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Abstract
Many species that undergo long breeding migrations, such as anadromous fishes, 
face highly heterogeneous environments along their migration corridors and at their 
spawning sites. These environmental challenges encountered at different life stages 
may act as strong selective pressures and drive local adaptation. However, the rela-
tive influence of environmental conditions along the migration corridor compared 
with the conditions at spawning sites on driving selection is still unknown. In this 
study, we performed genome–environment associations (GEA) to understand the 
relationship between landscape and environmental conditions driving selection in 
seven populations of the anadromous Chinook salmon (Oncorhynchus tshawytscha)—a 
species of important economic, social, cultural, and ecological value—in the Columbia 
River basin. We extracted environmental variables for the shared migration cor-
ridors and at distinct spawning sites for each population, and used a Pool-seq ap-
proach to perform whole genome resequencing. Bayesian and univariate GEA tests 
with migration-specific and spawning site-specific environmental variables indicated 
many more candidate SNPs associated with environmental conditions at the migra-
tion corridor compared with spawning sites. Specifically, temperature, precipitation, 
terrain roughness, and elevation variables of the migration corridor were the most 
significant drivers of environmental selection. Additional analyses of neutral loci re-
vealed two distinct clusters representing populations from different geographic re-
gions of the drainage that also exhibit differences in adult migration timing (summer 
vs. fall). Tests for genomic regions under selection revealed a strong peak on chro-
mosome 28, corresponding to the GREB1L/ROCK1 region that has been identified 
previously in salmonids as a region associated with adult migration timing. Our results 
show that environmental variation experienced throughout migration corridors im-
posed a greater selective pressure on Chinook salmon than environmental conditions 
at spawning sites.
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1  | INTRODUC TION

Species that undergo extensive migrations often must move be-
tween habitats that are favorable and unfavorable at different life 
stages (Hecht et al., 2015; Lennox et al., 2016; Micheletti et al., 
2018). These heterogeneous habitats may present unique selective 
pressures with varying strengths of selection. Specifically, migration-
driven challenges can act as selective pressures and be associated 
with adaptive variation in phenotypes within and among populations 
(Dingle, 1996). For example, some species’ migrations require per-
sistent locomotion and movement beyond that of constitutive activ-
ity levels prior to or following migration (Wikelski et al., 2003). Some 
of these migratory species develop streamlined bodies that increase 
power and efficiency needed for traveling long and challenging mi-
gration routes (Ramenofsky & Wingfield, 2007). Extensive migration 
also leads to a redistribution of the population, which could result 
in isolated groups with reduced gene flow (Dingle & Drake, 2007).

Anadromous fish are migratory species that are born in freshwa-
ter, then migrate to the ocean where they remain for up to several 
years before returning to freshwater to spawn (Reist et al., 2006). 
Many researchers have evaluated if adaptive phenotypic variation in 
anadromous species is due to heterogeneity at breeding sites, migra-
tion corridors, or both. In the anadromous steelhead (Oncorhynchus 
mykiss), genetic adaptation was more closely related to the envi-
ronment of migration corridors compared with the environment at 
spawning site (Micheletti et al., 2018). Additional studies found that 
timing of return migration and spawning are highly heritable traits 
in pink salmon (O.  gorbuscha), Atlantic salmon (Salmo salar), and 
Chinook salmon (O.  tshawytscha; Hansen & Jonsson, 1991; Quinn 
et al., 2000; Smoker et al., 1998).

The Chinook salmon is an anadromous species with an extensive 
migration and high philopatry. This species has considerable eco-
nomic, social, cultural, and ecological value (Quaempts et al., 2018). 
Chinook salmon represent multiple genetic lineages and exhibit a 
wide range of life-history variation in phenology of adult migration 
and sexual maturation (Quinn et al., 2015; Waples et al., 2004). In 
the interior Columbia River basin, there are two distinct Chinook 
lineages: ocean-type and stream-type (Healey, 1991; Narum et al., 
2010). Ocean-type Chinook salmon migrate to sea within a few 
months after hatching and do not return to freshwater until a few 
days or weeks before spawning. Stream-type Chinook salmon re-
main in the river they were born in for much longer (over a year) 
before migrating to sea and return to freshwater much earlier in the 
year than ocean-type Chinook salmon (Healey, 1991; Myers et al., 
1998; Willis et al., 2021). These two lineages occur in sympatry in the 
Columbia River but are reproductively isolated due to local adapta-
tion and isolation over geological time frames (Waples et al., 2004, 
2008). Chinook are also classified into distinct maturation types 
based on their return migration timing. For the interior ocean-type 

lineage, summer-run refers to early returning fish that migrate to 
freshwater spawning grounds before they fully reach sexual matu-
rity, while fall-run refers to later returning individuals that wait to 
migrate until they are sexually mature (Quinn et al., 2015). Adult mi-
gration timing, which corresponds to phenotypes for early and late 
entry to freshwater and arrival to spawning grounds, is an important 
life-history trait and has played a critical role in defining conserva-
tion units, such as Evolutionary Significant Units, which delineate 
distinct populations from one another (Waples & Lindley, 2018).

