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Millions of children across the world are exposed to multiple sources of indoor and

outdoor air pollutants, including high concentrations of fine particulate matter (PM2.5)

and ozone (O3). The established link between exposure to PM2.5, brain structural,

volumetric and metabolic changes, severe cognitive deficits (1.5-2 SD from average IQ)

in APOE 4 heterozygous females with >75 − <94% BMI percentiles, and the presence

of Alzheimer’s disease (AD) hallmarks in urban children and young adults necessitates

exploration of ways to protect these individuals from the deleterious neural effects of

pollution exposure. Emerging research suggests that cocoa interventions may be a

viable option for neuroprotection, with evidence suggesting that early cocoa interventions

could limit the risk of cognitive and developmental concerns including: endothelial

dysfunction, cerebral hypoperfusion, neuroinflammation, and metabolic detrimental brain

effects. Currently, however, it is not clear how early we should implement consumption of

cocoa to optimize its neuroprotective effects. Moreover, we have yet to identify suitable

instruments for evaluating cognitive responses to these interventions in clinically healthy

children, teens, and young adults. An approach to guide the selection of cognitive tools

should take into account neuropsychological markers of cognitive declines in patients

with Alzheimer’s neuropathology, the distinct patterns of memory impairment between

early and late onset AD, and the key literature associating white matter integrity and

poor memory binding performance in cases of asymptomatic familial AD. We highlight

potential systemic and neural benefits of cocoa consumption. We also highlight Working

Memory Capacity (WMC) and attention control tasks as opened avenues for exploration

in the air pollution scenario. Exposures to air pollutants during brain development have

serious brain consequences in the short and long term and reliable cognition tools should

be at hand to evaluate interventions.
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BACKGROUND

Increasing evidence links two key effects of air pollution
(oxidative stress and neuroinflammation), to developmental
neurotoxicity and neurodegenerative disease, particularly
Alzheimer’s disease (AD) (Blass and Gibson, 1991; Calderón-
Garcidueñas et al., 2002, 2008a,b,c, 2012a,b, 2015a,b,c,d,e,f,g;
Block and Calderón-Garcidueñas, 2009; Smith et al., 2010;
Levesque et al., 2011a,b, 2013; Bolton et al., 2012; Oppenheim
et al., 2013; Costa et al., 2014; Jung et al., 2015; Naini and
Soussi-Yanicostas, 2015; Yao et al., 2015).

Children are exposed to significant amounts of complex
mixtures of air pollutants, and their developing brains are
at high risk for deleterious effects (Annavarapu and Kathi,
2016; Forns et al., 2015; Miller et al., 2016; Yorifuji et al.,
2016). Sources of air pollutants include common environmental
pollutants, molds, and fine particulate matter (PM2.5) (Querol
et al., 2008; Molina et al., 2010; Múgica et al., 2010; Vega
et al., 2010; Lippmann et al., 2013; Amato et al., 2014; Miller
et al., 2016). PM2.5 is particularly dangerous for children’s health
(Bilenko et al., 2015), and factors such as particle size range,
geographic location, source category, residency within a city,
season, and socioeconomic status, all influence the impact on
adverse health effects (Calderón-Garcidueñas and Torres-Jardón,
2012; Hajat et al., 2015). Systemic inflammation and increased
concentrations of potent vasoconstrictors (i.e., endothelin-1, ET-
1) are critical features of children’s exposure to the pollution
(Calderón-Garcidueñas et al., 2007). Further, this inflammatory
response correlates with cumulative exposures to PM2.5 (as well
as total outdoor exposure hours), and occurs in conjunction with
sustained inflammation of the upper and lower respiratory tracts
and endothelial dysfunction (Calderón-Garcidueñas et al., 2003,
2007, 2008b).

Our work has centered specifically on Mexico City children,
as they are exposed to a significant amount of pollution daily,
including concentrations above the current US standards for
ozone, and fine particulate matter <2.5µm in diameter (Molina
et al., 2010). These life-long exposures are very significant in
terms of oxidative stress, neurotoxicity, and neurodegeneration
(Calderón-Garcidueñas et al., 2008a, 2009, 2012a, 2013a).

