize the ROCI. In

fact, this observation is fairly intuitive and also in agreement

with how screening pipelines are typically constructed in real-

world applications.

Figures 2C and 2D show the performance evaluation results of

the HTVS pipelines, where the screening stages are less corre-

lated to each other (r = 0:3). Results are shown for different

pipeline configurations, where the screening policy is optimized

using the proposed framework to maximize the ROCI. Overall,

the performance trends were nearly identical to those shown in

Figures 2A and 2B, although the overall performance is lower

compared with the high correlation scenario (r = 0:8) as ex-

pected. While the screening performance of the optimized

HTVS pipeline is not as good as the high-correlation scenario,

the multi-stage HTVS pipeline with the optimized screening pol-

icy still provides a much better trade-off between the computa-

tional cost for screening and the detection performance. For

example, if we were to use only the highest-fidelity model in S4

for screening, the only way to trade accuracy for reduced
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resource requirements would be to randomly sample the candi-

date molecules fromX and screen the selected candidates. The

performance curve, in this case, would be a straight line con-

necting ð0;0Þ and ð108; 100Þ, below most of the performance

curves for the optimized pipeline approach shown in

Figures 2C and 2D. As in the previous case (r = 0:8), the best

pipeline configuration was to interconnect all four stages, where

the stages are connected to each other in increasing order of

complexity.

Performance of the HTVS pipeline jointly optimized for
screening throughput and efficiency
Table 1 shows the performance of the various HTVS pipeline

configurations, where the screening policy was jointly optimized

for both screening throughput and computational efficiency. The

joint optimization problem is formally defined in Equation 6, and

awas set to 0.5 in these simulations. As a reference, the first row

(configuration ½S4�) shows the performance of solely relying on

the last stage S4 for screening the molecules without utilizing a

multi-stage pipeline. The effective cost is defined as the total

computational cost divided by the total number of molecules de-

tected by the screening pipeline that satisfy the target criterion

(i.e., average computational cost per detected candidate mole-

cule or reciprocal of screening efficiency). The computational

savings of a given pipeline configuration is calculated by

comparing its effective cost to that of the reference configuration

(i.e., ½S4�). As we can see in Table 1, our proposed HTVS pipeline

optimization framework was able to significantly improve the

overall screening performance across all pipeline configurations

in a highly robust manner. For example, for r = 0:8, the opti-

mized pipelines consistently led to computational savings

ranging from 76:20% to 86:64% compared with the reference,

while detecting 94%--99% of the desired candidates that meet

the target criterion. Although the overall efficiency of the HTVS

pipelines slightly decreases when the neighboring stages are

less correlated (r = 0:3), the pipelines were nevertheless effec-

tive in saving computational resources. As shown in Table 1, the

optimized HTVS pipelines detected 89%--96% of all desired

candidate molecules with computational savings ranging be-

tween 36:46% and 54:87%.

For further evaluation of the proposed framework, we per-

formed additional experiments based on the four-stage pipeline

½S1;S2;S3;S4�. In this experiment, we first investigated the impact

of a on the screening performance. Next, we compared the per-

formance of the optimal screening policy with the performance

of a baseline policy that mimics a typical screening scenario in

real-world applications (e.g., see Saadi et al.1). The baseline pol-

icy selects the top Rs% candidate molecules at each stage and

passes them to the next stage while discarding the rest. This

baseline screening policy is agnostic of the joint score distribu-

tion of the multiple stages in the HTVS and aims to reduce the

overall computational cost by passing only the top candidates

to subsequent stages that are more costly. Similar strategies

are in fact often adopted in practice due to their simplicity. In

our simulations, we assumed the proportion Rs is uniform across

the screening stages. The performance evaluation results are

summarized in Table 2.When the neighboring stageswere highly

correlated (r = 0:8), the optimized pipelines detected 100, 99,

and 96 candidate molecules at a total cost of 19;727; 704,



Table 1. Performance comparison of various HTVS pipeline structures jointly optimized via the proposed framework (a = 0:5)

Configuration

High correlation ðr = 0:8Þ Low correlation ðr = 0:3Þ
Potential

candidates Total cost

Effective

cost

Computational

savings (%)

Potential

candidates Total cost

Effective

cost

Computational

savings (%)