Extensive research has been done regarding genetic diversity 
and differentiation of Chinook salmon populations, including meth-
ods using restriction fragment length polymorphisms, mitochondrial 
DNA, allozymes, single nucleotide polymorphisms (SNPs), and mi-
crosatellites (Brannon et al., 2004; Hecht et al., 2015; Narum et al., 
2008; Rasmussen et al., 2003; Waples et al., 2004). Results of these 
studies found a significantly higher amount of genetic divergence 
between lineages in the interior Columbia River basin compared 
with other regions throughout the species range. Moreover, there is 
considerable evidence of genetic associations with migration timing 
and spawning in this species (Hess et al., 2016; Koch & Narum, 2020; 
Narum et al., 2018; Prince et al., 2017; Thompson et al., 2019, 2020; 
Willis et al., 2021).

Previous landscape genomic studies of Chinook salmon iden-
tified local adaptation and potential environmental selective pres-
sures. Population divergence was found to be associated with 
habitat variables such as temperature and elevation across life his-
tory types (Matala et al., 2011; Olsen et al., 2011). Additionally, a 
study using thousands of SNP markers from populations across the 
North American range of Chinook salmon found that 5.8–21.8% of 
population-wide genomic variation can be accounted for by envi-
ronmental features, the most significant being precipitation, tem-
perature, and migration distance (Hecht et al., 2015). More recent 
whole-genome sequencing work in Chinook salmon in the Columbia 
River has found extensive divergent selection throughout the ge-
nome, within and among genetic lineages. Narum et al. (2018) used 
association mapping with millions of genome-wide SNPs and found 
that there was genetically determined phenotypic variation in adult 
migrating timing and arriving at spawning grounds in Chinook salmon 
in the interior lineages, which was consistent across phylogenetic 
lineages. However, the relative influence of environmental condi-
tions along the migration corridor and at spawning sites on these 
genomic regions under selection is unknown.

In this study, we assessed whether seven populations of ocean-
type lineage Chinook salmon in the Columbia River basin experi-
ence selection primarily driven by the shared migration corridor 
environment or by the spawning site environment. Based on pre-
vious findings in anadromous steelhead (Micheletti et al., 2018), 
and because migration-related challenges have been established 
as strong selective pressures (Dingle, 1996), we hypothesized that 
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migration-related environmental variables would have a stronger in-
fluence on selection compared with spawning site variables.

2  | METHODS

2.1 | Study area and sample collection

The ocean-type lineage of Chinook salmon is the predominant 
form in the southern freshwater range of the species, particularly 
in lower elevation and, coastal streams (Sharma & Quinn, 2012). 
Samples were collected from seven populations within this line-
age that included two summer-run and five fall-run populations 
(Table 1; Figure 1). Juveniles were sampled from natural populations 
in the Methow River (n = 68) by a screw trap, and by beach seine in 
the Clearwater River (n = 96). We collected spawning adults from 
hatchery programs for Priest Rapids hatchery (n = 46), Yakima River 
(n = 46), Lyons Ferry hatchery (n = 92), and in traps placed in up-
stream ladders for Deschutes River (n = 48) and Wenatchee River 
(n = 61). Fin tissue samples were collected from each population as 
either outmigrating juveniles or returning adults in each river. Tissue 
samples were preserved in ethanol or dried on filter paper until 
DNA extraction. All fish in these Chinook salmon collections share 
a common portion of their migration corridors (Table A2; Figure 1). 
Inclusion of both natural and hatchery populations may introduce ef-
fects of hatchery and natural rearing on genomic variation. However, 
a study testing adaptive genomic variation of Chinook salmon across 
their North American range did not find rearing origin (hatchery vs. 
natural) to be a significant factor in their statistical models (Hecht 
et al., 2015). Therefore, we did not expect the use of both natural 
and hatchery populations to be a confounding factor in our study.

2.2 | Landscape and environmental variables

For each population, we determined the migration route between 
each spawning site and the Pacific Ocean (the mouth of the Columbia 
River) by calculating the shortest path to the ocean using a stream 
network analysis along the national hydrology network developed 
by the USDA National Stream Internet project (Isaak et al., 2019). 

The estimated migration routes were confirmed by contrasting our 
results against previously known records of Chinook salmon distri-
butions and activity for both summer/fall seasons, provided by the 
Pacific States Marine Fisheries Commission (www.strea​mnet.org). 
We also calculated the percent overlap of migration routes among 
all seven populations of Chinook salmon, by estimating the pairwise 
ratio of the overlap distance to the distance of the smallest path 
(Barraclough & Vogler, 2000). This index, transformed to percent, 
ranges from 0% (no overlap) to 100% (complete overlap with respect 
to the population with the shorter path).