A crucial paper focused on the interaction between gender,
BMI and APOE 4 makes a key observation: Gender, BMI
and APOE influence children’s cognitive responses to air
pollution and glucose is likely a key player. We have described
APOE 4 heterozygous females with >75 − <94% BMI
percentiles have the highest risk of severe cognitive deficits
(1.5-2 SD from average IQ). These young females need
gender-targeted health programmes to improve their cognitive
responses. These are the females at the highest risk for
the developing of Alzheimer and thus the need for early
multidisciplinary intervention strategies (Calderón-Garcidueñas
et al., 2016).

A recent paper by Jung et al. (2015), is highly relevant to the
massive exposure of millions of people to high concentrations
of air pollutants in megacities: an estimated 211% higher risk
for AD per increase of 10.91 ppb in O3, and a 138% risk of
increase of AD per increase of 4.34µg/m3 in PM2.5. The study

was done in a cohort of 95,690 individuals’ age≥ 65, over a 9 year
follow-up period. Jung et al.’s findings strongly suggest long-term
exposure to O3 and PM 2.5 above the current US EPA standards
are associated with increasing the risk of AD.

KEY CONCEPT 1 | Air pollutants and Alzheimer’s risk

Long-term exposure to ozone (O3) and fine particulate matter (PM 2.5) above

the current US EPA standards is associated with increased risk of AD (Jung

et al., 2015).

A key consequence of air pollution exposure is
neuroinflammation (Campbell et al., 2009; Levesque et al.,
2011a,b, 2013). In urban children, our work has shown a
significant frontal lobe imbalance in key genes for inflammation,
oxidative stress, innate and adaptive immune responses, cell
proliferation, and apoptosis (Calderón-Garcidueñas et al.,
2012a). Moreover, otherwise clinically healthy Mexico City
children exhibit cognition deficits, brain metabolic, structural
and volumetric changes, and the neuropathological and
cerebrospinal fluid (CSF) hallmarks of AD and Parkinson’s
diseases i.e., tau hyperphosphorylation with pre-tangles, amyloid
beta42 (Aβ42) plaques, low CSF Aβ42, and misfolded α-
synuclein accumulation (Calderón-Garcidueñas et al., 2008a,
2011, 2012a, 2013a, 2015a).

Extensive literature supports human and animal, breakdown
of the nasal/olfactory blood-brain-barrier, alveolar-capillary, and
intestinal barriers, as well as the brain expression of detrimental
genes associated to urban air pollution (Thomson et al., 2007;
Gerlofs-Nijland et al., 2010; Villarreal-Calderon et al., 2010;
Bolton et al., 2012; Calderón-Garcidueñas et al., 2012a, 2013c,
2015g; Bergin and Witzmann, 2013; Carson et al., 2013; Kish
et al., 2013; Ljubimova et al., 2013;Win-Shwe et al., 2014; Rossner
et al., 2015; Tsamou et al., 2016). Specifically, inductively coupled
plasmamass spectrometry formetal analysis and real time PCR in
frontal samples ofMexico City children and young adults showed
higher concentrations of metals associated with PM: manganese
(p = 0.003), nickel and chromium (p = 0.02) along with higher
frontal COX2 mRNA (p = 0.008) and IL1β (p = 0.0002) and
COX2 (p = 0.005) olfactory bulb indicating neuroinflammation.
Olfactory bulb DNA repair genes changes correlated with
frontal combustion-related metals, suggesting that PM-metal
neurotoxicity plays a key role in brain damage in young urbanites
(Calderón-Garcidueñas et al., 2013c). Upregulated gene network
clusters involved in inflammation, immunity, differentiation,
cell growth, tumorigenesis, and apoptosis, including IL1, NFκB,
TNF, IFN, and TLRs are described in frontal samples of MC
young urbanites v clean air controls (Calderón-Garcidueñas
et al., 2012a). While a 15-fold frontal down-regulation of
the prion-related protein (PrP(C)) with important roles for
neuroprotection, neurodegeneration, andmood disorder states is
also seen in highly exposed subjects (Calderón-Garcidueñas et al.,
2012a). Upregulation of inflammatory genes is not restricted
to supratentorial structures, the dorsal vagal complex (DVC) is
also a target (Villarreal-Calderon et al., 2010). Cyclooxygenase-2
(COX-2), interleukin 1 beta (IL-1β), and CD14 messenger RNA
(mRNA) were quantified after 4, 8, and 16 months of exposure
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in mice target brain regions. After 16 months of exposure to
the MC atmosphere v controls, the DVC exhibited significant
inflammation in MC mice (COX-2 and IL-1β P < 0.001) along
with the olfactory bulb upregulation of CD14 (P = 0.002) and
significant DVC imbalance in genes for antioxidant defenses,
apoptosis, and neurodegeneration. Similar gene cluster changes
are seen upon exposure to diesel PM or a combination of PM
+ozone (Gerlofs-Nijland et al., 2010; Levesque et al., 2011a,b,
2013; Ljubimova et al., 2013).

