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Abstract: The aim of this study was to determine, first, the chemical composition of Aloysia polystachya
(Griseb) Moldenke essential oil, from leaves harvested in central Chile; and second, its antioxidant
and cytotoxic activity. Eight compounds were identified via gas chromatography–mass spectrometry
(GC–MS) analyses, with the most representative being R-carvone (91.03%), R-limonene (4.10%),
and dihydrocarvone (1.07%). For Aloysia polystachya essential oil, antioxidant assays (2,2-diphenyl-
1-picrylhydrazyl (DPPH), H2O2, ferric reducing antioxidant power (FRAP), and total reactive an-
tioxidant potential (TRAP)) showed good antioxidant activity compared to commercial antioxidant
controls; and anti-proliferative assays against three human cancer cell lines (colon, HT-29; prostate,
PC-3; and breast, MCF-7) determined an IC50 of 5.85, 6.74, and 9.53 µg/mL, and selectivity indices
of 4.75, 4.12, and 2.92 for HT-29, PC-3, and MCF-7, respectively. We also report on assays with
CCD 841 CoN (colon epithelial). Overall, results from this study may represent, in the near future,
developments for natural-based cancer treatments.

Keywords: Aloysia polystachya; terpenoids; cytotoxic activity; selectivity index

1. Introduction

The family Verbenaceae, which is comprised of some 50 species native to the Ameri-
can continent, distributed mainly in temperate climates and some subtropical and desert
climates [1], includes Aloysia spp., a genus of flowering plants. Of these, Aloysia polystachya
(Griseb) Moldenke (Verbenaceae) is an aromatic shrub that grows throughout South Amer-
ica and whose leaves enjoy widespread use to aromatize “mate” or “tereré” [2] (popularly
known as “Té del Burrito” [3], a denomination originating in the Argentinean mountains),
or as folk medicine to treat nausea, vomiting, dyspepsia, gastritis, and anxiety disorders [4].
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Data from the literature show that alcoholic extracts of this plant exhibit biological effects,
including antioxidant [5], antitumor [6], antispasmodic [7], anxiolytic [8], and antidepres-
sant properties [9].

Nevertheless, there are few reports in the literature concerning the biological proper-
ties of essential oil from this plant. There are four reports from Argentina and one from
Brazil where the chemical composition of the oils has been determined. Of the plants that
grow in Argentina, the main constituents of the oils of the leaves of the species collected
in the province of Cordova have been described as the monoterpenes α-tujone (83.56%),
sabinene (4.61%), and limonene (1.62%) [10,11], while in species collected in the cities of
Buenos Aires and Corrientes the predominant monoterpenes are carvone (83.5–84.4%),
limonene (14.2–16.5%), and verbenone (1.58%) [12,13]. The essential oil from A. polystachya
leaves grown in the southeast region of Brazil revealed a high content of carvone (80.71%)
and limonene (14.65%) [14]. In addition, these studies validated the antimicrobial activity
of A. polystachya oils against different human pathogens [10–14].

However, to the best of our knowledge, no studies have determined the chemical
composition and/or biological activities of the essential oil of the leaves of A. polystachya
growing in Chile. Thus, the aim of the present study was to determine the chemical
constituents of the essential oil extracted from fresh leaves of A. polystachya growing in
Chile and evaluate its antioxidant and cytotoxic activities.

2. Results and Discussion

The hydrodistillation of the fresh leaves of A. polystachya gave light yellow oil with a
yield of 1.21% (v/w). The essential oil of A. polystachya fresh leaves is composed mainly
by oxygenated monoterpenes (93.61%), followed by hydrocarbon monoterpenes (4.10%)
and hydrocarbon sesquiterpenes (1.28%) (Table 1). Eight compounds were identified in the
essential oil of A. polystachya, which corresponded to 98.99% of the total oil analyzed, and
the main components were: R-carvone (91.03%), R-limonene (4.10%), and dihydrocarvone
(1.07%) (Figure 1).