A 5-km buffer around each of the seven spawning sites was 
used to establish an area of environmental and topographic influ-
ence and account for variation at those sites (Micheletti et al., 2018; 
Micheletti & Storfer, 2017). For migration routes, environmental and 
topographic descriptors were extracted using a 500-m buffer for 
segments along each river line included in the migration route. Both 
analyses were performed using the ArcGIS Pro v.2.4.0 (ESRI) Spatial 
Analysis toolbox and buffer tools, respectively. These two steps cre-
ated the geographic locations where we extracted environmental 
variables: at the spawning site, or along the migration route.

Environmental variables, describing both bioclimatic and topo-
graphic conditions at the spawning site and the migration route, 
were collected from open source GIS databases. We included en-
vironmental predictors that are known to be associated with ge-
netic variation of salmon (Hecht et al., 2015; Matala et al., 2011; 
Micheletti et al., 2018), and additional topographic and environmen-
tal descriptor variables of the study area (Table 2). We first collected 
bioclimatic variables representing annual trends and environmental 
seasonality (19 BIOCLIM), in addition to average wind speed and 
solar radiation data, from WorldClim V2.0 (Fick & Hijmans, 2017), 
at a ~1  km2 resolution. We obtained the SRTM digital elevation 
model of the Columbia River basin (~30  m2) from USGS (earthex-
plorer.usgs.gov). Tree Canopy Cover (2016 TCC) percentage was 
collected by the USDA Forest Service, and stream temperature and 
stream slope data were obtained from the NorWest database (Isaak 
et al., 2011) at the highest resolution available. The number of dams 
along the migration routes was gathered from the Global Reservoir 
and Dam Database provided by NASA-SEDAC (Lehner et al., 2011). 
Additional topographic-based variables—Heat Load Index, terrain 
roughness, migration distance and stream order—were derived from 

TA B L E  1   Sample locations and overall descriptive features of Chinook fin tissue samples sequenced using an Illumina NextSeq

Population Lat. Long.
Migration 
season

Migration 
Phenotype

Number 
of samples

Number of 
reads

Mean 
coverage ± SD (filt)

Upper Deschutes River 45.250753 −121.043306 Fall Late 48 (pool) 908,200,000 22.1 ± 12.1

Lower Yakima River 46.312190 −119.472570 Fall Late 46 503,337,440 32.8 ± 15.8

Priest Rapids 46.640000 −119.930000 Fall Late 46 (pool) 912,400,000 36.3 ± 16.6

Methow River 48.296000 −120.084000 Summer Early 68 482,651,780 24.8 ± 13.0

Wenatchee River 47.616430 −120.722390 Summer Early 61 476,295,447 32.0 ± 15.7

Clearwater River 46.426025 −116.917861 Fall Late 96 (pool) 713,200,000 29.4 ± 14.1

Lyons Ferry weir 46.591330 −118.224830 Fall Late 92 215,478,389 17.0 ± 9.3

Note: Geographical coordinates (Lat, Long), migration season, migration phenotype, and genetic sampling statistics are provided.

http://www.streamnet.org
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the Elevation model. For migration routes, we extracted descriptive 
values from raster data and calculated the mean, minimum, maxi-
mum, and range statistics for each variable because migration routes 
span a large geographic range (Micheletti et al., 2018). Whereas for 
the spawning sites, we only calculated the mean values for each 
variable within the 5-km buffer as the descriptor of the variation in 
environmental and topographic conditions present at each location. 
The complete GIS management, data extraction and analysis were 
performed using ArcGIS Pro v.2.4.0 (ESRI) and R statistical software 
(R Core Team, 2020).

These steps created a final dataset of 140 landscape-derived 
variables across spawning sites and migration corridors. A total of 98 
out of the 140 variables showed variation in at least one spawning 
site or migration corridor. To reduce multicollinearity for downstream 
analyses, we created several subset datasets by taking an iterative 
approach of manual and automated removal of variables. Ignoring 
Spearman rank correlations where p >  .05, we performed a 4-step 
manual stepwise removal of variables that were most correlated 
based on the R2 value (R2 > 0.80), followed by automated removal 
of variables with R2 > 0.80 using the psych and caret packages in R. 
This left us with 10 variables. We manually added back in variables 
of biological importance for Chinook salmon (Micheletti et al., 2018) 
or other salmonids in the area (e.g., bio 3 and bio 5, distance along 
migration corridors), and then proceeded to manually remove vari-
ables highly correlated with those target variables. The full code and 
specific filtering steps can be found on Github: https://github.com/
YaraA​lshw/LG_Chinook. The matrix for the 140 variables is available 
on Dryad: https://doi.org/10.5061/dryad.prr4x​gxmn. These steps 
created three datasets: The dataset “Combined” contained a total 

of 11 variables reflecting a mix of both migration and spawning site 
variables; the second dataset, “Migration” contained eight variables 
that are exclusively migration-specific; and the third dataset “Site” 
contained seven variables that are exclusively site-specific (Table 2).