Neuroinflammation, cognitive deficits, weight gain, memory
function and maternal performance based on the impaired gene
expressions in the hippocampus and hypothalamus and placental
epigenetic changes with fetal impact are described for specific
pollutants such as diesel, as well as a combination of complex
mixtures of PM2.5 (Bolton et al., 2012; Win-Shwe et al., 2014;
Tsamou et al., 2016).

Of particular concern in environments with high
concentrations of ultrafine particulate matter (UFPM, nanosize
particles < 100 nm), is that UFPM ends up in contact with the
vascular endothelium where it can induce damage (Gehr et al.,
2011; Sharma and Sharma, 2012; Sharma et al., 2013; Karmakar
et al., 2014; Ucciferri et al., 2014). There is robust evidence
that nanosize particles can increase endothelial paracellular
permeability in vitro, and induce endothelial TJ opening
(Sharma et al., 2013; Karmakar et al., 2014; Ucciferri et al., 2014).
Exposure to different size particulate matter (including nano size
particulate matter), is associated with production and deposit
of misfolded protein aggregates (amyloid, alpha synuclein,
hyperphosphorilated tau), oxidative stress, cell damage, and
death in susceptible neuronal populations (Qin et al., 2007; Hartz
et al., 2008; Levesque et al., 2011a,b, 2013; Mushtaq et al., 2015;
Parveen et al., 2015; Tian et al., 2015). The frontal white matter
is an early and key target of air pollution exposures in young
Mexico City residents (Calderón-Garcidueñas et al., 2015f).
Major light and electron microscopic findings include: leaking
in capillaries and small arterioles, thickening of cerebrovascular
basement membranes with small deposits of amyloid, patchy
absence of the perivascular glial sheet, enlarged Virchow-Robin
spaces and nanosize particles (20–48 nm) in endothelium,
basement membranes, mitochondria, axons and dendrites
(Calderón-Garcidueñas et al., 2015f). In canine studies, tight
junctions, a key component of the neurovascular unit (NVU) are
abnormal in Mexico City vs. rural control dogs (χ2 < 0.0001),
and white matter perivascular damage is significantly worse in
MC dogs (p = 0.002) (Calderón-Garcidueñas et al., 2015f). The
integrity of the NVU, an interactive network of vascular, glial and
neuronal cells is compromised inMC young residents.

KEY CONCEPT 2 | Mexico City children’s brains

Extensive neuroinflammation, breakdown of the neurovascular unit, oxidative

stress, and hallmarks of Alzheimer disease pathology are present in the brains

of Mexico City children and young adults with chronic yearlong exposures to

high levels of O3 and PM2.5.

The issue of early oxidative stress is particularly important
in pediatric cohorts, given findings suggesting that “a
vicious downward spiral involving the interactions between

mitochondrial dysfunction and oxidative stress contributes to
the initiation and/or amplification of reactive oxygen species that
is critical to the pathogenesis of AD” (Wang X. et al., 2014).

Neuroprotection is critical for pediatric and young adult
populations residing in highly polluted environments and given
our previous experience using cocoa and dark chocolate to
decrease neuroinflammation and improve cognition in young
Mexico City residents (Villarreal-Calderon et al., 2010; Calderón-
Garcidueñas et al., 2013b), we undertook a review of potential
systemic and CNS benefits of cocoa consumption. We also
explored the use of cognitive assessments, and their ability to
identify early, subtle changes in cognitive performance.

