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Abstract

Humanity’s reliance on clean water and the ecosystem services provided makes identifying

efficient and effective ways to assess the ecological condition of streams ever more impor-

tant. We used high throughput sequencing of the 16S rRNA region to explore relationships

between stream microbial communities, environmental attributes, and assessments of

stream ecological condition. Bacteria and archaea in microbial community samples col-

lected from the water column and from stream sediments during spring and summer were

used to replicate standard assessments of ecological condition performed with benthic

macroinvertebrate collections via the Benthic Index of Biotic Integrity (BIBI). Microbe-based

condition assessments were generated at different levels of taxonomic resolution from phy-

lum to OTU (Operational Taxonomic Units) in order to understand appropriate levels of taxo-

nomic aggregation. Stream sediment microbial communities from both spring and summer

were much better than the water column at replicating BIBI condition assessment results.

Accuracies were as high as 100% on training data used to build the models and up to 80%

on validation data used to assess predictions. Assessments using all OTUs usually had the

highest accuracy on training data, but were lower on validation data due to overfitting. In

contrast, assessments at the order-level had similar performance accuracy for validation

data, and a reduced subset of orders also performed well, suggesting the method could be

generalized to other watersheds. Subsets of the important orders responded similarly to

environmental gradients compared to the entire community, where strong shifts in commu-

nity structure occurred for known aquatic stressors such as pH, dissolved organic carbon,

and nitrate nitrogen. The results suggest the stream microbes may be useful for assessing

the ecological condition of streams and especially useful for stream restorations where

many eukaryotic taxa have been eliminated due to prior degradation and are unable to

recolonize.
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Introduction

Microbes are crucial to biogeochemical processes and cycles at all spatial scales, from intra-indi-

vidual to global. They are key to the maintenance of biodiversity and ecosystem function, and

identifying factors influencing microbe distributions and diversity may be important for under-

standing ecosystems across natural and human-influenced gradients. Advances in high

throughput sequencing of environmental samples have dramatically expanded our knowledge

of microbial biodiversity [1] and present substantial opportunities for the environmental sci-

ences. For example, the diversity and composition of the microbial community may be useful as

direct or indirect proxies for assessing ecosystem condition and health and have recently been

used to predict hydrologic function in large Arctic rivers [2]. Microbe-based applications for

ecosystem monitoring and assessment are particularly exciting for classifying the condition of

freshwater streams because a small, easily collected sample could augment or replace the sub-

stantial efforts required for traditional methods based on eukaryotes [e.g., 3]. Analogs also exist

for the human body and other animals, where the overall status of an individual can be inferred

by the composition of its microbiome as indicators of age, disease, or other stressors [4–7].

Assessing the ecological condition of freshwater streams has become increasingly important

because much of humanity relies on streams to supply water for drinking and irrigation, as

well as many ecosystem services. This reliance will only increase with the growing human pop-

ulation, which itself results in more stream degradation [8, 9]. Because water flows downhill,

streams integrate activities in the upstream catchment, including the headwaters. The identity

and community structure of stream biota closely reflects the level of disturbance and degrada-

tion upstream, and various eukaryotic groups such as benthic macroinvertebrates [10, 11], fish

[12, 13], and diatoms [14] are currently used by many organizations for biomonitoring. While

all have their utility, benthic macroinvertebrates are probably the most relied upon because

they are relatively easy to collect and identify, are ubiquitous in perennial stream ecosystems,

and have several order-level taxa sensitive to pollution and known to be good indicators of

stream health [15, 16]. However, the data on macroinvertebrates needed to use them as bioin-

dicators of stream health remain time consuming to collect, process, and identify.

Because many eukaryotic groups sort along natural and human-driven environmental gra-

dients [17, 18], microbes might be used similarly as macroinvertebrates as bioindicators of

stream condition. Indeed, freshwater microbes appear to be strongly aligned with pH and dis-

solved organic carbon (DOC) gradients [19–21], while soil microbes show functional and

structural responses to pH [22], moisture [23] and organic carbon [20]. Freshwater bacterial

community structure varies with differences in land cover [24, 25] and has been correlated

with more traditional indicators of stream health [26, 27], which are often based on measures

of the richness and abundance of indicator groups as in the many variants of the widely used

Index of Biotic Integrity developed by Karr [12]. Disparities may occur however where micro-

bial richness may remain high in streams heavily modified by human activities [28], while ben-

thic macroinvertebrates and fishes commonly decrease to a few tolerant taxa [29, 30]. Within

the microbial metacommunity, the high OTU (Operational Taxonomic Unit) richness and

dispersal from multiple sources [31, 32] can maintain diversity during environmental change,

while many eukaryotes have a substantially more limited species pool and typically show more

limited dispersal [33, 34]. The high expected turnover of microbial diversity and OTU compo-

sition may provide additional opportunities and temporal sensitivity to assess recent changes

in ecosystem status, even in streams where the legacy of previous disturbances may have elimi-

nated other eukaryotic indicators that are not quick to recolonize.

Despite the potential of microbe-based assessment methods for assessing stream condition,

important questions must be answered before their widespread adoption. Among the
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hundreds of OTUs present within a single sample [35], some should respond strongly to spe-

cific stressors and could serve as indicator taxa of ecosystem health, but we know little about

their specific responses, ubiquity, behavior, or strength of relationship with environmental gra-

dients. The appropriate level of taxonomic resolution, or aggregation, also remains in question.