The three datasets, “Combined,” “Migration,” and “Site” were 
used for analyses where multiple environmental factors were tested 
concurrently. For downstream analyses where variables were tested 
independently (i.e., latent factor mixed-modeling (LFMM); see 
below), we created an additional dataset using a less strict elimina-
tion method based on percentage of correlation to other variables in 
order to retain a higher number of variables. Starting with the set of 
98 variables, we removed highly correlated variables (R2 > 0.80) only 
if they were correlated to >50% of the variables within the dataset. 
This process allowed us to retain a set of 36 environmental variables 
becoming the fourth environmental dataset named “Full” (Table 2).

We used the “Migration” and “Site” datasets to implement a pre-
liminary Neighbor-Joining analysis with Euclidean distances to test 
environmental similarity between each of the geographical locations 
sampled, and between each of the migration paths connecting these 
locations with the ocean. This analysis was implemented using the 
vegan package in R using the site location variables or the migration 
variables (Oksanen et al., 2019; R Core Team, 2020).

2.3 | Genomic sequencing

We followed a PCR-based Chelex method for DNA extraction as 
per Sweet et al. (1996), with modifications including pre-extraction 
preparation with proteinase, incubations at 56 and 100 °C, and 

F I G U R E  1   Sampling sites of ocean-type Chinook salmon populations in the Columbia River basin. Fall-run populations are indicated by 
red circles; Summer-run populations are indicated by blue triangles. Base map imagery was obtained from the Esri database

https://github.com/YaraAlshw/LG_Chinook
https://github.com/YaraAlshw/LG_Chinook
https://doi.org/10.5061/dryad.prr4xgxmn
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microconcentration of the solution. We used a pooled-sequencing 
approach for whole genome re-sequencing (Schlötterer et al., 2014). 
Specific methods for pooling of samples and library preparation fol-
lowed that of Narum et al. (2018) for the Deschutes (n = 48), Priest 
Rapids (n = 46), and Clearwater River (n = 96) samples. For the lower 
Yakima River (n  =  46), Methow River (n  =  68), Wenatchee River 
(n = 61), and Lyons Ferry (n = 92) samples, individual samples were 
barcoded with adapters using the NEBNext Ultra Kit before sam-
ples were pooled for sequencing. For a detailed description on the 
methods for individually barcoding pooled samples for sequencing, 
see Horn et al. (2020). All sequencing was performed on an Illumina 
NextSeq500.

Genomic data were processed using the PoolParty v0.8 pipeline, 
a bioinformatics resource for pooled sequencing data that integrates 
several data processing tools, including PoPoolation2 (Kofler et al., 
2011) into a single pipeline (Micheletti & Narum, 2018). PoolParty 
utilizes BBduk from BBMap v38 (Bushnell, 2016) to trim reads with a 
base quality score of 20 and a minimum length of 25. Trimmed reads 
were aligned to the reference GenBank assembly of O. tshawytscha 
(GCA_002872995.1) using BWA-MEM (Li, 2013) with default pa-
rameters and a minimum mapping quality score of 5. PCR duplicates 
were identified and removed using SAMBLASTER (Faust & Hall, 
2014). Finally, BAM files were filtered and sorted using toolkit Picard 
v2.0.1 (Picard Toolkit, 2019) and SAMtools (Li, 2011). SNP positions 
were called with BCFtools using a minimum SNP quality of 20 and an 
indel window of 10. SNPs with a minor allele frequency (MAF) below 
0.05 and a depth of coverage below 10 were removed. All analyses 
hereafter are based on allele frequencies and not hard-called SNPs. 
The final data set is summarized in Table 1.

2.4 | Neutral population genetic structure

We examined neutral population genetic structure with a subset of 
SNPs that were filtered to remove putatively adaptive regions using 
the “AFFILT” allele frequency filter set to 0.1 (difference in allele fre-
quencies) in the PPanalyze module of PoolParty. SNPs were further 
filtered to include only those with a minimum and maximum cov-
erage of 15 and 250, respectively. Minimum coverage filters were 
necessary to achieve adequate read depth to estimate allele fre-
quencies, while maximum coverage filters were intended to reduce 
SNPs from homologous regions of the genome. Using the PPanalyze 
module, we constructed a Neighbor-Joining tree and principal com-
ponents analysis (PCA) to visualize the neutral population genetic 
structure present among ocean-type lineage populations. The SYNC 
file created by PPanalyze was used to calculate global and pairwise 
FST values using the R package poolfstat v1.1.1 (Hivert et al., 2018) 
to quantify the amount of population genetic structure among 
populations. A set of custom bash and R scripts were used to cal-
culate confidence intervals for each FST value (Dorant et al., 2019). 
A Mantel test was used to identify correlation between neutral ge-
netic differentiation (pairwise FST values) and pairwise geographic 
overlap among populations, using the vegan package in R.