NEUROPROTECTION: CHOCOLATE, AN
ANCIENT FRIEND AND A NEW PLAYER

Cocoa health benefits have been appreciated for centuries
(Latif, 2013; Sokolov et al., 2013; Grassi et al., 2015a,b). The
health benefits of cocoa are numerous and wide ranging.
Not the least of which include positive impacts on pathways
associated with neurodegeneration (Schini-Kerth, 2014; De
la Monte, 2014; Jumar and Schmieder, 2016). Because of
the multifaceted nature of AD pathology, neuroprevention
should include targeting multiple potential pathophysiological
mechanisms (Dubner et al., 2015). A fundamental issue in
using cocoa as a neuroprotector, is to take into account
factors that determine absorption, metabolism, and excretion
of cocoa flavonols, all of which are key aspects of evaluating
potential benefits (Cifuentes-Gómez et al., 2015). Moreover, the
presence of flavonols in complex food matrices, including their
interactions with other nutrients/non-nutrients, significantly
influence their absorption in the intestinal lumen, as well as their
transfer across the GI barrier (Cifuentes-Gómez et al., 2015).
For example, in pediatric and young adult populations with
high exposure to air pollutants, the transfer of flavonols across
the GI barrier could be compromised by the extensive tight
junction (TJs) damage (Calderón-Garcidueñas et al., 2015g),
and the production of TJs autoantibodies (Calderón-Garcidueñas
et al., 2015c). Additionally, carbohydrate interactions are critical
for the flavonol GI absorption; subsequently, in children, the
absorption and metabolism results of the combination of cacao
with sugar vs. sucrose, milk (of varying fat content), or lactose
intolerance can’t be dismissed (Dehkordi et al., 1995; Schramm
et al., 2003; Schroeter et al., 2003; Roura et al., 2008; Rodriguez-
Mateos et al., 2012; Cifuentes-Gómez et al., 2015).

The issue of brain bioavailability is also important. The
passage of the active metabolites through the blood-brain-barrier
(BBB), and the detection of certain metabolites in specific brain
regions depend on multiple factors. These may include: the type
of metabolite (i.e., flavonols, flavonones), lipophilicity of each
compound, use of pure compounds, and the integrity of the BBB
(Abd El Mohsen et al., 2002; Youdim et al., 2004; Milbury and
Kalt, 2010; Faria et al., 2014).

Strategies designed to explain themechanisms by which brain-
bioavailable flavonols may beneficially influence cognitive deficits
need to be made available (Wang et al., 2010; Wang J. et al.,
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2014; Dubner et al., 2015). Several recent papers review the direct,
and indirect, mechanisms potentially associated with cocoa’s
beneficial neural effects (Desideri et al., 2012; Sokolov et al.,
2013; Jumar and Schmieder, 2016; Grassi et al., 2015a,b). Overall,
evidence suggests that cardiovascular effects are important in
neuroprotection, specifically with regard to the impact on
endothelial dysfunction (Jumar and Schmieder, 2016). To this
end, cocoa flavonols improve vasodilatory capacity in high
and low cardiovascular risk subjects (Heiss et al., 2003; Ferri
et al., 2015; Jumar and Schmieder, 2016; Sansone et al., 2015).
Given the obesity epidemic, and comorbid health problems in
Mexico and the USA, cocoa and cocoa flavonoids may positively
affect the pathophysiological mechanisms involved in insulin
resistance and endothelial dysfunction, with potential benefits
in the prevention of cardiometabolic diseases (Grassi et al.,
2015a,b). The issue of insulin resistance and diabetes mellitus
is important because epidemiological studies support that type
2 diabetes is a major contributor to AD risk (Cermakova et al.,
2015; Ramos-Rodríguez et al., 2015; Sato and Morishita, 2015),
and growing evidence supports the key concept that Alzheimer’s
disease is a metabolic disease, mediated by impairments in brain
insulin responsiveness, glucose utilization, and energy metabolism,
which ultimately lead to increased oxidative stress, inflammation,
and worsening of insulin resistance (De la Monte, 2014).

Thus, lowering blood pressure, inhibiting platelet aggregation,
increasing the bioavailability of nitric oxide and reducing
inflammatory mediators are critical factors for optimizing
cardiovascular health (Ostertag et al., 2010; Ferri et al., 2015;
Jumar and Schmieder, 2016; Gormaz et al., 2016) as well as the
central nervous system (Fisher et al., 2006; Sorond et al., 2010).