½S4� 100 100; 000; 000 1; 000; 000 0 100 100; 000; 000 1; 000; 000 0

½S1;S4� 94 22; 372; 654 238;007 76:20 89 56; 551; 129 635; 406 36:46

½S2;S4� 96 15; 511; 702 161;580 83:84 90 43; 620; 751 484; 675 51:53

½S3;S4� 98 18; 152; 330 185;228 81:48 92 41; 522; 035 451; 326 54:87

½S1;S2;S4� 97 17; 890; 176 184;435 81:56 94 53; 340; 817 567; 456 43:25

½S1;S3;S4� 98 14; 451; 644 147;466 85:25 94 47; 550; 232 505; 854 49:41

½S2;S1;S4� 97 18; 291; 054 188;568 81:14 94 53; 513; 582 569; 293 43:07

½S2;S3;S4� 98 13; 089; 779 133;569 86:64 94 44; 534; 328 473; 769 52:62

½S3;S1;S4� 99 19; 505; 326 197;023 80:30 94 48; 708; 112 518; 171 48:18

½S3;S2;S4� 99 19; 522; 312 197;195 80:28 94 47; 966; 605 510; 283 48:97

½S1;S2;S3;S4� 99 14; 147; 264 142;902 85:71 96 50; 336; 621 524; 340 47:57

½S1;S3;S2;S4� 99 15; 939; 108 161;001 83:90 96 52; 704; 450 549; 005 45:10

½S2;S1;S3;S4� 99 14; 348; 794 144;937 85:51 96 50; 366; 503 524; 651 47:53

½S2;S3;S1;S4� 99 14; 335; 230 144;800 85:52 96 50; 411; 458 525; 119 47:49

½S3;S1;S2;S4� 99 20; 560; 571 207;682 79:23 96 53; 249; 970 554; 687 44:53

½S3;S2;S1;S4� 99 20; 560; 299 207;680 79:23 96 53; 215; 674 554; 330 44:57
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14;147; 264, and 10; 926;901, respectively. Interestingly, when a

was reduced from 0.75 to 0.25 (i.e., trading accuracy for higher

efficiency), the number of detected candidate molecules

decreased only by 4 (i.e., from 100 to 96), while leading to an

additional computational savings of 8 percentage points (i.e.,

from 80:27% to 88:62%). On the other hand, the performance

of the baseline screening policy was highly unpredictable and

very sensitive to the choice of Rs. For example, although the

baseline with Rs = 0:75 found all the potential candidates,

the effective cost of the baseline was significantly higher than

that of the proposed optimized pipeline with ½a = 0:75�. For
Rs = 0:5, the baseline detected 98 potential candidates (out

of 100) with a total cost of 15;599;934, which was higher than

the total cost of the optimized pipeline that detected 99 potential

candidates. The baseline pipelines with Rs = 0:1 and 0.25

selected 26% and 78%of the potential candidates, respectively.

Considering that the primary goal of such a pipeline is to detect

the largest number of potential candidates, these results clearly

show that this baseline screening scheme that mimics conven-

tional screening pipelines resulted in unreliable screening perfor-

mance even when the neighboring stages were highly correlated

to each other. While the baseline may lead to reasonably good

performance for certain Rs, it is important to note that we cannot

determine the optimal Rs in advance as the approach is agnostic

to the relationships between different stages. As a result, the

application of this baseline screening pipeline may significantly

degrade the screening performance in practice. When the corre-

lation between the neighboring stages was low (r = 0:3), the

overall performance of the proposed pipeline degraded as ex-

pected. In this case, the pipeline jointly optimized for screening

throughput as well as screening efficiency with a set to 0.75,

0.5, and 0.25 detected 99, 96, and 86 potential candidates

with the computational cost of 71;836;915, 50;336;621, and

28;563; 886, respectively. As in the high correlation case, the
performance of the baseline scheme significantly varied and

was sensitive to the choice of Rs.

Performance evaluation of the optimized HTVS pipeline
for screening lncRNAs
In recent years, interest in lncRNAs have been constantly

increasing in relevant research communities, as there is growing

evidence that lncRNAs and their roles in various biological pro-

cesses are closely associated with the development of complex

and often hard-to-treat diseases including Alzheimer’s dis-

ease,36–38 cardiovascular diseases,39,40 and several types of

cancer.41–44 RNA sequencing techniques are nowadays

routinely used to investigate the main functional molecules and

their molecular interactions responsible for the initiation, pro-

gression, and manifestation of such complex diseases. Conse-

quently, the accurate detection of lncRNA transcripts from a

potentially huge number of sequenced RNA transcripts is a

fundamental step in studying lncRNA-disease association.While

several lncRNA prediction algorithms have been developed so

far,45–48 each with its own pros and cons, no HTVS pipeline

has been proposed to date for fast and reliable screening of

lncRNAs.

To bridge the gap based on the proposed HTVS optimization

framework, we first construct diverse HTVS pipeline structures

by interconnecting four state-of-the-art lncRNA prediction algo-

rithms—CPC2 (coding potential calculator 2),47 CPAT (Coding

Potential Assessment Tool),45 PLEK (predictor of lncRNAs and

messenger RNAs based on an improved k-mer scheme),46 and

LncFinder.48 Then, we estimate the joint probability distribution

of the scores from the given algorithms. The estimated score dis-

tribution is then used to derive the optimal screening policies in

two different optimization scenarios. The performance of the

optimized HTVS pipelines is comprehensively compared and

analyzed from diverse perspectives.
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Table 2. Performance comparison between the proposed pipeline ½S1;S2;S3;S4� jointly optimized for throughput and computational

efficiency (with various a) and the baseline pipeline (with different screening ratio Rs) in terms of the total number of detecteded

potential candidates after screening and the computational cost induced

approach

High correlation ðr = 0:8Þ Low correlation ðr = 0:3Þ
Potential

candidates Total cost

Effective

cost

Computational

savings (%)