2.5 | Identifying genomic regions under selection

There are many genome-wide association tests to detect genomic 
regions possibly under selection with varying rates of false-
positives and false-negatives, each with their own test assump-
tions. We performed several genome-wide association tests using 
the PPanalyze module of PoolParty, and a Bayesian approach that 
is independent of the PoolParty pipeline. These outlier tests in-
cluded FST and sliding window FST tests (SFST; Karlsson et al., 
2007), Fisher's exact test (FET), and an extended Lewontin and 
Krakauer test (FLK; Bonhomme et al., 2010). In FST tests, the 
overall distribution and variance of FST values are used to identify 
loci under selection (Beaumont & Nichols, 1996; Flangan & Jones, 
2017; Lewontin & Krakauer, 1973). Whereas the sliding window 
FST test calculates FST values at specific genomic regions. The 
FLK test takes into account the hierarchical structuring of popula-
tions unlike traditional FST tests. In FET, SNPs are tested for dif-
ferences in allele frequencies. For all analyses, SNP positions were 
filtered to exclude those with coverage below 15× and greater 
than 250×. In order to categorize genomic regions under selec-
tion while minimizing the underlying effects of genetic structure, 
four runs of PPanalyze were undertaken to screen for significant 
SNPs that were (1) among all populations, (2) between the com-
bined summer- and combined fall-run populations, (3) among the 
summer-run populations, and (4) among the fall-run populations.

For a Bayesian approach, we used the program BayeScan v2.1 
(Foll & Gaggiotti, 2008) to screen for SNPs located in regions under 
selection. Specifically, this test provides an estimate of the posterior 
probability that a locus is under selection (Foll & Gaggiotti, 2008). 
We converted the SYNC file into a GenePop file format using the 
PoPoolation2 command “subsample_sync2GenePop” with a mini-
mum allele count of four and a minimum and maximum coverage of 
40 and 250, respectively. These settings allowed us to simulate 40 
“genotyped” individuals to be used for the analysis. A custom set of 
scripts were used to merge chromosome and scaffold level genepop 
files into one (https://github.com/esnie​lsen/MSc-bioin​forma​tics). An 
R script (Ravinet, 2014) was used to convert the genepop file to a 
BayeScan input file. BayeScan was run using the SNP matrix option 
and a prior odds of 100.

2.6 | Genome–environment association analyses

We used several approaches to test for genome–environment asso-
ciations (GEA), using one or more of the four environmental datasets 
we identified earlier. Tests for GEA were completed in four differ-
ent analyses packages: redundancy analysis (RDA), AutoLM, LFMM, 
and BayPass. Each of these tests has different model assumptions 
and offers benefits and drawbacks. Univariate approaches such as 
AutoLM, LFMM, and BayPass test a single locus and a single vari-
able (Forester et al., 2018). These approaches offer a comprehensive 
testing design and are expected to not miss important adaptive loci 
or predictors (Rellstab et al., 2015), but risk increasing the rate of 

https://github.com/esnielsen/MSc-bioinformatics
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false positives (Forester et al., 2018). Additionally, the issue of “in-
terdependent models” is introduced when environmental predictors 
are highly correlated (Rellstab et al., 2015). Multivariate approaches 
can overcome the issue of multicollinearity through the use of PCA 
to summarize the contribution of environmental variables into a syn-
thetic environmental variable (Micheletti et al., 2018). However, this 
can make the interpretation of results difficult.