Table 1. Essential oil composition of A. polystachya.
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RT (min) Components % Area a RI b RI c Identification

1 11.08 R-limonene 4.10 1030 1031 RL, MS, Co
2 13.14 linalool 0.58 1105 1107 RL, MS, Co
3 13.77 trans-p-mentha-2,8-dienol 0.48 1112 1113 RL, MS
4 15.82 terpineol 0.45 1191 1189 RL, MS
5 15.98 dihydrocarvone 1.07 1200 1200 RL, MS, Co
6 17.31 R-carvone 91.03 1240 1240 RL, MS, Co
7 22.04 E-caryophyllene 0.92 1417 1418 RL, MS
8 23.78 α-curcumene 0.36 1481 1483 RL, MS

Total identified 98.99
Hydrocarbon
monoterpenes 4.10

Oxygenated monoterpenes 93.61
Hydrocarbon

sesquiterpenes 1.28

a Surface area of GC peak; b RI: retention indices relative to C8–C36 n-alkanes on the HP-5 MS capillary column;
c RI: retention index from the literature. RL: comparison of the RI with those of the literature [15]; MS: comparison
of the mass spectra with those of the NIST 14; Co: co-elution with standard compounds available in our laboratory.

Our results on A. polystachya essential oil from fresh leaves collected in central Chile
are consistent with other studies, identifying carvone and limonene as the most abundant
constituents [13]; however, our report is the first in which carvone constitutes over 90 per-
cent of the composition. This variation in essential oil content and chemical composition
is influenced by many factors, including location, plant age, climate, cultivar, distillation
method, and type of distillation apparatus used [16].
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The antioxidant activity of the fresh leaf essential oil of A. polystachya, examined using
four different assays, is shown in Table 2.

Table 2. Antioxidant activity of essential oil of the fresh leaves of A. polystachya and of three standards,
determined by DPPH, H2O2, FRAP, and TRAP assays.

Antioxidant
IC50 (mg/mL) FRAP

(TEAC mM)
TRAP

(TEAC mM)
DPPH H2O2

Essential oil 38.34 ± 0.07 a 15.67 ± 0.56 a 29.44 ± 0.25 a 1.01 ± 0.78 a

R-Carvone 28.89 ± 0.03 b 12.03 + 0.19 a 30.05 ± 0.15 a 1.02 ± 0.85 a

R-limonene 20.84 ± 0.06 c 1.08 ± 0.12 b 0.46 ± 0.07 b 0.42 ± 0.12 b

Dihydrocarvone 55.31 ± 0.01 d 25.89 ± 0.12 c 14.34 ± 0.12 c 0.84 ± 0.11 b

BHT n.d. 2.59 ± 0.05 d 1.50 ± 0.04 d 1.07 ± 0.45 a

Trolox 0.11 ± 0.01 e 2.85 ± 0.02 d n.d. n.d.
Gallic acid 0.05 ± 0.12 e n.d. 1.80 ± 0.03 d 1.11 ± 0.05 a

Different letters in the same column indicate significant differences; p < 0.05, n = 3, n.d.: not detected.

While 2,2-diphenyl-1-picrylhydrazyl (DPPH) values indicate significant antioxidant
activity of A. polystachya oil on aromatic herbal essential oils, such as rosemary (Rosmarinus
officinalis L.), cedar (Cedrus libani), and lemon balm (Melissa officinalis L.) [17,18], it still
presents low radical scavenging activity compared to reference compounds. That said,
A. polystachya essential oil was shown to have greater redox properties than commercial
standards under ferric reducing antioxidant power (FRAP) values and similar redox under
total reactive antioxidant potential (TRAP) values.