Potential

candidates Total cost

Effective

cost

Computational

savings (%)

Proposed (a = 0:75) 100 19;727;704 197; 277 80:27 99 71;836;915 725; 625 27:44

Proposed (a = 0:5) 99 14;147;264 142; 902 85:71 96 50;336;621 524; 340 47:57

Proposed (a = 0:25) 96 10;926;901 113; 822 88:62 86 28;563;886 332; 138 66:79

Baseline (Rs = 75%) 100 48;966;384 489; 664 51:03 93 48;662;387 523; 251 47:67

Baseline (Rs = 50%) 98 15;599;934 159; 183 84:08 69 15;600;165 226; 089 77:39

Baseline (Rs = 25%) 78 2;537; 498 32; 532 96:75 28 2;537; 516 90; 626 90:94

Baseline (Rs = 10%) 26 400; 000 15; 385 98:46 6 400; 008 66; 668 93:33
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In what follows, we describe the details of these steps and pre-

sent the performance evaluation results of the optimal computa-

tional screening on real RNA transcripts in the GENCODE

database.49

Dataset and preprocessing
We collected the nucleotide sequences of Homo sapiens RNA

transcripts from GENCODE version 38,49 which consists of

48; 752 lncRNA sequences and 106; 143 protein-coding se-

quences. We filtered out sequences that contain any unknown

nucleotides (other than A, U, C, or G) and sequences whose

length exceeds 3;000 nt. This resulted in 45;216 lncRNA se-

quences and 79;030 protein-coding sequences. Next, we

applied a clustering algorithm CD-hit50 to lncRNAs and pro-

tein-coding RNAs, respectively, to remove redundant se-

quences. We finally obtained a set of 104;733 RNA transcripts

consisting of 39;785 lncRNA sequences and 64;948 protein-

coding sequences.

Construction of the lncRNA HTVS pipeline
For the construction of the lncRNA screening pipeline, we

selected four state-of-the-art lncRNA prediction algorithms

that have been shown to achieve good prediction performance:

CPC2,47 CPAT,45 PLEK,46 and LncFinder.48

Table 3 summarizes the performance of the individual algo-

rithm based on the GENCODE dataset, preprocessed as

described previously. We assessed the accuracy, sensitivity,

and specificity of the respective lncRNA prediction algorithms.

For algorithm CPAT, which yields confidence scores between

0 and 1 rather than a binary output, we set the decision boundary

to 0.5 for lncRNA classification. As shown in Table 3, LncFinder

achieved the accuracy, sensitivity, and specificity of 0.8329,

0.7062, and 0.9678, respectively, outperforming all other algo-

rithms in terms of accuracy and sensitivity. However,

LncFinder also had the highest computational cost among the

compared algorithms, where processing an RNA transcript

required 2;495:6231 ms on average. CPAT was the second-

best performer among the four in terms of accuracy and sensi-

tivity. Furthermore, CPAT also achieved the highest specificity.

CPC2 and PLEK were less accurate compared with LncFinder

and CPAT in terms of accuracy, sensitivity, and specificity.

Despite their high computational efficiency, both CPC2 and

CPAT also outperformed PLEK based on overall accuracy.
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As we previously observed from the performance assessment

results based on the synthetic pipeline, the efficacy of the opti-

mized HTVS pipeline is critically dependent on the interrelation

between the stages constituting the pipeline. The proposed

HTVS optimization framework aims to exploit the correlation

structure across different screening stages to find the optimal

screening policy either maximizing the screening throughput un-

der a given budget constraint or striking the optimal balance be-

tween the screening throughput and screening efficiency de-

pending on the optimization scenario under consideration.

Here, we placed LncFinder—the most accurate and the most

computationally costly algorithm among the four—in the final

stage. In the first three stages in the HTVS pipeline, we placed

CPC2, CPAT, and PLEK, in order of increasing computational

complexity. After constructing the screening pipeline, we

computed Pearson’s correlation coefficient between the predic-

tive output scores obtained from different algorithms. As shown

in Figure 3, CPAT showed the highest correlation with LncFinder

in the last stage (with a correlation coefficient of 0.93), the highest

among the first three stages in the screening pipeline.

To apply our proposed HTVS pipeline optimization framework,

we first estimated the joint probability distribution pðy1; y2; y3; y4Þ
of the predictive scores generated by the four different lncRNA

prediction algorithms—CPC2 (y1), CPAT (y2), PLEK (y3), and

LncFinder (y4)—via the expectation-maximization (EM) algo-

rithm.51 For training, 4% of the preprocessed GENCODE data

were used. Note that all the computational lncRNA identification

algorithms considered in this study output protein-coding prob-

abilities, hence a higher output value corresponds to a higher

probability for a given transcript to be protein coding. Since

our goal was to identify the lncRNAs, we multiplied the output

scores generated by the algorithms by � 1 such that higher

values represent higher chances of being lncRNA transcripts.