There is a long list of beneficial neural effects of cocoa
including: epigenetic mechanisms targeting multiple classes
of chromatin writer-reader-eraser proteins related to histone
acetylation-methylation and DNA methylation, improvement of
memory and learning through enhanced dentate gyrus function,
and decreased anxiety with elevated hippocampal monoamine
and Brain Derived Neurotrophic Factor (BDNF) levels (Van
Praag et al., 2007; Brickman et al., 2014; Stringer et al.,
2015; Declerck et al., 2016). However, researchers agree that
knowledge of the ultimate action of cocoa flavonols on the
human brain remains limited (Sokolov et al., 2013). Moreover,
there is a paucity of cocoa flavonols studies on mood, cognitive
and cardiovascular health research in young people (Francis
et al., 2006; Field et al., 2011; Scholey and Owen, 2013;
Massee et al., 2015), and very little research on the effects
of cocoa in urban children, a population which could benefit
immensely from cocoa interventions (Calderón-Garcidueñas
et al., 2013b).

If we are going to use cocoa as a neuroprotectant in otherwise
healthy urban children and young adults, more research is
needed, including:

1. To define cocoa cognitive effects in the target urban highly
exposed population and the clear air counterparts.

2. To define vascular effects, both systemic, and cerebral.
3. To define antidiabetic, antistress, antiobesity, and anti-

inflammatory effects.

4. To define the health risks from sustained administration of
cocoa, including weight gain, alteration of lipid profiles and
allergies.

KEY CONCEPT 3 | Cocoa and neuroprotection

Cocoa’s beneficial neural effects include the impact on endothelial function and

their positive effects on insulin resistance. There is a knowledge gap in the

potential beneficial and detrimental effects of long term administration of cocoa

in clinically health young urbanites.

Equally important to the potential for cocoa to serve as a
neuroprotector, is the access to a quantifiable measure of its
cognitive impact. As such, repeated cognitive testing in teens and
young adults is essential.

Of key importance to select the right cognitive tools is
the documented evidence that clinically healthy Mexico City
children and young adults exhibit the neuropathological and
cerebrospinal fluid (CSF) features associated with AD, i.e., tau
hyperphosphorylation with pre-tangles, amyloid beta42 (Aβ42)
diffuse plaques, and low CSF Aβ42 (Calderón-Garcidueñas
et al., 2008a, 2011, 2012a, 2013a, 2015a). Thus, an approach to
guide the selection of cognitive tools should take into account
neuropsychological markers of cognitive declines in patients with
Alzheimer’s neuropathology, the distinct patterns of memory
impairment between early and late onset AD, and the key
literature associating white matter integrity and poor memory
binding performance in cases of asymptomatic familial AD.

NEUROPSYCHOLOGICAL MARKERS OF
COGNITIVE DECLINE IN ASYMPTOMATIC
FAMILIAL AD, COGNITIVELY HEALTH
OLDER ADULTS WITH AD
NEUROPATHOLOGY AND PATIENTS WITH
EARLY AD

There is agreement that the pathological hallmarks of Alzheimer
disease are present before the onset of symptoms significant
to trigger a clinical diagnosis of mild cognitive impairment
(MCI) or dementia (Driscoll et al., 2006; Twamley et al., 2006;
Grober et al., 2008; Howieson et al., 2008; Price et al., 2009;
Riley et al., 2011; Sperling et al., 2011; Beach et al., 2012; Monsell
et al., 2014; Hassenstab et al., 2015; Pettigrew et al., 2015).
A particularly interesting study from Hassenstab et al. (2015)
examined 314 elderly individuals cognitively healthy at study
entry. These individuals died within 2 years of their last minimum
two visits for neuropsychological performance evaluation and
received a diagnosis of low to high AD neuropathological change.
The main cognitive abnormal findings at baseline involved nearly
all domains of cognition, with pronounced effects on executive
functioning, language and episodic memory. Monsell et al.,
reported subjects with AD neuropathological change but without
MCI or dementia, having subtle decline in the attention/working
memory (WM) domain. Hassenstab et al. (2015) suggested
attention/WM might be the earliest subtle neuropsychological
domain to be affected in the preclinical phase of AD.
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In the work of Chapuis et al. (2016) 76 people with MRI
were rated for microangiopathy, hippocampal and parietal
atrophy and a gradient of fronto-parietal atrophy. A standardized
neuropsychological battery for attention, language, praxis,
parietal function, visuoconstructive function, verbal and visual
memory, WM, and frontal executive function were used.
Working memory (WM) deficits proved to be a reliable battery
among the three groups characterized by microangiopathy,
hippocampal atrophy and parietal atrophy. It is key to emphasize
that microangiopathy indeed is associated with executive
disorders and impairedWM (Au et al., 2006; Schmidt et al., 2007;
Son et al., 2012), because indeed Mexico City youngsters have
significant white matter alterations in the neurovascular unit,
with clear evidence of microangiopathy (Calderón-Garcidueñas
et al., 2015f).