We first performed a set of RDA tests using the R package vegan 
v 2.5-6 (Oksanen et al., 2019). RDA represents a multivariate lin-
ear regression approach to GEA analyses (Forester et al., 2018). 
For frequentist univariate approaches to GEA, we implemented 
both AutoLM and LFMM analyses. AutoLM is a linear mixed-effects 
model that can detect significant associations between allele fre-
quencies and environmental variables and incorporates spatial au-
tocorrelation as a covariate (Micheletti et al., 2018). We performed 
four sets of AutoLM analysis using all four environmental datasets 
described earlier using the source code for AutoLM (https://github.
com/Steve​nMich​elett​i/autoLM). We used the function lfmm2 
from the source code (https://rdrr.io/bioc/LEA/src/R/lfmm2.R) 
to perform the LFMM analysis, which uses an exact least-squares 
approach to estimate latent factors and ultimately identifies can-
didate SNPs that associate with an environmental variable (Caye 
et al., 2019). We set the value of K = 2 based on NGSadmix analysis 
(Skotte et al., 2013). Briefly, the input file for NGSadmix was created 
using the ANGSD program (Korneliussen et al., 2014) to convert the 
filtered mpileup file into genotype likelihoods (for the pooled popu-
lations). NGSadmix was run with a K value ranging from 1 to 8, with 
10 iterations of each K value to assess proper convergence and the 
most likely K was identified based on the likelihood scores using the 
Clumpak server (Kopelman et al., 2015; Figure S1). Analyzing pooled 
sequencing data using LFMM risks loss of power, and to avoid this 
issue we simulated “genotypes” for 20 individuals per population 
using the function rbeta in R, based on the recommendations from 
the LFMM FAQ page and personal communication with the authors 
(https://membr​es-timc.imag.fr/Olivi​er.Franc​ois/lfmm/faq.htm; 
O. Francois 2020, personal communication Jul 21) and expanded the 
environmental dataset input files to 20 identical observations per 
population to match the simulated genotypes input file. Our analysis 
strategy differed from the standard LFMM analysis which entails 
creating a PCA on the environmental variables and using the first 
axis as the input for the environmental data. We were interested in 
identifying and interpreting the contribution of each environmental 
variable separately. Therefore, we performed each lfmm2 iteration 
independently using each unique variable from the four environ-
mental datasets: “Site,” “Migration,” “Combined,” and “Full” dataset.

To correct for multiple testing in both AutoLM and LFMM analy-
ses, we calculated Bonferroni corrections and Benjamini & Hochberg 
(BH) correction factors. We manually calculated the Bonferroni cor-
rection as alpha of 0.05 divided by the total number of SNPs. For the 
BH correction, we used the IHW v 1.15.0 R package (Ignatiadis et al., 
2016). We plotted raw p-values using Manhattan plots to visualize 
significant associations and look for genomic regions that showed 
large peaks. We filtered for candidate SNPs that had p-values below 

the threshold identified by the Bonferroni approach because it is 
more conservative than the BH approach.

Lastly, for a univariate Bayesian approach to GEA, we used the 
program BayPass (Gautier, 2015) to describe adaptive differences 
across the genome. The SYNC file was used to convert to a BayPass 
input file using the Poolfstat R package (Hivert et al., 2018). Four 
different runs of BayPass were performed that correlated with the 
four environmental datasets. Each covariate file was standardized by 
BayPass before analysis. Bayes factor (BF) values across the genome 
were plotted using Manhattan plots to screen for genomic regions 
that may be highly associated with each environmental variable. BF 
values (BF ≥ 20; Jarosz & Wiley, 2014) were extracted from the betai 
output file for comparison across GEA and outlier tests.

To consolidate the results from the GEA tests and produce a set 
of candidate SNPs for gene ontology (GO) investigation, we filtered 
for SNPs that were identified as significant by at least one BayPass 
test, and at least one of the multivariate or frequentist univariate 
tests. We then used the package SNP2GO (Szkiba et al., 2014) to test 
for enrichment of those SNPS. First, we used VCFtools (Danecek 
et al., 2011) to generate VCF files of the candidate SNPs and all non-
candidate SNPs. We also tested for enrichment of SNPs that were 
in common between at least one outlier test and one GEA test. We 
used the O. mykiss genome annotation (v100; Yates et al., 2020) be-
cause the annotated Chinook salmon genome lacked the “Gene on-
tology” term needed for the SNP2GO analysis.

3  | RESULTS

3.1 | Landscape and environmental variables

Cluster analysis showed that geographical locations sustaining 
populations with the same migration timing tend to be more envi-
ronmentally similar to each other than to other locations inhabited 
by populations migrating at different life stages (Figure 2). Pairwise 
comparisons of percent overlap of migration routes indicated that, 
as part of the main river basin, each population shares large river 
sections with each other, ranging from 65% to 100% overlap with 
respect to the population with the shorter path (Table S2). Although 
the overlap index does not account for symmetric overlapping, only 
three pairwise comparisons of migrations river lines showed com-
plete overlap. The Lyons Ferry migration path completely overlaps 
with a large section of the Clearwater path, and the fall-run Priest 
Rapids migration river line was completely overlapped with the two 
summer-run population river lines, Wenatchee and Methow.

3.2 | Genomic data

The number of reads per pooled library ranged from almost 216 
million to over 900 million (Table 1). After filtering steps, the aver-
age coverage across the genome ranged from 17× to 36× (Table 1). 
There were a total of 64,966,505 SNPs called before filtering with 

https://github.com/StevenMicheletti/autoLM
https://github.com/StevenMicheletti/autoLM
https://rdrr.io/bioc/LEA/src/R/lfmm2.R
http://membres-timc.imag.fr/Olivier.Francois/lfmm/faq.htm
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36,371,688 removed due to a quality score less than 20 and total 
depth of position less than 10. An additional 15,492,375 SNPs were 
removed after applying a MAF of 0.05. A total of 13,102,442 vari-
ants remained after filtering for analysis, with 10,823,935 being 
SNPs and 2,278,507 as indels.