The screening threshold for the LncFinder in the last stage of

the HTVS pipeline was set to l4 = 0:2, which leads to the

optimal overall performance of LncFinder with a good balance

between sensitivity and specificity.
Performance of the optimized lncRNA HTVS pipeline
under computational budget constraint
Figure 4 shows the performance of the optimized lncRNA HTVS

pipelines with various pipeline structures, where Figures 4A–4C

illustrate the optimized pipelines with 2, 3, and 4 screening



Figure 3. Heatmap showing Pearson’s correlation coefficient be-

tween different stages

CPAT had the highest correlation to LncFinder. While PLEK was computa-

tionally more complex compared with CPAT, it showed a relatively lower

correlation to LncFinder.

Table 3. Performance of the four individual lncRNA prediction

algorithms that constitute the lncRNA HTVS pipeline

Algorithm Accuracy Sensitivity Specificity

Time per

RNA (ms)

CPC247 0.7154 0.5760 0.9493 2.5265

CPAT45 0.8217 0.6861 0.9817 2.7336

PLEK46 0.7050 0.5666 0.9478 83.1765

LncFinder48 0.8329 0.7062 0.9678 2,495.6231
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stages, respectively. The black horizontal dashed line indicates

the total number of desired candidates (i.e., the total number

of functional lncRNAs in the test set) and the black vertical

dashed line shows the total computational cost (referred to as

the original cost as before) that would be needed for screening

all candidates based on the last stage LncFinder alone, without

using the HTVS pipeline. Black vertical dotted lines are located

at intervals of 1=10 of this original cost. Underneath each dotted

line, the number of potential candidates (i.e., true functional

lncRNAs) detected by each optimized HTVS pipeline is shown

(see the columns in the table aligned with the dotted lines in

the plots).

As before, we assumed that the candidates are batch pro-

cessed at each stage. As a result, for a given pipeline structure,

the computational cost of the first stage determines the mini-

mum computational resources needed to start screening. The

correlation between the neighboring stages was closely related

to the slope of the corresponding performance curve, which is

a phenomenon that we already noticed before based on syn-

thetic pipelines. For example, at 10% of the original cost, the

pipelines starting with PLEK (i.e., S3) showed the worst perfor-

mance among the tested pipelines in terms of the throughput.

Specifically, ½S3;S4�, ½S3;S1;S4�, ½S3;S2;S4�, ½S3;S1;S2;S4�, and
½S3;S2;S1;S4� detected 6;218, 6; 530, 6; 607, 6;448, and 6; 601

lncRNAs, respectively. On the other hand, pipelines starting

with either CPC2 or CPAT (i.e., S1 or S2) detected 9;518 to

10;033 lncRNAs at the same cost. In addition, pipelines ½S2;

S4�, ½S1; S2; S4�, ½S2; S1; S4�, ½S2; S3; S4�, ½S3; S2; S4�, ½S1; S2; S3;

S4�, ½S1; S3; S2; S4�, ½S2; S1; S3; S4�, ½S2; S3; S1; S4�, ½S3; S1; S2;

S4�, and ½S3;S2;S1;S4� including the second stage associated

with CPAT that is highly correlated to the last stage LncFinder

showed the steepest performance improvement. As a result,

all HTVS pipelines that include CPAT were able to identify nearly

all true lncRNAs (i.e., 45; 697--47; 466) at only 50% of the original

cost, regardless of which stage CPAT was placed in the pipeline.

While the structure of the HTVS pipeline impacts the overall

screening performance, Figure 4 shows that our proposed opti-

mization framework alleviated the performance dependency on

the underlying structure by optimally exploiting the relationships

across different stages. For example, even though the optimized

pipeline ½S1;S2;S4� outperformed the optimized pipeline ½S1;S2;

S3; S4�, which additionally included PLEK (i.e., S3), the perfor-

mance gap was not very significant. The maximum difference

between the two pipeline structures in terms of the detected

lncRNAs was 1;202 when the computational budget was set at

40% of the original cost. However, when considering that

PLEK (S3) was computationally muchmore expensive compared

with CPC2 (S1) and CPAT (S2) and also had a lower correlation
with LncFinder (S4), the throughput difference of 1; 202 was

only about 2:4% of the total lncRNAs in the test dataset, which

is relatively small. Moreover, this throughput difference was

drastically reduced as the available computational resources

increased. For example, when the computational budget was

set at 70%of the original cost the throughput difference between

the two pipelines was only 50.

In practice, real-world HTVS pipelines may involve various

types of screening stages usingmulti-fidelity surrogate models.