The antioxidant activity of A. polystachya essential oil is likely due to the high oxy-
genated monoterpene content [19], under which carvone is most representative [20].
Carvone is an oxygenated monoterpene with a double bond conjugated with a ketone
group, which gives it greater capacity to capture free radicals and better reducing power [20–23].
Indeed, high carvone content has been linked to antioxidant activity in Mentha spicata and
M. gracilis essential oils [24], as well as in essential oils of different species of the Verbe-
naceae family like Lippia alba and Phyla nodiflora [22,25–27]. The antioxidant activity of
A. polystachya essential oil is further enhanced by the presence of unsaturated terpenes,
like limonene, a monocyclic monoterpene capable of inhibiting free radicals and lipid
peroxidation that prevents cell damage by reducing blood pressure and cardiovascular
response to stress [28,29]; and other monoterpenes with hydroxyl substitutes, such as
terpineol and linalool [30,31].

The inhibitory effects of the essential oil (IC50 values) are presented in Table 3. The
tested A. polystachya oil showed prominent cytotoxic activity against all cancer cell lines
used in the study.
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Table 3. IC50
a (µg/mL) and selectivity index (SI) of A. polystachya essential oil and main components

tested on MCF-7, PC-3, and HT-29 cancer cell lines, and on CCD 841 CoN normal cell line.

Samples Cell Line

MCF-7 PC-3 HT-29 CCD 841 CoN

Essential oil 9.53 ± 0.45 * 6.74 ± 0.03 * 5.85 ± 0.39 * 27.81 ± 0.21 *
SI 2.92 4.13 4.75

R-Carvone >100 >100 >100 >100
R-limonene >100 >100 >100

Dihydrocarvone >100 >100 >100 >100
Daunorubicin 0.33 ± 0.02 ** 0.41 ± 0.04 ** 15.11 ± 0.5 ** 13.90 ± 0.3 **

SI 42.12 33.9 0.92
5-FU 22.30 ± 0.2 *** 16.42 ± 0.6 *** 8.90 ± 0.7 *** 41.71 ± 0.3 ***

SI 1.87 2.54 4.69
Different symbols in the same file indicate significant differences; p < 0.05, n = 3; a IC50 was evaluated using the
sulforhodamine B (SRB) assay and ± is the standard deviation from three independent experiments.

Based on criteria established by the National Cancer Institute (NCI) Plant Screening
Program, a crude extract of a medicinal plant is considered to have potential if the in vitro
cytotoxicity studies reported an IC50 value of less than 20 µg/mL following incubation
of 48–72 h [32]. In the present study, the oil showed pronounced effects against HT-29
(colon), PC-3 (prostate), and MCF-7 (breast), with IC50 values of 5.85 ± 0.39, 6.74 ± 0.03,
and 9.53 ± 0.45 µg/mL, respectively, results which are consistent with NCI guidelines.
Notably, these were significantly lower than the IC50 value obtained for normal cell line,
27.81 ± 0.21 µg/mL. Moreover, A. polystachya oil cytotoxic activity was much higher
than 5-fluorouracil (5-FU) in all cell lines tested, although lower than daunorubicin against
breast and prostate cell lines. Nevertheless, these results—which are supported by previous
in vivo assays of alcohol extracts of this plant [6]—demonstrate the anti-proliferative
potential of this species, and particularly so against the colon tumor cell line. Furthermore,
essential oils with IC50 values under 30 µg/mL are typically classified as promising anti-
cancer agents [33]. This report is therefore indicative that A. polystachya oil may be a
potential substrate for the development of new drugs against this disease.

According to recent studies [34–36], a selectivity index (SI) value of more than
three was considered highly selective against cancer cells. In vitro activity of tested sam-
ples against the CCD 841 CoN cell line were used to calculate the selectivity indices
(Equation (3)), shown in Table 3. The A. polystachya essential oil presented the best selectiv-
ity indices against the HT-29 and PC-3 cell lines (4.75 and 4.13 respectively), and 1.6 times
less selectivity against the MCF-7 cell line. Based on these results (and selectivity criteria
reported in the literature), the essential oil can be considered a selective agent for the MCF-7
cell line, at values above 2, and for PC-3 and HT-29 cells, at values greater than 3 [32–35].
Finally, the selective activity of the essential oil against the HT-29 cell line is comparable to
that of 5-FU, and superior to daunorubicin.