Most OTUs in environmental samples remain unclassified, whereas coarsening the resolution

to include more classified microbes (e.g., class-level) may dilute information from specific

OTU indicators because of other related taxa in the sample. In contrast, use of OTU-level data

for developing bioindicators may suffer from over-fitting so that every sample represents a

unique community, potentially leading to model predictions so specific that they show poor

transferability when applied outside of their local watershed. Identifying the appropriate taxo-

nomic resolution is therefore a central question for assessing the usefulness of microbes as

bioindicators of stream condition. Finally, the most effective type of environmental sample

and when to collect it remain undecided. To date, most stream microbial research has focused

on biofilms scraped from rocks [e.g., 26, 36], but samples collected from stream sediments or

directly from the water column might provide complementary or better insights. For example,

Hosen et al. [25] suggested that water column bacterial communities respond more strongly to

watershed urbanization, whereas communities in stream sediment samples better reflected

environmental conditions within the sampling reach. A better understanding of these response

differences might allow for more refined predictions, and hence could facilitate broader

application.

In this paper, we analyze high-throughput sequencing data microbial 16S diversity from a

watershed-scale sample to show how the stream microbes can be effectively used to character-

ize the ecological condition of freshwater streams and how the results compare with benthic

macroinvertebrates, a traditional taxon used for assessment. We develop a methodology based

on DAPC (Discriminant Analysis of Principal Components) that is used widely in population

genetics research [37], but is not traditionally applied to microbial analyses. We also evaluate

the influence of taxonomic aggregation on stream condition classification. Finally, we use

machine-learning models of community compositional turnover (Gradient Forest [38]) to

associate microbial taxa and community-level relationships to a suite of potential stressors

known to alter stream ecological condition.

Materials and methods

During 2014 we sampled 82 headwater streams (1st-3rd order) in Maryland across diverse gra-

dients of geography and land use at two timepoints—spring and summer (Fig 1). Maryland

geography changes on a west to east gradient from its mountainous highlands (a conglomera-

tion of Appalachian Plateau, Ridge and Valley, and Blue Ridge physiographic provinces) to

rolling Eastern Piedmont to the Atlantic Coastal Plain where the land meets tidal areas. Water-

shed land uses ranged from almost entirely forested to those dominated by agriculture

(max = 73%) or urban uses (max = 91%).

Each sampling site was co-located with sampling carried out by the Maryland Biological

Stream Survey (MBSS). The MBSS program is the principal monitoring and assessment pro-

gram for nontidal streams in the state. MBSS sampling includes benthic macroinvertebrates

and water chemistry in a spring sample and fish and physical habitat in a summer sample [3].

Organismal collections are used to assess each stream with a Benthic Index of Biotic Integrity

(BIBI) specifically developed for benthic macroinvertebrates and a Fish Index of Biotic Integ-

rity (FIBI) for fishes. Both the FIBI and the BIBI for Maryland have been well documented

[39] and are legal biocriteria with the ability to trigger a stream’s placement on the 303b

impaired waters list within the state. Scoring for both the FIBI and the BIBI is continuous
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within a range from 1 (very poor) to 5 (very good). Across the 82 streams sampled for analyses,

five streams had BIBI scores rating as very poor with BIBI between 1 and 2; 18 rated poor

(BIBI between 2 and 3; 23 rated as fair (BIBI between 3 and 4), and 37 sites rated as good with

a BIBI ranging between 4 and 5.

At each site, we collected two types of samples to characterize the stream microbial commu-

nity: water and sediment. Water samples were collected in sterilized 0.5 L bottles and placed

immediately on ice and into refrigerated storage within 24 hours of collection. We collected

sediment samples by plunging the wide end of a 60cc sterile syringe into the first 1cm of stream

sediment, inserting the syringe plunger, capping the small end, and placing the entire sample

into a sterile 1L Whirlpak before storage in refrigeration and transport to the laboratory. Thus,

the sediment samples are comprised of both surface biofilms and sub-surface microbes. Sedi-

ment samples were all collected in shallow depositional areas, commonly from the lower end

of glides between the thalweg and stream margin. This permitted consistent coring within

depositional silts and sands without involving significant amounts of leaf material and other

detritus that accumulates in the bottoms of pools. Sediment samples were stored at -80˚ C

until processing. No permits were required for collecting either the water or sediment samples.

Permissions were obtained by the MBSS from each land owner prior to accessing sampling

sites. Access to the monitoring data was granted by the MBSS program. The sampling area was

bounded by the range 39.72N, 79.47W and 38.02N, 75.35W.

Water samples were maintained in refrigerated storage until being filtered within 4 days of

collection. 500ml samples were vacuum filtered through a 0.22 μm pore size, 47mm diameter,

polyethersulfone filter. After filtration, each filter was aseptically quartered, transferred to a

sterile centrifuge tube, and stored at -80˚ C until time of DNA extraction.

Fig 1. Map of the study area. We collected water column and sediment microbial samples in both spring and summer in 82 streams across the state of Maryland, USA.

Nation and state outline source: US Census Bureau 2018 TIGER/Line Shapefile. Coastal boundary source: Maryland Geological Survey.

https://doi.org/10.1371/journal.pone.0236932.g001
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DNA extraction and library preparation

DNA was extracted from the water filters and sediment cores using the MoBio PowerSoil–htp

96 well Soil DNA Isolation Kit with modifications. For the water samples, two quarters of each

filter were placed in a 5 ml MoBio PowerWater bead tube and 925 μl of PowerSoil-htp bead

solution and added 75ul of solution C1, a proprietary component of the MoBiop PowerSoil-

htp extraction kit and used to aid in cell lysis during bead beating. These volumes were

adjusted in order to maintain the appropriate ratio as communicated by MoBio. Samples were

then vortexed for a total of 10 minutes at maximum speed. After vortexing, 20 μl of Proteinase

K (20 mg/ml) was added and samples incubated at 56˚ C for 30 minutes. The samples were

then centrifuged for 1 minute at 3000xg. Approximately 500 μl of each supernatant was trans-

ferred to a 96 well plate.