The computational complexity and the fidelity of such surrogate

models may differ significantly, and the structure of the pipeline

may vastly vary depending on the domain experts designing

the pipeline. Considering these factors, an important advan-

tage of our proposed HTVS pipeline optimization framework

is its capability to consistently attain efficient and accurate

screening performance that may weather the effect of poten-

tially suboptimal design choices in constructing real-world

HTVS pipelines.
Performance of the lncRNA HTVS pipeline jointly
optimized for screening throughput and efficiency
We evaluated the performance of the lncRNA HTVS pipelines,

jointly optimized for both screening throughput and efficiency

based on the proposed framework with a = 0:5. The results

for various pipeline configurations are shown in Table 4. On

average, the optimized HTVS pipeline detected 48;372 lncRNAs

out of 50; 266 total lncRNAs in the test dataset. The average

effective cost was 3; 067. Pipeline configurations that include

CPAT (S2) achieved relatively higher computational savings

(ranging from 41:86% to 46:25%) compared with those without

S2 (ranging from 27:73% to 36:52%). As we have previously

observed, our proposed optimization framework was effective

in maintaining its screening throughput and efficiency even

when the pipeline included a stage (e.g., PLEK) that is less corre-

lated with the last and the highest-fidelity stage (i.e., LncFinder).

In fact, the inclusion of a less-correlated stage in the HTVS pipe-

line does not significantly degrade the average screening perfor-

mance. This is because the proposed optimization framework

enables one to select the optimal threshold values that can

sensibly combine the benefits of the most computationally effi-

cient stages (such as CPC2 and CPAT in this case) as well as
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10 % 20 % 30 % 40 % 50 % 60 % 70 % 80 % 90 % 100 %
9,647 19,711 29,728 39,335 46,647 49,456 50,194 50,264 50,266 50,266
9,518 19,184 28,983 38,729 46,271 49,347 50,160 50,264 50,266 50,266
9,692 19,741 29,768 39,393 46,758 49,464 50,197 50,264 50,266 50,266
9,677 19,734 29,730 39,393 46,745 49,460 50,197 50,264 50,266 50,266
6,448 16,937 27,276 37,429 45,697 49,222 50,158 50,264 50,266 50,266
6,601 16,964 27,329 37,429 45,709 49,230 50,159 50,264 50,266 50,266

10 % 20 % 30 % 40 % 50 % 60 % 70 % 80 % 90 % 100 %
9,973 20,280 29,452 37,071 43,250 48,210 50,220 50,265 50,266 50,266
10,020 20,418 30,749 40,615 47,400 49,719 50,244 50,266 50,266 50,266
6,218 15,643 24,246 32,032 39,017 44,202 47,696 49,447 50,091 50,254

10 % 20 % 30 % 40 % 50 % 60 % 70 % 80 % 90 % 100 %
10,033 20,364 30,692 40,537 47,365 49,713 50,244 50,266 50,266 50,266
9,563 19,570 28,678 36,164 42,218 47,364 50,125 50,252 50,266 50,266
10,025 20,397 30,765 40,695 47,466 49,717 50,244 50,266 50,266 50,266
9,688 19,753 29,760 39,431 46,680 49,467 50,198 50,264 50,266 50,266
6,530 16,866 26,590 34,663 41,332 46,705 49,974 50,254 50,265 50,266
6,607 16,997 27,335 37,464 45,742 49,239 50,162 50,264 50,266 50,266

A    = 2N  

N  

N 

B

C

Figure 4. Performance evaluation of the optimized lncRNA HTVS pipeline

The number of potential candidates (i.e., lncRNAs) detected by the HTVS pipeline is shown under various computational budget constraints (x axis). Various

different pipeline structures were tested, and the results show that the proposed optimization framework leads to reliable performance regardless of the

structure used.
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the highest-fidelity stage (LncFinder), therebymaximizing the ex-

pected ROCI. Similar observations can be made regarding the

ordering of the multiple screening stages, as Table 4 shows

that the average performance does not significantly depend on

the actual ordering of the stages when the screening threshold

values are optimized via our proposed framework. For example,
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when using all four stages in the HTVS pipeline (N = 4), the opti-

mized pipeline detected 48;402 lncRNAs on average and with

consistent computational savings ranging between 42:27%

and 44:00%. We also evaluated the accuracy of the potential

candidates screened by the optimized HTVS pipeline based on

four performance metrics: accuracy (ACC), sensitivity (SN),



Table 4. Performance evaluation of the lncRNA HTVS pipeline jointly optimized for throughput and efficiency (a = 0:5)

Configuration

Potential

candidates Total cost (ms)