3.3 | Neutral population genetic structure

A total of 4,212,127 sites remained after filtering for putatively 
neutral SNPs. Both the NJ tree (Figure 3a) and PCA (Figure 3b) in-
dicated clustering of the summer-run populations separately from 
the fall-run populations. In the PCA, the first axis explained the 
majority of the variation (89.3%) compared with axis two (2%; 
Figure 3b). The overall FST was 0.007, with pairwise FST values 
ranging from 0 to 0.027 (Table S1). The confidence intervals (CI) for 
four pairwise comparisons (Table S1) overlapped zero, indicating no 
genetic structure among these populations. The average pairwise 
FST value in comparisons among fall-run populations was 0.006, 
whereas the average pairwise FST value in comparisons of fall- to 
summer-run populations was 0.014, although confidence intervals 
were overlapping (Figure 4). The largest pairwise comparisons are 
among the summer-run populations (Wenatchee and Methow) and 
the fall-run Deschutes River population (FST  =  0.024 and 0.027, 
respectively). The Mantel test showed significant negative correla-
tion (Mantel r = −.644, p = .002) between neutral genetic structure 
and geographic overlap on migration paths. Populations with highly 

overlapped migration corridors presented low neutral genetic struc-
ture despite different migratory timing.

3.4 | Identifying genomic regions under selection

The FST, SFST, FET, and FLK tests screening for genomic regions 
under selection among all populations revealed several regions 
across the genome in common among tests (Figure S2a–d). The 
most notable peak was on Chr28, and corresponds to the GREB1L/
ROCK1 region. Another region identified by all tests is located on 
Chr19 (Figure S2a–d) and corresponds to a ladderlectin-like gene. 
Ladderlectin in rainbow trout (O. mykiss) has been shown to be in-
volved in the immune response for bacterial and fungal pathogens 
(Reid et al., 2011). In addition, the FLK, FST, and SFST test identified 
regions on Chr10, Chr12, Chr13, Chr14, and Chr17 (Figure S2a,b,d). 
The region on Chr10 contains several genes and the intergenic 
space. On Chr12 the SNPs are mostly located in intergenic regions, 
but also on a gene called MLX-interacting protein, a transcription 
activation protein (Singh & Irwin, 2016). The peak on Chr13 cor-
responds to SNPs in the gene H-2 class I histocompatibility anti-
gen, in which genes belonging to the MHC family are involved in 
immune response. The Chr14 peak contains SNPs that are located 
in the gene named CMP-N-acetylneuraminate-beta-galactosamide-
alpha-2,3-sialyltransferase 4-like that is involved in protein modi-
fication pathways (Uniprot Q11201). Lastly, the SNPs underlying 
the peak on Chr17 lie in intergenic regions and the gene calcium/

F I G U R E  2   Neighbor-joining tree of 
environmental data for (a) spawning site 
locations and (b) migration paths for seven 
populations of Chinook salmon
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F I G U R E  3   (a) Consensus Neighbor-Joining tree of all populations of Chinook salmon using the filtered set of putatively neutral SNPs 
(4,212,127). Blue nodes indicate summer-run populations, and red nodes indicate fall-run populations. Bootstrap support from 2000 
iterations is shown in boxes. In (b) PCA of all populations using the filtered set of putatively neutral SNPs (4,212,127). Blue circles indicate 
summer-run populations, and red circles indicate fall-run populations

F I G U R E  4   Pairwise FST values (represented as circles) for pairs of Chinook salmon based on putatively neutral SNPs and colored by 
return migration season. The horizontal lines for each pairwise comparison represent the confidence intervals
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calmodulin-dependent protein kinase type 1D (CAM kinase 1D) in 
the SFST test. CAM kinase 1D is involved in the calcium signaling 
cascade and acts as an activator (Uniprot Q8IU85).