Three sediment cores were obtained per site per season except for sites JONE315,

LOCH120, JONE109, RKGR119, and LIBE102 where eight cores were obtained for the spring

and summer samples. Each of these cores was treated as an individual sample during the DNA

extraction process and then pooled after the first amplicon PCR. For each core, the sediment

was transferred from the syringe to Whirlpak, homogenized, and approximately 250 mg of

sample was aseptically aliquoted to a plate well. Each well received 750 μl of bead solution and

60 μl of solution C1. Then the plate was attached to a Qiagen TissueLyser II and shaken at 20

Hz for 10 minutes. The plates were reoriented and the process repeated. After bead beating,

20 μl of Proteinase K (20 mg/ml) was added and samples incubated at 56C for 30 minutes.

From this point on the MoBio protocol was followed without additional modifications for

both the water and sediment samples.

Library preparation followed the Illumina 16S Metagenomic protocol, with modifications.

For amplicon PCR, the primers used were U515F and 806R, which amplify an approximately

250bp region of V4 of the bacterial and archaeal 16S subunit ribosomal gene. The primers con-

sisted of an Illumina overhang adapter sequence as well as a locus-specific sequence (in bold-

face below): Forward primer 5’ TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGTGCCAGC
MGCCGCGGTAA 3’ and reverse primer 5’ GTCTCGTGGGCTCGGAGATGTGTATAAGAGA
CAGGGACTACHVGGGTWTCTAAT 3’.

Each PCR reaction consisted of 2.5 μl of extracted DNA (concentration ranged from

approximately <1ng/ul to>10ng/ul), 5 μl of the forward and reverse amplicon primers (each

at a stock concentration of 1uM); 12.5ul of 2x KAPA HiFi HotStart Ready Mix for a total vol-

ume of 25ul. PCR was run on an Eppendorf thermocycler with parameters of 95C for 3 min-

utes followed by 25 cycles of 95˚ C for 30 seconds, 65˚ C for 30 seconds, 72˚ C for 30 seconds,

a final extension step of 72˚ C for 5 minutes and a hold at 4˚ C. 5ul from a random sample of

PCR products were run on a 1.5% agarose gel to verify the expected size of ~350bp (amplicon

with primers). Two negative controls and one positive control (Microbial Mock Community

B, catalog number HM-276D, BEI resources) were included. The sediment PCR products cor-

responding to a particular site and season were then pooled and 25ul of each pooled product

transferred to a new 96-well plate before clean-up. We pooled PCR products to avoid a scaling

mismatch because collections at a site and season were subsamples within a reach; the MBSS

benthic macroinvertebrate samples are also pooled from several subsamples throughout the

same reach.

PCR products were cleaned using 20 μl of AMPure XP beads per 25 μl of PCR product fol-

lowing the manufacturer’s instructions, and resuspended in 50 μl of 10 mM Tris pH 8.5 buffer.

Individual samples were then barcoded in an indexing PCR reaction, consisting of 15ul

cleaned PCR product; 25 μl of 2x KAPA HiFi HotStart Ready Mix; 5 μl each of Nextera XT

Index 1 Primers (N7XX) and Index 2 Primers (S5XX) from the Nextera XT Index kit for a
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total volume of 50 μl. Primer sequences can be found in the Illumina documentation: https://

support.illumina.com/content/dam/illumina-support/documents/documentation/chemistry_

documentation/experiment-design/illumina-adapter-sequences-1000000002694-12.pdf. PCR

parameters were 95˚ C for 3 minutes; 8 cycles of 95˚ C for 30 seconds; 55˚ C for 30 seconds;

72˚ C for 30 seconds; a final extension of 72˚ C for 5 minutes followed by a 4˚ C hold. The

PCR index product was cleaned as described above with the following modifications: 56 μl of

AMPure XP beads was added to each Index PCR product and eluted in 25 μl of 10 mM Tris

pH 8.5 buffer. Each sample was quantified using the Qubit dsDNA High Sensitivity Assay Kit,

and then shipped to the University of Maryland Center for Environmental Science-Institute of

Marine and Environmental Technology for normalization and sequencing (150 bp paired-end

reads) on an Illumina MiSeq.

Sequence data are available from NCBI under BioProject accession number PRJNA545742.

Bioinformatic analysis

All bioinformatic analyses were carried out using the mothur software package (v. 1.31.2) [40].

Sequences were trimmed according to base quality scores using a 50 bp sliding window with

an average quality score cutoff of 35. Reads with primer mismatches, ambiguous bases, homo-

polymers greater than 8 bp, and/or sequences less than 100 bp and greater than 250 bp were

removed. Due to inadequate read overlap after trimming, only the forward reads were used for

analyses. Sequences were aligned to a reference alignment (SILVA v. 119), and sequences that

did not align were removed. All remaining sequences were trimmed to the same start and end

position, and any unnecessary gaps generated during alignment were removed. Prior to chi-

mera removal, sequences were preclustered allowing a difference of up to 2 bp (1.5%) between

sequences. Chimeras were detected using the UCHIME algorithm [41] and removed from the

dataset. Sequences were classified using a Bayesian classifier with an 80% pseudobootstrap

confidence score against the GreenGenes database (v. 13.8.99). All sequences that classified as

unknown, chloroplasts, mitochondria, or Eukaryota were removed. Prior to clustering the

sequences into operational taxonomic units (OTUs), sequences were split into bins based on

their taxonomic order to reduce the computational demands of clustering. OTUs were clus-

tered at a 3% dissimilarity level using an average neighbor algorithm and normalized to 1344

sequences. The error rate of the sequencing was determined using our positive control Micro-

bial Mock Community B and default parameters of the command seq.error.