Effective

cost

Computational

savings (%) Accuracy Sensitivity Specificity F1

½S4� 50; 266 261;374;090 5; 200 0 0.8440 0.9264 0.7936 0.8186

½S1;S4� 48; 875 161;357;081 3; 301 36:52 0.8429 0.9075 0.8034 0.8144

½S2;S4� 47; 950 134;366;143 2; 802 46:12 0.8624 0.9215 0.8262 0.8357

½S3;S4� 47; 083 176;963;736 3; 758 27:73 0.8450 0.8876 0.8188 0.8131

½S1;S2;S4� 48; 210 134;748;992 2; 795 46:25 0.8600 0.9216 0.8222 0.8333

½S1;S3;S4� 49; 100 168;490;516 3; 432 34:00 0.8442 0.9120 0.8026 0.8164

½S2;S1;S4� 134;812;024 2; 796 46:23 0.8600 0.9216 0.8222 0.8334

½S2;S3;S4� 48; 295 141;710;246 2; 934 43:58 0.8602 0.9230 0.8218 0.8338

½S3;S1;S4� 49; 119 171;803;403 3; 498 32:73 0.8444 0.9124 0.8026 0.8166

½S3;S2;S4� 48; 326 146;100;080 3; 023 41:86 0.8600 0.9231 0.8214 0.8336

½S1;S2;S3;S4� 48; 402 140;954;256 2; 912 44:00 0.8591 0.9228 0.8200 0.8326

½S1;S3;S2;S4� 48; 332 141;229;518 2; 922 43:81 0.8587 0.9215 0.8203 0.8321

½S2;S1;S3;S4� 48; 409 141;022;859 2; 913 43:98 0.8591 0.9229 0.8200 0.8326

½S2;S3;S1;S4� 48; 414 141;225;328 2; 917 43:90 0.8591 0.9230 0.8200 0.8327

½S3;S1;S2;S4� 48; 424 145;321;388 3; 001 42:29 0.8589 0.9228 0.8197 0.8324

½S3;S2;S1;S4� 48; 429 145;388;626 3; 002 42:27 0.8589 0.9229 0.8197 0.8325
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specificity (SP), and F1 score. Interestingly, all configurations

except for ½S1;S4� outperformed LncFinder in terms of ACC. In

terms of SN, the optimized pipeline achieved an average sensi-

tivity of 0.9177. All pipeline configurations resulted in higher

specificity compared with LncFinder. Besides, pipeline configu-

rations that include S2 consistently outperformed LncFinder in

terms of the F1 score.

Finally, we compared the performance of the optimized pipe-

linewith that of the baseline approach that selects the topRs%of

the incoming candidates for the next stage, where Rs% is a

parameter to be determined by a domain expert. For this com-

parison, we considered the four-stage pipeline ½S1; S2; S3; S4�.
The optimal screening policy was found based on our proposed

framework using three different values of a˛ f0:25;0:50;0:75g.
The baseline screening approach was evaluated based on four

different levels of Rs ˛ f25%; 50%; 75%g. The performance

assessment results are summarized in Table 5. As shown in Ta-

ble 5, the baseline approach detected fewer lncRNAs for all

values of Rs compared with the optimized pipeline. Specifically,

the jointly optimized pipeline detected 48;965, 48; 402, and

47;106 lncRNAs at a cost of 148; 155; 016 (a = 0:75),

140;954;256 (a = 0:50), and 131;830; 857 (a = 0:25), respec-

tively. On the other hand, the baseline approach with Rs = 75%

detected only 39;079 lncRNAs at a total cost of 115; 643;459.

For Rs = 50% and Rs = 25%, the baseline scheme detected

only 12; 653 and 1;402 lncRNAs, respectively. In terms of the

four quality metrics (ACC, SN, SP, and F1), the optimized pipe-

line outperformed the baseline scheme in terms of ACC, SN,

and F1. The optimized pipeline resulted in lower SP compared

with the baseline. However, it should be noted that the potential

candidates detected by the optimized HTVSpipeline are remark-

ably higher compared with the baseline approach. This is clearly

reflected in the much lower SN of the baseline approach, as

shown in Table 5. As a result, the baseline approach tends to

achieve significantly lower ACC and F1 compared with the

optimal screening scheme.
DISCUSSION

In this work, we proposed a general mathematical framework for

identifying the optimal screening policy that can either maximize

the ROCI of an HTVS pipeline under a given computational

resource constraint or strike the balance between the screening

throughput and efficiency depending on the optimization sce-

narios. The need for screening a large set of molecules to detect

potential candidates that possess the desired properties

frequently arises in various science and engineering domains,

although the design and operation of such screening pipelines

strongly depend on expert intuitions and ad hoc approaches.

We aimed to rectify this problem by taking a principled approach

to HTVS, thereby maximizing the screening performance of a

given HTVS pipeline, reducing the performance dependence

on the pipeline configuration, and enabling quantitative compar-

ison between different HTVS pipelines based on their optimal

achievable performance.

We considered two scenarios for HTVS performance optimi-

zation in this study: first, maximizing the detection of potential

candidate molecules that possess the desired property under

a constrained computational budget and second, jointly opti-

mizing the screening throughput and efficiency of the HTVS

pipeline when there is no fixed computational budget for the

screening operation. For both scenarios, we have thoroughly

tested the performance of our proposed HTVS pipeline optimiza-

tion framework. Comprehensive performance assessment

based on synthetic HTVS pipelines as well as real lncRNA

screening pipelines showed clear advantages of the proposed

framework.