The white matter integrity as measured by diffusion tensor
magnetic resonance imaging is critical to explain poor memory
binding performance in symptomatic carriers of the E280A
mutation of the PSEN1 gene (Parra et al., 2015).Interestingly,
asymptomatic young carriers of the mutation, ages 24–43 year
differed from controls only in the short-term memory binding
task. Parra’s paper is critical for our review because frontal
white matter alterations have an impact on WM (Owen, 2000;
Prabhakaran et al., 2000; Sala and Courtney, 2007). Alterations
in myelin, oligodendrocytes, axonal degeneration and vascular
pathology are key factors to play a role in frontal white matter
to account for WM deficits (Englund and Brun, 1990; Sjobeck
et al., 2005; Bartzokis et al., 2007). Equally relevant to Mexico
City young residents is the knowledge that white matter synaptic
disruption precedes both white matter tract anomalies and
neurodegeneration (Alix and Domingues, 2011). We fully agree
with Parra et al., that “different memory binding functions may be
affected by different white matter events.”

The issue of impairments of WM and inhibitory control are
absolutely critical in the context of air pollution exposures and
WM deficits. Eye-tracking tasks deficits are seen in people with
early dementia (Crawford et al., 2005, 2013, 2015; Crawford
and Highm, 2016). Saccadic eye movements (rapid gaze shifts)
are under the control of a network of cortical and subcortical
connections involved in WM and inhibitory control (IC)
(Crawford and Highm, 2016). The anti-saccade task (AST) is
the most common used IC paradigm that includes a central
inhibitory component with a high proportion of corrective
eye movements following the inhibition failures (Crawford
et al., 2013). The corrective eye movements are less frequent
in people with AD (Crawford et al., 2013), so it remains to
be seen whether highly exposed Mexico City youngsters are
impaired on the antisaccade task and if impaired WM can
coexist with an intact IC, as suggested by Crawford and Highm
(2016).

High levels of eye movement distractibility are seen in
the early stages of AD (Crawford and Highm, 2016), such
a deficiency in the ability to inhibit irrelevant information
will significantly impact memory. Also relevant, prominent
non-memory domains, including executive functions and
visuoconstructional abilities are common in early onset AD
(EOAD) (Joubert et al., 2016).

Mexico City children have significantly lower CSF Aβ1−42
concentrations vs. their matched clean air controls (Calderón-
Garcidueñas et al., 2015a). This poses a key question in the
open exposed urban population: are the CSF levels of Aβ1−42
relevant for cognition? The information so far is not clear when
cognitively normal middle age and older adults are examined.
Pettigrew et al. work suggests CSF Aβ1-42 is not significantly
associated with cognition, while robust associations between
biomarkers of amyloid pathology and episodic memory are
found (Pike et al., 2007; Villemagne et al., 2011; Hedden et al.,
2012; Kantarci et al., 2012; Pettigrew et al., 2015). Interestingly,
Pettigrew et al. also reported that APOE4 status was not directly
associated with cognitive performance, an association we have
reported in our Mexico City highly exposed children’ cohorts
(Calderón-Garcidueñas et al., 2015b,e).

KEY CONCEPT 4 | Detection of children at high risk

Our efforts to design a neurocognitive battery for highly exposed Mexico City

young residents capable to detecting subtle cognition changes in specific

domains, is based on the literature reports focusing in the asymptomatic stages

of familiar AD and in the profile of cognitive deficits reported for clinically

cognitively intact middle and older adults with AD neuropathology and in

patients with early AD.