Statistical analysis

We used Discriminant Analysis of Principal Components (DAPC) as implemented in the ade-
genet [42, 43] package for R [44] to classify and predict the ecological condition of headwater

streams based on archaea and bacteria OTU identities.

DAPC was initially developed for population genetic processing of thousands of single

nucleotide polymorphisms (SNPs) to identify loci that may be associated with specified sample

groups. Here, we use it in an analogous context, but not for SNPs within individuals. Rather,

we treat OTUs as the equivalent of SNPs and measures of stream condition as the sample

groups or traits of interest. Specifically, we used DAPC to identify potential OTUs that are

associated with stream ecological condition. The approach first performs a principal compo-

nents analysis on the normalized OTU data to formulate the principal components accounting

for the variation in the OTU dataset. The principal components are then used as inputs into a

linear discriminant analysis to predict, in our case, a site’s membership as specified a priori by

the BIBI condition score calculated by the MBSS program. Potential microbial indicator taxa

for BIBI condition can then be identified by calculating the loadings of each OTU on the
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discriminant axes, and retaining taxa that exceed a user-defined threshold. We retained

enough principal components to capture 95% of the variation in the OTU dataset for each

combination of sampling period (spring or summer) and sampling medium (water or sedi-

ment). For the Discriminant Analysis portion of the DAPC, we retained all available axes for

prediction to 8 BIBI categories created by subdividing the BIBI, which ranges continuously

from 1–5, into eight 0.5 unit categories. We ran analyses separately based on phylum, class,

order, family, genus and OTU (species) in order to identify the level of taxonomic resolution

that best captured the ability to classify stream ecological condition.

We used a resampling approach to evaluate model performance. For each of the various

combinations of taxonomic level, sampling period, and sampling media, 1,000 iterations of the

DAPC analysis were performed, with 80% of the dataset randomly selected and used for model

building and the remaining 20% used for validation. We report the mean classification accura-

cies and 95% confidence intervals of each model classification scenario in the results.

Subdividing the continuous BIBI into discrete, non-overlapping categories for the discriminant

analyses introduces potential error in the classifications. For example, a difference between a BIBI

of 3.9 and 4.1 is small, yet the two scores fall into different categories. Therefore, we assessed classi-

fication accuracy in multiple ways. The first assessment used the accuracy as returned by the

DAPC using a leave-one-out approach. The second accuracy assessment allowed for variation by

considering a classification as correct if the DAPC classified a sample into the observed BIBI cate-

gory for that site, or into an adjacent BIBI category (i.e., relaxing the definition of correct assign-

ment to +/- 1 BIBI category). Thus, a DAPC prediction of category 3.51–4.0 would be considered

correct if the original BIBI score for a site ranged anywhere from 3.1 to 4.5. We term this “fuzzy

accuracy” as it is a form of fuzzy logic in assessing the overall accuracy to deal with uncertainties

introduced in moving from a continuous to discrete classification variable. Lastly, we calculated

Cohen’s Kappa [45, 46] for rater agreement of the cross-classification to test whether the overall

accuracy or fuzzy accuracy was significantly different from random guessing in order to account

for the non-uniform distribution of BIBI scores across sites.

To determine the relative importance that a smaller set of microbial indicator taxa may con-

tribute to the classification of stream BIBI condition, we identified the taxa most important in

predicting stream condition in the DAPC, and re-assessed the classification accuracy using

only these taxa. Important taxa were identified as having loadings of 0.03 or greater on one of

the three DAPC discriminant axes. These important taxa were then subset from the larger

dataset and used to predict a stream’s condition as specified a priori by the BIBI. Thus, we re-

ran the DAPC resampling, but restricted it to the small subset of important taxa—typically 15–

30 taxa depending on taxonomic resolution. We assessed both the leave-one-out accuracy and

the fuzzy accuracy on both the training and the validation datasets using the resampling

approach described previously.

Lastly we used the machine-learning algorithm Gradient Forest (GF) [38] to identify

important environmental variables contributing to microbial community composition, and

the association of particular indicator taxa with these variables. The GF analysis is thus com-

plementary to the DAPC analysis, as it helps to identify which of the environmental predictors

is most important in explaining the among-site variance in abundance for taxa identified as

important indicators in the DAPC analysis. GF also gives insight into the shape of the response

between important taxa and environmental gradients (e.g., linear vs. threshold effects). We

used relative taxa abundance for each site as the response variable, predicted by a multivariate

set of environmental predictors for each site that include chemical attributes, physical attri-

butes, and upstream catchment land uses (Table 1). Each GF model consisted of 500 boot-

strapped regression trees. The importance of correlated environmental predictors was assessed

via conditional permutation for predictors correlated above r = 0.5 (see also [38]).
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Results

The normalized dataset contained 61,172 OTUs, with roughly 88% of sequences classified for

phyla, 73% to order, 57% to family, 32% to genus, and less than 1% to OTU (Table 2). Bacteria

taxonomic richness was always at least an order of magnitude greater than for archaea richness

within each taxonomic level (Table 2). At the genus level, we found 634 named genera (19

archaea and 615 bacteria) with all occurring across both water and sediment samples collected

during both spring and summer. Unsurprisingly, the percentages of unclassified taxa

decreased as taxonomic resolution decreased. Except for OTU-level or as otherwise indicated,

all analyses were restricted to classified taxa within a taxonomic level.