The activity is most likely a synergistic effect among the major monoterpenes found
in the A. polystachya essential oil [37]. Among the identified terpenes, D-limonene has
a demonstrated ability to inhibit cell proliferation, e.g., by inducing apoptosis in lung,
stomach, and gastric liver cells [38]. Furthermore, carvone has been shown to be cyto-
toxic in some tumor cell lines [39,40]; for example, M. spicata oil—with similar carvone
content (65.33%)—showed similar cytotoxic activity against the HeLa cell line [41], with
IC50 values below 10 µg/mL. Besides, carvone is bioactive compound that contribute to
the pharmacological activity of the various essential oils in which they are found [42].
Previous studies showed that the use of carvone and limonene mixtures enhanced the
cytotoxic activity of each of the monoterpenes separately [43]. In turn, reports suggest that
oxygenated monoterpenes, such as terpineol and linalool present in the oil, contribute to
the cytotoxic potential of vegetable oils [44,45]. In addition, hydrocarbon sesquiterpenes,
such as E-caryophyllene and α-curcumene, would contribute to the synergistic effect of
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A. polystachya essential oil, since both compounds possess significant anticancer activities,
affecting the growth and proliferation of numerous cancer cells [46,47]. However, the
individual compounds did not exhibit cytotoxic activity against the tumor lines tested.
Despite the fact that carvone and limonene did not show cytotoxicity in this study as in
other works [20,48,49], previous studies showed cytotoxic activity against prostate and
breast cancer cell lines [50–52]. These monoterpenes are present in low concentrations in
food and have applications in industry and agriculture, increasing the human exposure to
these compounds [53,54]. Finally, our data may represent, in the near future, developments
for natural-based cancer treatments or a potential preservative agent.

3. Materials and Methods
3.1. General Data

All reagents, R-carvone, R-limonene, and dihydrocarvone were purchased from Sigma-
Aldrich Co. (St. Louis, MO, USA), GIBCO BRL Life Technologies (Grand Island, NY, USA),
and Santa Cruz Biotechnology (Santa Cruz, CA, USA).

3.2. Equipment

The analysis of the essential oil was carried out by gas chromatography–mass spec-
trometry (GC–MS) using a Hewlett-Packard GC/MS 6890 coupled to a Hewlett-Packard
5973 mass-selective detector (electron ionization, 70 eV, Palo Alto, CA, USA) and equipped
with a capillary HP-5 MS column. Antioxidant assays were determined in a UV–Vis spec-
trophotometer (Jenway 6320D, Bibby Scientific Limited, Beacon Road, Stone, Staffordshire
ST15 0SA, UK). Anti-proliferative assay was determined in a microplate reader (Spectra-
Max, Winooski, VT, USA).

3.3. Plant Material

Plant samples were collected from Villa Alemana, Valparaiso Region, Central Chile
(S: 33.0497◦, W: −71.3927◦) at an altitude of approximately 133 m during the spring in
October 2019. Botanical identification and authentication was verified by Mr. Patricio
Novoa, and a voucher specimen (AP-1019) was deposited at the Natural Products and
Organic Synthesis Laboratory of Universidad de Playa Ancha, Valparaíso, Chile.

3.4. Preparation of Essential Oil

The essential oil was extracted from fresh leaves of A. polystachya (500 g) ground in a
knife mill by steam distillation carried out using a Clevenger-type apparatus for 4 h [55].
Thereafter, the hydrolate was subjected to liquid-liquid partition in a separatory funnel
and three washes with three 10 mL portions of dichloromethane. The essential oil sample
was stored at −4 ◦C until further chemical and biological tests.