On the synthetic HTVS pipeline dataset, the optimized pipe-

lines were able to remarkably maximize the screening

throughput under a given resource constraint as shown in Fig-

ure 2. For example, one of the best-performing HTVS pipelines,

½S1;S2;S3;S4�, optimized via the proposed framework detected

99%of the promising candidates that retain the desired property
Patterns 4, 100875, November 10, 2023 11



Table 5. Performance of the four-stage lncRNA HTVS pipeline ½S1;S2;S3;S4� jointly optimized for throughput and efficiency is

compared with that of the baseline screening approach

Approach

Potential

candidates Total cost (ms)

Effective

cost

Computational

savings (%) Accuracy Sensitivity Specificity F1

Proposed (a = 0:75) 48; 965 148; 155; 016 3; 026 41:81 0.8553 0.9249 0.8126 0.8292

Proposed (a = 0:5) 48; 402 140; 954; 256 2; 912 44:00 0.8591 0.9228 0.8200 0.8326

Proposed (a = 0:25) 47; 106 131; 830; 857 2; 799 46:17 0.8650 0.9143 0.8348 0.8373

Baseline (Rs = 0:75) 39; 079 115; 643; 459 2; 959 43:10 0.8366 0.7761 0.8737 0.7801

Baseline (Rs = 0:5) 12; 653 35; 255; 772 2; 786 46:42 0.7170 0.2866 0.9807 0.4348

Baseline (Rs = 0:25) 1; 402 4; 963;415 3; 540 31:92 0.6318 0.0330 0.9986 0.0638
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at the cost of only 14% of the original cost that will be needed for

screening all the initial candidates with the highest-fidelity model

alone (i.e., S4) when computational resources were constrained.

When the HTVS pipelines were jointly optimized for throughput

and computational efficiency, it discovered at least 94% of the

true potential candidates while saving up to 86:64% of the orig-

inal computational resource requirement (see Tables 1 and 2).

As shown in Figure 4, the optimized HTVS pipelines built for a

real-world lncRNA screening campaign consistently demon-

strated their practical efficacy in terms of maximizing the

ROCI. All the optimized pipelines including CPAT, which is

reasonably correlated to LncFinder, identified at least 91% of

the true lncRNAs at 50% of the original computational cost. As

illustrated in Table 4, the jointly optimized HTVS pipelines for

throughput and computational efficiency selected 96:2% of the

true lncRNAs and saved a computational resource of 41%

compared with the original computational cost on average. Be-

sides, the simulation results summarized in Table 5 demonstrate

that the pipeline optimized via the proposed framework clearly

outperformed the agnostic baseline approach.

Overall, not only does the HTVS optimization framework re-

move the guesswork in the operation of HTVS pipelines to

maximize the throughput, enhance the screening accuracy,

and minimize the computational cost, it also leads to reliable

and consistent screening performance across a wide variety of

HTVS pipeline structures. This is a significant benefit of the pro-

posed framework that is of practical importance since it makes

the overall screening performance robust to variations and

potentially suboptimal design choices in constructing real-world

HTVS pipelines. As there can be infinite different ways of building

anHTVS pipeline in real scientific and engineering applications, it

is important to note that our proposed optimization framework

can guarantee near-optimal screening performance for any

reasonable design choice regarding the HTVS pipeline

configuration.

In addition, the comprehensive simulation results in diverse

setups (see Figures S1–S48 in the supplemental information)

have provided insights into how one can better design an

HTVS pipeline when one should construct an HTVS pipeline

from scratch. First, if one is allowed to analyze the interrelations

of the screening stages with respect to the highest-fidelity model

of interest prior, it might be generally effective not to include

the screening stages that are less correlated to the highest-

fidelity screening stage unless necessary. In other words, it

might be computationally beneficial to exclude the screening

stages with a lower ratio of correlation to their computational
12 Patterns 4, 100875, November 10, 2023
complexity. Second, one of the effective strategies for ordering

the screening stages of an HTVS pipeline is to place them in

increasing order of computational complexity. Finally, care has

to be taken when deciding the number of screening stages

used for constructing an HTVS pipeline as its optimality is a

complicated function of diverse factors including the computa-

tional complexity, order, and correlation of the screening stages

in the HTVS pipeline and the positive sample ratio. However, it

should be also noted that, as demonstrated, the proposed

framework can alleviate the performance degradation from the

suboptimal designs.

While the HTVS optimization framework presented in this

paper is fairly general and may be applied to various molecu-

lar screening problems, there are interesting open research

problems for extending its capabilities even further. For

example, how can we design an optimal screening policy

when the structure of the HTVS pipeline is not linear (i.e.,

sequential)? It would be interesting to investigate how one

may design optimal screening policies for pipelines whose

structure is a directed acyclic graph. Another interesting prob-

lem is how to construct an ideal screening pipeline if only a

high-fidelity model is available and its lower-fidelity surrogates

need to be designed/learned from this high-fidelity model from

scratch. This problem has been recently investigated in a pre-

liminary setting for the case of screening redox-active organic

materials.52 Further research is needed to generalize this

result and enable joint optimization of multiple surrogate

models to optimize the performance of the overall HTVS pipe-

line. Finally, we can envision designing a dynamic screening

policy—e.g., based on reinforcement learning—where there

is no predetermined ‘‘pipeline structure’’ but a candidate

molecule is dynamically steered to the next stage based on

the screening outcome of the previous stage. In this case,

instead of first learning the relations between different stages

and then deriving the optimal screening policy—as we did in

this study—we may learn, apply, and enhance the screening

policy in a dynamic and adaptive manner, which may be bet-

ter suited for specific applications.

EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for resources should be directed to and will

be fulfilled by the lead contact, Dr. Byung-Jun Yoon (bjyoon@ece.tamu.edu).

Materials availability

This study did not generate new unique reagents.
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Data and code availability

d All raw RNA sequences that were used in this study are publicly avail-

able at GENCODE: https://www.gencodegenes.org/human/release_

38.html.49

d Python source code and the pre-processed RNA sequences are pub-

licly available at Zenodo: https://doi.org/10.5281/zenodo.8392685.53
Simulation environment

We optimized the screening policy—for both optimization problems defined in

Equations 4 and 6—using the differential evolution optimizer54 in the Scipy Py-

thon package (version 1.7.0). We performed all simulations on Ubuntu (version

20.04.2 LTS) installed on Oracle VM VirtualBox (version 6.1.22) that runs on a

workstation equipped with an Intel i7-8809G CPU and 32 GB RAM.

Learning the output relations across multiple stages in an HTVS

pipeline

As shown in Figure 1, the proposed optimization framework that identifies the

optimal screening policyc� takes a two-phase approach. In the first phase, we

estimate the joint score distribution pðy1; y2;.; yNÞ. Based on the estimated

score distribution, we find the optimal screening policy c� that maximizes

the screening performance. To ensure good screening performance, accurate

estimation of the joint score distribution pðy1; y2;.; yNÞ is crucial. In this study,

we performed a spectral estimation under the assumption that the joint score

distribution follows a multivariate Gaussian mixture model and estimated the

parameters via the EM scheme.51

Finding the optimal screening policy under computational budget

constraint

A formal objective is to find the optimal screening policy c� = ½l�1; l�2;.; l�N�1�
that leads to the maximal number of desired candidates whose property at the

highest fidelity satisfies a given condition (i.e., fNðxÞR lN) under a given

computational resource constraint C. The interrelation between the property

scores computed based on all stages S1;S2;.;SN is captured by their joint

score distribution pðy1; y2;.; yNÞ. Based on the joint score distribution pðy1;
y2;.;yNÞ, we define reward function rðlÞ; which is a function of N screening

thresholds l = ½l1; l2;.; lN� of the stages Si, i = 1; 2;.;N, as follows:

rðlÞ =

Z
/

ZN

½lN ;lN� 1 ;.;l1 �

pðy1; y2;.; yNÞ dy1dy2/dyN: (Equation 3)

We can find the optimal screening policyc� = ½l�1; l�2;.; l�N� 1� to be applied

to the first N � 1 stages (Si ) that maximizes the reward under a given compu-

tational resource constraintC by solving the constrained optimization problem

shown below:

c� = arg max
c˛RN� 1

rð½c; lN�Þ (Equation 4)

s:t:
XN
i = 1

cijXi j % C;

where jXi j is the number of molecules that passed the previous stages from

S1 to Si� 1. Formally, jXi j is defined as:

jXi j = jXj
Z

/

ZN

½li� 1 ;li� 2 ;.;l1 �

p1:i� 1ðy1; y2;.; yi� 1Þ dy1dy2/dyi� 1; (Equation 5)

where p1:i� 1 denotes the marginal score distribution for y1;/;yi� 1, which can

be obtained by marginalizing pð $Þ over yi to yN.

Joint optimization of the screening policy for screening throughput

and efficiency

In many real-world screening problems, including drug or material screening,

the total computational budget for screening may not be fixed, and one may

want to jointly optimize for both screening throughput as well as computational

efficiency of screening. In such a scenario, we can formulate a joint optimiza-
tion problem to find the best screening policy that strikes the optimal balance

between throughput and efficiency:

c� = arg min
c˛RN� 1

arð½c; lN�Þ+ ð1 � aÞhð½c; lN�Þ: (Equation 6)

The weight parameter a˛ ½0; 1� determines the relative importance between

the relative reward function rð½c; lN�Þ and the normalized total cost function

hð½c; lN�Þ defined as follows:

rð½c; lN�Þ =
rð½�N; lN�Þ � rð½c; lN�Þ

rð½�N; lN�Þ (Equation 7)

=

RN

lN
pNðyNÞ dyN � rð½c; lN�ÞRN

lN
pNðyNÞ dyN

; (Equation 8)

hð½c; lN�Þ =
1

NjXjmaxici

XN
i = 1

ci jXi j: (Equation 9)

Note that pN is the marginal score distribution for yN, which is obtained by

marginalizing pð $Þ over y1 to yN� 1.
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