Across both seasons and substrate, Proteobacteria dominated samples. Other commonly

occurring phyla were Bacteroidetes and Actinobacteria in water samples, while Acidobacteria,

Verrucomicrobia, Planctomycetes, Chloroflexi, Crenarchaeota, and Nitrospirae were common

in sediments (S1 Fig). An in-depth analysis of community richness and diversity of these data

in the context of landscape setting is found in [47] and is not the intent of the current study.

Rather, we describe community representation and responses at the order-level after demon-

strating its usefulness in predicting stream condition.

Table 1. Environmental variables used in the gradient forest analysis.

Variable Abbreviation Definition

Chemical

pH pH

Acid Neutralizing Capacity (mg/L) ANC

Dissolved Organic Carbon (mg/L) DOC

Total Nitrogen (mg/L) TN

Nitrate Nitrogen (mg/L) NO3

Ammonia (mg/L) NH3

Total Phosphorus (mg/L) TP

Orthophosphate (mg/L) OPhos

Chloride (mg/L) Cl

Sulfate (mg/L) SO4

Specific Conductance (μS/cm) Cond

Carbon (%) Carbon Percent of particulate carbon in sediment samples

Landscape

Forest Cover (%) Forest Forested land in the upstream catchment

Urban Cover (%) Urban Urbanized land in the upstream catchment

Agriculture Cover (%) Agriculture Agricultural land in the upstream catchment

Impervious Surface Cover (%) ISC Impervious surfaces in the upstream catchment

Human Disturbed (%) Human Urban + Ag land covers in the upstream catchment

Catchment Area (ha) Area Area of the upstream catchment

Physical

Embeddedness (%) Embed Fine sediments covering the stream bottom

Eipfaunal Substrate (1–20) Epi Amount and quality of hard surfaces

https://doi.org/10.1371/journal.pone.0236932.t001

Table 2. Numbers of classified lineages within each taxonomic level used in the DAPC analyses. The numbers of unclassified lineages are in parentheses.

Phylum Class Order Family Genus OTU

Archaea 3 (0) 10 (1) 16 (2) 16 (11) 19 (31) 12 (1129)

Bacteria 64 (9) 163 (38) 262 (102) 319 (241) 615 (1307) 593 (59438)

https://doi.org/10.1371/journal.pone.0236932.t002
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Spring and summer sediments predict ecological condition

DAPC analyses of stream microbial data successfully classified the ecological condition of

headwater streams that were previously classified by benthic macroinvertebrates with the BIBI.

Classification accuracy within the training dataset ranged from 31% to 100% across the various

levels of taxonomic resolution, seasons, and sampling media (Fig 2A). Models using the full

OTU dataset produced the highest classification accuracies across the different types of

Fig 2. Stream assessment classification accuracy using all taxa. Model classification accuracy of sites into 8 possible BIBI categories for the

training dataset (Panel A), validation dataset (Panel B), and the fuzzy classification accuracy for the validation dataset (Panel C) across the differing

levels of taxonomic resolution, sampling season (spring, summer), and sampling medium (water, stream sediment). Points represent the mean

accuracy across 1,000 model runs resampling 80% of the dataset to form the training dataset and the remaining 20% comprising the validation

dataset. Results for species are based on all OTUs, including those not classified.

https://doi.org/10.1371/journal.pone.0236932.g002
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samples. However, coarser levels such as order and genus produced similar accuracies when

applied to the validation data. The absolute classification accuracy applied to the validation

data was lower than for the training data (Fig 2B). However, most misclassifications fell into

an adjacent category, such that the fuzzy classification accuracy of the validation dataset

exceeded 80% in some model scenarios including genus- and order-level classifications for

summer sediments (Fig 2C).

Sediment samples were considerably better for classifying stream ecological condition in

the DAPC analysis than water column samples. Within a season, classification accuracy from

sediments typically ranged at least 10–20 percentage points higher than did samples from

water for accuracy of both the overall and fuzzy classifications for a given taxonomic level (Fig

2). The differences in classification accuracy between sediment and water samples were gener-

ally lowest at the coarsest taxonomic levels (Phylum and Class) and became more pronounced

for taxonomic resolutions of order and finer.

Summer sediment samples generally produced higher classification accuracy within a taxo-

nomic level for both the training and validation data compared to spring sediments samples.

However, predictions from spring sediments often performed similarly (Fig 2) and suggest that

models from sediment samples taken at either of these times may provide good performance.

A subset of orders predicts ecological condition

Classifications based on just the subset of the most important taxa in the DAPC analysis were

less accurate than analyses using all taxa, yet many scenarios remained significantly better than

random for classifications applied to the training dataset (Fig 3A). Although the overall accu-

racy in classifying streams to their BIBI scores was very low when applied to the validation

dataset (Fig 3B), the accuracy based on the fuzzy classification was often high (Fig 3C) and

approaching those when using all taxa within a level (Fig 2C). For example, the average fuzzy

classification accuracy in summer sediments using only the important taxa exceeded 75% for

both order- and genus-level analyses (Fig 3C).

Classification accuracies based on the subset of important OTUs often performed less well

than models built with coarser taxonomic resolutions, contrasting with results based on all-

taxa models. Order-level taxa generally performed better than other taxonomic levels when

applied to the validation dataset, including the OTU-level. For example, classifications using

only 31 orders in summer sediments and 29 orders in spring sediments (S2 Fig) produced

fuzzy accuracies above 75% (Fig 3C). Most of these orders were ubiquitous, occurring in at

least 90% of the samples. In addition to orders, fuzzy classification accuracies were also reason-

ably high when using genus- and family-level taxa for both spring and summer sediments.