3.5. Chemical Analysis

The essential oil of A. polystachya was analyzed by GC–MS. The working conditions
were as follows: injector temperature, 250 ◦C; detector temperature, 280 ◦C; carrier gas,
He at 1.25 mL/min; and oven temperature program: 35 ◦C for 5 min, increase to 260 ◦C
at 5 ◦C/min, and then 260 ◦C for 5 min. Compounds in the chromatogram (see Figure S1
Supplementary Material) were identified by comparison of their mass spectra with those
in the NIST 2014 library database, and by comparison of their retention index with those
reported in the literature [15], for the same type of column or those of commercial stan-
dards, when available. The retention indices were determined under the same operating
conditions in relation to a homologous n-alkanes series (C8–C36) by Equation (1):

RI = 100 × (n + Tr(unknown) − Tr(n)/Tr(N) − Tr(n)) (1)

where n = the number of carbon atoms in the smaller n-alkane; N = the number of car-
bon atoms in the larger n-alkane; and Tr = the retention time. The components’ relative
concentrations were obtained by peak area normalization.
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3.6. Antioxidant Assays
3.6.1. 2,2-Diphenyl-1-picrylhydrazyl (DPPH) Radical Scavenging Activity

The DPPH free radical scavenging activity was estimated by assay based on the
method described in the literature [56]. Briefly, 2.0 mL of 0.5 mmol/L DPPH in ethanol
was mixed with 100 µL of essential oil of A. polystachya (0.001, 0.01, 0.1, and 1.0 mg/mL).
After 20 min incubation, the absorbance was measured at 517 nm. Trolox and gallic acid
were used as positive controls. The percentage of free radical-scavenging capacity was
calculated by Equation (2):

RSC% = 100% × (Acontrol − Asample)/Acontrol (2)

where Asample is the absorbance of DPPH mixed with essential oil and Acontrol is the
absorbance of DPPH in which sample has been replaced with ethanol. All measurements
were performed in triplicate and reported as the average value. The IC50 value was
determined by linear regression analysis from the obtained radical scavenging capacity
(RSC) values.

3.6.2. H2O2 Scavenging Activity

The H2O2 scavenging activity was determined according to a previously described
method [57]. A solution of hydrogen peroxide (40 mM) was prepared in phosphate
buffer (pH 7.4). The samples (from 2.5 to 10 µL of the 0.1% essential oil) were added to a
hydrogen peroxide solution (0.6 mL, 40 mM). Absorbance of hydrogen peroxide at 230 nm
was determined after 10 min. Butylated hydroxytoluene (BHT) and Trolox were used as
positive controls. The percentage of scavenging of hydrogen peroxide by the essential oil
was calculated using Equation (3):

H2O2% = 100% × (A0 − A1)/A0 (3)

where A0 represents the absorbance of the control and A1 represents the absorbance in the
presence of the essential oil and standards. IC50 was the effective concentration at which
50% of hydrogen peroxide was scavenged.

3.6.3. Ferric Reducing Antioxidant Power (FRAP) Assay

FRAP assay was carried out using the above method [58]. FRAP test solution was
prepared using FeCl3·6H2O in distilled water (final concentration of Fe(III) in the solution
was 20 mM), 2,4,6-tri(2-pyridyl)-s-triazine (TPTZ) in 40 mM HCl (final concentration of
TPTZ was 10 mM), and 0.3 M CH3COOH/CH3COONa buffer solution at pH = 3.6. The
FRAP reagent was prepared daily as follows: acetic acid buffer, TPTZ solution, and FRAP
test solution were mixed in this order at the volume ratio of 10:1:1. A 3.0 mL aliquot
of FRAP reagent was mixed with 300 µL of deionized water and 100 µL of methanolic
essential oil solution (1.0 mg/mL). The mixture was vigorously shaken for 30 s and left
in the dark at 37 ◦C for 30 min. Subsequently the absorbance was measured at 593 nm
using ethanol as the blank solution. The obtained absorbance values were interpolated in a
Trolox calibrate curve (0–200 mg/L) and the FRAP values were expressed in mM Trolox
equivalent antioxidant capacity (mM TEAC). BHT and gallic acid were used as positive
controls. All of the measurements were performed in triplicate.