WORKING MEMORY CAPACITY AND
INHIBITORY CONTROL

It is important that serious thought be given to the
measurement of cognition in studying the effects of air
pollution. Considerations should include: (1) measures of
cognition should be as common across studies as possible, (2)
measures should be as domain-general as possible—meaning
they should reflect processes and capabilities that are common
to many different cognitive tasks, (3) the measures and the
constructs they reflect should be moderately well understood
in cognitive theory, and (4) they should be relatively easily
measured across different environments and in different ages.
Working memory and its related constructs meets all these
criteria. Working memory capacity (WMC) can be defined
as the ability to store or keep active information temporarily
for use in ongoing tasks, to update, transform, and modify
that information in ongoing processing, and, when necessary
to disengage or to inhibit recently activated information
(Engle and Kane, 2004). Working memory capacity is highly
correlated with fluid intelligence (Gf), the biological and
largely inherited aspect of intelligence. One important reason
for this correlation seems to be that both types of measures
rely on the ability to control ones attention, a capability
often referred to as Executive Attention (EA). Extensive work
under the rubric of cognitive control (e.g., WMC/Gf/EA) has
shown that these capabilities are important to a huge range of
educational and real-world cognitive tasks from reading and
listening comprehension to complex learning and problem
solving (Engle and Kane, 2004; Kane et al., 2004). Thus,
the assessment of these constructs can be useful, and even
necessary, to be able to make conclusions about the role of
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pollution on cognitive performance of individuals in their own
environment.

We have selected key WMC/Gf/EA tasks for exploring highly
exposed teens and young adults in Mexico City including.

Complex Spans
Complex span tasks, the most commonly used measures of
WMC have been shown to reflect strong relationships with
real-world cognition (Daneman and Carpenter, 1980). We will
work with two variations: operation and symmetry span that
require test-participants to remember serially-presented items
(e.g., letters, words, spatial locations). Each to-be-remembered
item is followed by a processing task that has to be completed
before the next item is shown and which serves to force attention
shifts back and forth between the items to be remembered and
the processing task. For the operation span task, a mathematical
equation must be solved. For the symmetry span task, a picture
must be judged as either symmetrical or non-symmetrical.
After several pairs of items and processing tasks have been
presented (generally 2–7), test-takers are to reconstruct the list
of items in the order in which they were originally presented.
Performance on complex span tasks is strongly predictive of
a person’s attention control abilities (Engle and Kane, 2004;
Unsworth et al., 2009; Unsworth and Spillers, 2010; Hutchison,
2011). Key to the quest for subtle cognitive alterations in
air pollution, complex span tasks best predict performance
on complex cognition tasks (e.g., reading, listening, complex
learning, and problem solving) as well as for emotional and
behavioral self-control associated with control of inappropriate
social behavior (Broadway et al., 2010). Thus, reductions in
measures of cognitive control (e.g., WMC/Gf/EA) are associated
with a wide range of socially relevant behaviors including, alcohol
abuse and violence. Addiction behaviors and violence deserve
study because are relevant potential consequences of the effects
of pollution on cognitive control.

Attention Control Tasks
There are two aspects of attention. One way to think about
attention is that various events capture our attention. Those
events could be externally generated such as a loud sound or
internally generated such as the thought of something that
happened to you recently. However, the more important aspect
of attention for present purposes is how we exert control over
our attention and direct it toward a task we are attempting to
perform. We can think of that as EA. A good example of this is
our tendency to mind wander. It is now clear that people who
are measured higher on tasks of cognitive control are much less
likely to have their attention captured and to mind wander when
performing a task (Kane and McVay, 2012).

There are several reliable and valid tasks of attention control.

One of them is the Antisaccade Task

In a common version of this task, subjects are faced with a
computer screen with a fixation cross in the center of the screen
and two boxes 11 degrees of visual angle to each side of the
fixation. They are to stare at the fixation cross and at some point
one of the boxes will flicker. When they happens they are to

immediately shift their attention to the box on the opposite side
of the screen where a letter (either O or Q) will be presented
for a very short duration (150ms) after which it is masked. The
subject must identify which letter was presented. The problem is
that evolution has prepared all organisms with a brain to have
their attention captured by the flickering box because the flicker
affords movement in the natural world and things that move can
eat you or you can eat them. This tasks requires that individuals
resist that natural temptation and force their attention to the
opposite side of the screen (Kane et al., 2001). Antisaccade
performance is highly associated with WMC and Gf and predicts
many different real-world behaviors including self-control.