Almost all of the orders important in classifying stream condition were also among the

most numerically abundant in sediment samples. In particular, Rhizobiales, Chthoniobacter-
iales, Pirellulales, iii1-15, and Pedosphaerales were all highly abundant, ubiquitous, and impor-

tant to predicting stream condition in both spring and summer sediment samples (Fig 4).

Some orders such as NRP-J, GCA004, and Thermogemmatisporales were quite important for

prediction, but were not among the 25 most abundant orders. These taxa also tended to be less

ubiquitous in occurrences across samples (S2 Fig). Aside from Actinomycetales, Flavobacter-
iales, and Burkholderales, important orders were not as abundant in water column samples

and demonstrate differences between the sediment and water column communities.

Community turnover relates to water chemistry

Based on the DAPC analysis which showed high classification accuracies at the order level and

finer taxonomic resolutions, we focused the Gradient Forest (GF) community turnover
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analyses on order-level taxa. Using GF, we identified several environmental gradients associ-

ated with the order-level community compositional turnover. The most important environ-

mental predictors associated with community turnover were shared between spring and

summer microbial communities, and included pH, acid neutralizing capacity, dissolved

organic carbon, nitrate nitrogen, the percent of particulate carbon present (for sediments) in

Fig 3. Stream assessment classification accuracy with a subset of important taxa. Model classification accuracy of sites into 8 possible BIBI

categories based on models using only those taxa loading heavily (0.03 or greater) in the DAPC analysis. Accuracies are shown for the training

dataset (A), validation dataset (B), and the fuzzy classification accuracy for the validation dataset (C) across the differing levels of taxonomic

resolution, sampling season (spring, summer), and sampling substrate (water, stream sediment). Points represent the mean accuracy of 1,000 model

runs resampling 80% of the dataset to form the training dataset and the remaining 20% comprising the validation dataset.

https://doi.org/10.1371/journal.pone.0236932.g003
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the sample (Fig 5). In addition to those chemical attributes, embeddedness (the amount of fine

sediment deposited throughout the stream reach from which the sample was collected) was

also important. The remaining predictors contributed little to explaining among-site variation

in community composition, including the various broad land use categories. The most impor-

tant environmental predictors associated with community turnover were similar between

analyses using all named orders and those using just the subset of orders important in the

DAPC analyses for both spring and summer sediment communities (Fig 5).

The orders important in the DAPC analysis had variable responses to the most important

environmental gradients. Far fewer than half of the 29 taxa typically responded strongly to any

given environmental variable, and the responses were usually not concentrated at one specific

point along each gradient (S3–S5 Figs). For example, Pedosphaerales, Acidobacteriales, and

Elin6513 all responded strongly to pH, but at different values, whereas other taxa responded in

less dramatic fashion (Fig 6A). Thus, the aggregate community response for each variable was

a relatively smooth curve above the lowest pH values (Fig 6B) rather than a stepped-threshold

response that would indicate an abrupt transition to a different community. We found similar

response gradients of taxa to the overall BIBI score as well as to different land use gradients

within the watersheds (S4 Fig), but none of them were as important to community turnover as

were many of the chemical variables. Acidobacteriales and Actinomycetales were strong indica-

tors of very low BIBI scores at a site, whereas Xanthomonadales and Chthoniobacterales indi-

cated progressively higher BIBI scores, respectively. Similarly, iii1-15 and RB41 were strong

indicators of increased urbanization (S4 Fig). Despite these orders being strong indicators,

many were present in nearly every sample (S2 Fig), and so the relative abundances or ratios

define the response rather than presence or absence in a sample.

Fig 4. Abundances of orders important to predicting stream condition from sediment samples. Taxa are arranged

top to bottom by their overall abundances within the entire dataset including water sample.

https://doi.org/10.1371/journal.pone.0236932.g004
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Discussion

We were successful in using stream sediment microbial communities to reproduce the results

of an alternative stream assessment method based on benthic macroinvertebrates. Maryland’s

BIBI is a well-established assessment method [39] and has legal biocriteria within the state for

evaluating the ecological status of small streams. Previous have attempted to relate microbial

communities with stream ecosystem status with mixed results. Although Lear et al. [48] could

only distinguish the most degraded sites with bacterial biofilms, more recent work has refined

the correlations between microbes and stream macroinvertebrate-based assessments [26] and

linkages with urban streams [27]. These advances and the current study reflect the large poten-

tial of microbial approaches for assessing ecosystem status.

The classification accuracies of the DAPC model compared favorably to accuracies of BIBI

scores calculated on replicate benthic macroinvertebrate samples collected by the MBSS pro-

gram. For field replicate samples collected in 55 randomly selected reaches by the MBSS pro-

gram (tables 9–10 [49]), we applied the same number of categories and cutoffs to the BIBI as

we did in assessing the DAPC model accuracies. The overall accuracy calculated for the MBSS

BIBI replicates was 42% and the fuzzy accuracy was 87%. Thus, two benthic macroinvertebrate

samples collected at the same time and in the same location had differences in their calculated

BIBI scores. Our classification accuracy on the validation dataset had comparable accuracy to

the BIBI scores in spring and summer sediment samples for the all-OTU models (57% and

62% overall and 89% and 92% for fuzzy) and the all-orders models (39% and 60% overall and

81% and 88% for fuzzy). Surprisingly, the subset of important orders performed similarly well