3.6.4. The Total Reactive Antioxidant Potential (TRAP) Assay

The TRAP of the essential oil was determined by ABTS+ (2,2′-azinobi(3-ethylbenzo-
thiazoline-6-sulfonic acid)) assay [57]. The ABTS+ (2,2′-azinobi(3-ethylbenzothiazoline-6-
sulfonic acid)) radical solution (150 µM) was mixed with 2,2′-azo-bis(2-amidino propane)
(ABAP) solution (10 mM) in phosphate-buffered saline (PBS), pH 7.4 solution (100 mM).
The mixture was incubated at 45 ◦C for 30 min. 10 µL of sample solution was added to
990 µL of the resulting blue-green ABTS radical solution. The decrease of absorbance of
TRAP solutions and ABTS as blank were recorded after 30 s at room temperature. Then, the
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absorbance of the samples was measured at 734 nm. The total antioxidant capacity (TRAP)
of the essential oil was expressed in mM Trolox equivalents (TEAC), using a standard
curve of Trolox (0–120 mg/L). BHT and gallic acid were used as positive controls. All
measurements were replicated three times.

3.7. Cell Lines and Culture Conditions

In this study, we used three different tumor cell lines: human breast adenocarcinoma
(MCF-7), human prostate adenocarcinoma (PC-3), and human colorectal adenocarcinoma
(HT-29). A normal human cell line (colon epithelials, CCD 841 CoN) was included to
evaluate the possible selective activity of the essential oil. The different cell lines were
maintained as monolayers in a plastic culture medium (HAM-F10+DMEM, 1:1) supple-
mented with 10% fetal bovine serum, as well as antibiotics (0.01 mg/mL streptomycin
and 0.005 mg/mL penicillin). The cells were incubated at 37 ◦C in a humidified 5% CO2
atmosphere.

3.8. Anti-Proliferative Assay

The panel of cancer cells were seeded at a density of 2 × 104 cells/well into 96-well
plates and assayed as described previously [59]. Test compounds were solubilized just prior
to the experiment in 0.1% DMSO. Briefly, cells were treated with increasing concentrations
of essential oil (0.625–100 µg/mL) for 72 h at 37 ◦C in 5% CO2. The cells which received only
the medium containing 0.1% DMSO served as the control group. At the end of essential oil
exposure, cells were fixed with 50% trichloroacetic acid at 4 ◦C (TCA final concentration
10%). After washing with distilled water, cells were stained with 0.1% sulforhodamine B
(Sigma-Aldrich, St. Louis, MO, USA), dissolved in 1% acetic acid (50 µL/well) for 30 min,
and subsequently washed with 1% acetic acid to remove unbound stain. Protein-bound
stain was solubilized with 100 µL of 10 mM unbuffered Tris base. The cell density was
determined using a fluorescence plate reader (wavelength 540 nm). Daunorubicin and
5-fluorouracil (5-FU) were used as positive controls. Values shown are the mean + SD of
three independent experiments in triplicate. Finally, Sigma Plot software (Systat Software,
San Jose, CA, USA) was used to calculate the IC50 value.

3.9. Selective Index

The selectivity index (SI) is the ratio between the IC50 value of the A. polystachya
essential oil obtained for CCD 841 CoN cells and the value found for the cancer cell line
(Equation (4)).

SI = IC50 (CCD 841 CoN)/IC50(cancer cell) (4)

where a SI > 3 was considered to belong to a selective sample [33–36].

3.10. Statistical Analysis

The data were reported as the mean values ± standard deviation (SD). Due to non-
parametric data, a Kruskal–Wallis ANOVA was used with a confidence level of 95% with
the STATISTICA 7.0 program.

4. Conclusions

Based on the results of this study, A. polystachya essential oil is an accessible and
natural source of carvone. Furthermore, given the potent and promising anti-proliferative
activity of the essential oil, novel anti-cancer formulations should be explored. In addition,
due to its antioxidant power and the high percentage of carvone added to the presence of
limonene and a series of compounds of terpenic origin present in A. polystachya essential
oil, it can potentially be used as a food or drug preservative.

Supplementary Materials: The following are available online, Figure S1. GC–MS chromatogram of
the essential oil of Aloysia polystachya from Chile.
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