Flanker Task

The arrow flanker task based on work by Eriksen and Eriksen
(1974) in which subjects are to identify the middle character of
a 5 character string. For example, in the string of character X
X→XX, the subject would be required to press a key indicating
a right facing as opposed to left facing arrow. In the following
string of characters,←←→←←, the response is the same but
the subject must resist the strong automatic activation of the
response associated with the competing and more numerous
arrows pointing left. As in the antisaccade task, performance on
this task is strongly predictive of a wide range of cognitive and
emotional behaviors (Kane et al., 2004).

General Fluid Intelligence Tasks
Modern theories of intelligence generally distinguish two types
of intelligence: Crystallized intelligence is culturally-derived
knowledge such as vocabulary and other things that we have
learned from our environment and fluid intelligence, our ability
to reason and solve problems which are novel to us. Fluid
intelligence is thought to be the biological and genetically derived
aspect of intelligence and is the most domain-general. Therefore,
it is the aspect of intelligence that is of most interest to our studies
of the effects of air pollution. Measures of fluid intelligence,
abbreviated as Gf are:

1. Raven’s advanced progressive matrices (Raven, 1990).
Participants see a 3 − 3 matrix in which 8 abstract figures
have been placed. Participants chose which of several options
belonged in the ninth box. Ten minutes are given to complete
18 problems. The dependent variable is the number of correct
responses.

2. Letter sets (Ekstrom et al., 1976). Participants see five sets of
four-letter sequences. They need to discover the rule that is
common to four of the sets and then indicate which set does
not belong. Five minutes are given to complete 30 problems.
The dependent variable is the number of correct responses.

3. Number series (Thurstone, 1938). Participants see a series of
numbers and select which of several options complete the
series. Five minutes are given to complete 15 problems. The
dependent variable is the number of correct responses.

All WM tasks have strong, direct, relationships to attention
control. It is difficult to maintain to-be-remembered items while
alternately performing secondary processing tasks (Shipstead
et al., 2014, 2015). Attention control requires engagement in the
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service of organizing the contents of primary memory (Engle,
2002; Kane et al., 2007).

The relationship between attention control, fluid intelligence,
and WM capacity is of great relevance to people exposed to
environmental air pollution. Any effect that attention control
has on novel reasoning is realized through an effect on
memory and also fluid intelligence. The issue is then to
define in highly exposed individuals the capability for cognitive
control as reflected by tasks of WM capacity, fluid intelligence,
and EA.

Since the individual’s ability to resist attention capture
explains a large portion of bothWM capacity and its relationship
to higher cognitive abilities (Shipstead et al., 2014), the critical
point in the results of highly exposed air pollution cohorts
vs. clean matched low pollution controls will be to define the
interaction of attention control and memory. This in turn, will
give us a picture of the impact of environmental factors upon
both WM capacity and fluid intelligence in a developing brain.
Equally important in terms of the risk of developing Alzheimer,
will be the identification of individuals at the highest risk, defined
by the lower scores in the tasks measuring WMC and attention
control. We already know of the strong relationship between
chronic exposure above the standards of ozone and PM2.5 and
risk of newly diagnosed Alzheimer disease as clearly shown by
Jung et al. (2015).

Since the prevalent consensus is that AD starts decades before
clinical diagnosis, and given that these at-risk children and
young adults already exhibit WM capacity deficits reflective
of well documented systemic and neural pathological changes,
the delineation of the relative temporal trajectories of cognitive
measures will be key in the evaluation of cocoa administration

or any other intervention. The application of the selected
tasks, would allow the creation of a framework for the
early identification of neurodegeneration biomarkers related
to air pollution exposures. Current knowledge should give
us the opportunity to intervene in young urban populations,
independent of what specific air pollutants are responsible
within the complexity of the atmospheric chemistry and the
microenvironments of each subject.

As such, an essential goal of future work will be to elucidate the
extent of beneficial and potential detrimental effects of chronic
cocoa administration to children and young adults and whether
it provides real benefits with respect to reducing cognitive
impairment.

Exposures to air pollutants during brain development have
serious brain consequences in the short and long term
and reliable cognition tools should be at hand to identify
individuals at their highest risk and to evaluate neuroprotective
interventions.
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