Fig 5. Importance of environmental variables. Importance rankings of environmental variables to order-level taxa in spring-

collected sediment samples as determined by gradient forest. The left panel shows environmental variable rankings with respect

to all taxa, while the right panel does the same for the 29 important order-level taxa. The summer sediment microbial community

behaved similarly and is excluded for brevity. Variable definitions can be found in Table 1.

https://doi.org/10.1371/journal.pone.0236932.g005
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(77% and 80% for fuzzy). The limited subset’s ability to predict the BIBI greatly extends the

utility of the approach. While models using all OTUs require all information to be present for

modeling, the subset of known indicator taxa can be used for future assessments on streams

outside of the study without the need to sample the entire community anew across multiple

streams to build a training set. Including all OTUs often produced the best results, but the

OTU-level models appeared to be overfit as their accuracy decreased relative to other taxo-

nomic levels when applied to the validation dataset. The decreased performance likely reflects

heterogeneous spatial distributions of individual OTUs that disappear as these become aggre-

gated at more coarse levels of taxonomic resolution.

Although family- and possibly genus-level aggregation showed predictive potential, we

chose the order-level for multiple reasons. Unclassified OTUs are not uncommon with 16s

samples from streams, and aggregation increases the likelihood of including more OTUs

within a group for analysis even if these are not classified at the species level. While the DAPC

analysis at the species level did include all OTUs, the predictions to the validation data often

did not fit as well as the aggregated levels, suggesting model overfitting. We were surprised

that order-level aggregation worked well because of the substantial functional differences

among members within many orders. However, orders also work well for stream benthic

macroinvertebrates where the Ephemeroptera, Plecoptera, and Trichoptera (EPT) form a fre-

quently used diagnostic triad due to their pollution sensitivity. Not all members of EPT are

Fig 6. Taxon-specific responses of the important orders in spring sediment samples along the pH gradient in the

gradient forest analysis. Each line represents a different microbial order.

https://doi.org/10.1371/journal.pone.0236932.g006
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pollution sensitive, but the aggregated response has more utility than splitting into finer group-

ings despite genus-level forming the accepted standard resolution. Similarly, a high percentage

of Diptera is often diagnostic of ecological impairment [39]. Both functional and habitat diver-

sity of members within Diptera and each of the EPT are broad [50]. Indeed, large functional

diversity may be advantageous by providing a wider range of habitats and conditions for diag-

nostic groups within an order to survey.

A disadvantage of aggregation is the loss of specificity in understanding the roles of taxa in

the environment. Among the many orders important to predicting stream condition, only a

few have narrowly described natural histories. Cenarchaeales and Nitrososphaerales are ammo-

nia oxidizing Archaea [51], while the bacteria, Nitrospirales, oxidize nitrite-nitrogen [52] and

Desulfuromondales reduce sulfates [53]. Interestingly, none of these taxa responded strongly to

their respective chemical gradients (S4 Fig). However, the methane oxidizing Methylococcales
(Protebacteria) and putative anaerobe GCA004 (Chloroflexi) were strongly related to high lev-

els of embeddedness arising from substantial fine sediment deposition in the stream and asso-

ciated anoxic environments. Hosen et al. [25] reported a Methyloccolales OTU strongly

associated with urban streams, but that most methanotrophic or methylotrophic OTUs were

more indicative of forested systems, possibly due to deeper groundwater and hyporheic flow-

paths that are also anoxic. The remaining important orders are either poorly described or have

environmental roles too diverse for general characterization due to their high functional

diversity.

Because stream condition can be influenced in numerous ways, a low BIBI score can be

achieved by degradation due to urbanization [54], agricultural activities [55], or any number

of specific insults such as high sedimentation [56] or altered water chemistry in even forested

watersheds [57]. Streams may be influenced simultaneously by multiple sources of degrada-

tion, so no single indicator taxon can reflect all potential stressors. Indeed, we found several

indicator taxa, but none were specifically diagnostic of overall stream condition because of the

many possible ways a stream can become impaired, and most were present in nearly every

sample. Rather, the relative proportions of taxa within a community may be a better integrative

measure and is similar to what the DAPC analysis accomplished. This is also the general

approach of the IBI-based methods that evaluate the overall target community by aggregating

and summing numerous indicator metrics [13]. Nonetheless, the environmental gradients

measured in our study influenced community turnover, with numerous taxa responding

strongly to specific gradients and acting as indicator taxa. The important orders from the

DAPC analysis showed similar patterns to the entire community and suggests this subset is

both diagnostic of stream condition and representative of the overall microbial sediment com-

munity. Numerous indicator taxa correlate strongly both with broad land use categories as

well as with specific chemical constituents [25, 27, 47]. Despite strong taxon-specific responses

of indicators, we found no community-wide threshold response. Rather, when individual

taxon responses were aggregated across the entire community, the result was a fairly smooth

and consistent change across each gradient. This lack of abrupt transitions in the microbial

community differs from fish and benthic invertebrate communities [58] and may reflect high

functional diversity and redundancy in stream sediment microbes, with multiple taxa readily

available to increase in abundance as conditions change across a gradient [28].

Classification performance differences between water column and sediment samples may

reflect different ecological processes acting on the microbial community and a subsequent

scale mismatch with the benthic macroinvertebrates. We had originally expected classifica-

tions from water samples to outperform sediment samples because water samples should bet-

ter integrate upstream catchment characteristics such as land uses that strongly influence fish

and benthic invertebrates. However, the sediment microbial community was substantially
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better at replicating benthic macroinvertebrate stream condition assessment scores. We believe

the sediment microbial community is better spatially and temporally matched with benthic

macroinvertebrates. The water column represents the microbial pool available to colonize

stream benthic habitats, but the short residence times may not reflect the conditions under

which the benthic macroinvertebrates actually exist. Only a subset of microbial taxa survive on

the sediment substrates through environmental sorting, and these taxa share more similar

environments to the benthic macroinvertebrates. Hosen et al. [25] found that microbes in

water column samples were more strongly connected to urbanized watersheds, but that sedi-

ment microbial communities were more strongly connected to environmental conditions

within the stream reach, which is more similar to what benthic macroinvertebrates experience.

The microbial community appears to respond differently to natural and human-gradients

than eukaryotic indicators despite the ability to predict stream condition. Animal taxa show

decreasing richness and diversity with subsequent community-level turnover as watersheds

lose forest and transition to urban dominated landscapes [27, 59]. In contrast, land uses were

not important in microbial community turnover despite its relationship with the BIBI and sig-

nificant correlations between land uses and the BIBI within our dataset and elsewhere [60]. In

fact, the only important environmental variable shared between the important microbial

orders and the BIBI was acid neutralizing capacity, which is a measure of a stream’s ability to

buffer acidity. The microbial community thus appears to measure different aspects influencing

stream condition than can be rigorously quantified with the BIBI. We view this as an advan-

tage rather than a weakness because the microbes may be complementary to benthic macroin-

vertebrates by integrating different environmental attributes influencing the stream

ecosystem. Similarly, the relatively smooth community response across the many environmen-

tal gradients measured implies high redundancy in both diversity and function as previously

suggested by others [48, 27]. The ubiquity and shorter generation times of microbes may also

more closely track environmental conditions or be distributed more evenly within a stream

than fish or invertebrates, which tend to be spatially heterogeneous [61]. Thus the microbial

community may be a better reflection of conditions at the site than the more mobile and lon-

ger lived fish and invertebrates, which can disperse to varying degrees [62] and may be limited

by dispersal or the species pool [34].

Reliable assessment of stream ecosystem status remains instrumental to many activities, but

the results obtained from one taxonomic group are not always congruent with other groups.

For example, the MBSS data used in our analyses show a correlation of only 0.32 between the

fish IBI and the benthic IBI scores at a site. We chose the BIBI because it receives widespread

adoption and use by ecologists and resource managers, and it shows reasonable responses to

stressors in Maryland streams [39, 60]. However, we also attempted to use fish data collected

at each site in a Fish Index of Biotic Integrity (FIBI) as a potential endpoint in preliminary

analyses, but found poor congruence. We suspect the lack of relationship may be due to fish

responding more slowly to environmental changes due to substantially longer generation

times, difficulty in recolonizing areas after local extirpations and historic contingencies [63],

increased species richness near confluences with larger streams [64], and more patchy distri-

butions, all contributing to higher variation in FIBI scores. Both diatoms [65, 66] and salaman-

ders [67] can also be effective groups, but we had no accompanying data for comparisons.

Assessments with diatoms often compare similarly to those with benthic macroinvertebrates

[68] and may compare similarly with the microbial community due to their shorter generation

times and potential ubiquity.

Microbe-based assessment of stream ecological condition extends environmental assess-

ment beyond the use of traditional indicator organisms and has potential advantages. Sample

collection for stream sediments is very quick. We frequently spent less than 5 minutes at each
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site. The limiting factor is ensuring that all materials are handled and processed to avoid con-

tamination with foreign DNA, particularly from other sites. Collected samples are also easily

stored on ice prior to laboratory processing. The rapidity and low-effort for sample collection

allows far more samples to be collected in a given day than can be accomplished with fish, sala-

manders, or benthic macroinvertebrates. A single person can sample many sites in a day with

the major limitation being travel time between sites, which makes the overall cost per sample

potentially much lower for microbial-based assessment compared to the other approaches.

Our results suggest that the microbial communities of spring- or summer-collected stream

sediments can reasonably replicate the spring-collected benthic macroinvertebrates that make

up the BIBI. Thus, the time window for sampling may be extended far beyond other biological

assessment approaches. The microbial community may also allow evaluations of ephemeral

streams or those having been restored, but have limited species pools for fish or invertebrates

to recolonize. With further research, we view microbes as being a useful coarse filter to cost

effectively evaluate many streams and identify those having outlier values (good or bad) to trig-

ger more thorough examinations or possibly to identify candidate streams now suitable for

reintroducing extirpated fish or invertebrates.

While the applications of microbial sequencing to stream assessment are evident, many

basic questions regarding the processes structuring microbial communities remain unan-

swered. The overwhelming majority of OTUs and even genera remain unnamed. Our

sequencing used single end reads of relatively short length and likely made positive assign-

ments underpowered. Nonetheless, some unclassified taxa appear to be important in classify-

ing stream condition. Whether their importance manifests as indicators, commensals of

benthic invertebrate indicators, or as ecosystem engineers remains unknown. Similarly, we

know little about the roles of most microbial taxa or the degree of redundancy in ecosystem

functions as taxa are aggregated into coarser taxonomic levels, yet microbial activities such as

decomposition, nutrient cycling, and respiration are central to stream ecosystem functioning

[69]. These activities are undoubtedly influenced by the frequency and magnitude of distur-

bance as well as the community’s response, which remains unknown. As sequencing platforms

become more powerful and less expensive, we are excited by the prospects of much deeper

basic and applied understanding.

Our findings are an encouraging next step in using the microbial community to better

understand stream ecosystem health. However, we believe that more testing is required and

that similar efforts need to be replicated in time and across larger areas. Our sampling covered

a large geographic area with several physiographic provinces, and we are reasonably confident

that the data are representative of a large portion of regional headwater streams. Future

research should assess if the same taxa are important for other watersheds both regionally,

continentally, and globally.
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