In the analysis screening for putatively adaptive SNPs between 
summer- and fall-run fish, the largest association is again located on 
Chr28 in the GREB1L/ROCK1 region (Narum et al., 2018). All tests 
identified a significant region on Chr19, which like the previous tests 
performed among all populations, corresponds to a ladderlectin-like 
gene. The peaks observed on Chr10, Chr12, Chr13, and Chr14 in 
the FST, SFST, and FLK tests (Figure S3a,b,d) are congruent with the 
peak observed in the previous analysis, implying that the significant 
SNPs regions observed between summer- and fall-run fish are likely 
driving the results in the previous analysis (among all populations). 
The SNPs underlying the peaks on Chr2, Chr9, Chr10, Chr12, Chr13, 
Chr14, Chr17, Chr19, Chr28, and Chr29 from the sliding FST test 
were extracted from the SYNC file. PPanalyze was used to run a 
PCA using just the SNP positions underlying the peak on Chr28 and 
again using the SNP positions from Chr2, Chr9, Chr10, Chr12, Chr13, 
Chr14, Chr17, Chr19, and Chr29. These PCA plots were compared 
with the PCA using all filtered, genomic positions to determine the 
extent of population differentiation based on seasonal run-timing 
(Figure 5). The PCA using all SNP positions was generally identical to 
the PCA using only those SNPs found on Chr2, Chr9, Chr10, Chr12, 
Chr13, Chr14, Chr17, Chr19, and Chr29 (Figure 5a,b). The PCA using 
SNPs from Chr28 only produced the greatest amount of differentia-
tion between the summer and fall populations (Figure 5c).

No peaks were detected for the FST and SFST tests when screen-
ing for genomic regions under selection among the summer-run fish 
only. The FET test revealed a small peak on Chr9 where more than 
half of the SNPs are located in intergenic regions. Remaining SNPs 
are located on several different genes. Running FLK requires more 
than two populations for the test to build a rooting tree, therefore no 
FLK test was performed for the summer-run fish.

In the last screening analysis among the fall-run fish, no genomic 
regions under selection were detected using the FLK test. Similar 
to the first analyses using all populations and the second test be-
tween summer- and fall-run fish, a small peak on Chr19 was detected 
for FET and FST test corresponding to the ladderlectin-like gene. 
However, using the SFST test, the SNPs underlying the peak on 
Chr19 are located on a different gene called calcium-independent 
phospholipase A2-gamma like which promotes cellular membrane 
hydrolysis (Uniprot Q9NP80). Peaks on Chr13, Chr14, and Chr17 are 
shown using both the FST and SFST test. These peaks were also de-
tected in the first and second analyses, and correspond to the same 
genomic regions, although only marginally detected when using 
fall-run fish separately. The FST test also detected a small peak on 
Chr6 corresponding to SNPs located on a gene called baculoviral IAP 
repeat-containing protein 6-like. This protein has been seen to reg-
ulate cell death in mammalian cells (Bartke et al., 2004). The notable 
peak on Chr28 corresponding to the GREB1L/ROCK1 gene region 
that was detected by previous analyses was evident here as only a 
small peak using the SFST analysis. The SFST test also detected small 
peaks on Chr2, Chr6, Chr12, Chr18, and Chr21.

3.5 | Genome–environment associations

Results from the four GEA analyses (RDA, AutoLM, LFMM, and 
BayPass) provided mixed findings on significant environmental fea-
tures and candidate genes. All iterations of the RDA analyses using 
the Site, Migration, and Combined datasets returned no significant 
results. The full models and the axis models were non-significant 
(p >  .05) across all runs. Troubleshooting runs of this analysis sug-
gested that even at a correlation threshold of 0.8, multicollinearity 
within the datasets presented an issue for implementing RDA tests. 
It is also likely that due to low variation in the environmental predic-
tors across the seven populations, or the low number of populations 
tested, no signals were detected by the RDA approach (B.R. Forester 
2020, personal communication, 2 Oct).

Analyses with AutoLM using the four environmental datasets 
showed no significant SNPs after multiple test correction for the 
Site dataset, only one SNP for the Combined dataset, two SNPs 
for the Migration dataset, and five SNPs for the Full dataset (with 
this dataset representing less stringent removal of correlated vari-
ables). From the Combined dataset, wind velocity at migration cor-
ridors (range) was associated with a single SNP on Chr20. From the 
Migration dataset, migration distance to the ocean was associated 
with one SNP on Chr2 and one SNP on Chr4. Lastly, from the Full 
dataset, annual precipitation (mean and range) at migration corridors 
were associated with a single SNP on Chr12, and diurnal tempera-
ture range (mean) at spawning sites was also associated with a sin-
gle, but different SNP on Chr12. The maximum temperature of the 
warmest month (mean) at migration corridors was associated with a 
single SNP on Chr16, and wind velocity at the spawning site (mean) 
was associated with a single SNP on Chr22. Since AutoLM provided 
just a few candidate SNPs (total of eight SNPs) across all four envi-
ronmental datasets tested and which were not consistent with other 
GEA results, we interpreted those results as false positives and did 
not include them in downstream analyses. Among our seven pop-
ulations, which correspond to seven data points for each variable, 
we may not have represented the full extent of the variation in en-
vironmental predictors (Bogaerts-Márquez et al., 2021). This loss of 
statistical power could explain why the RDA multivariate approach 
and the AutoLM univariate approach were not effective for our GEA 
analyses.

Results from the LFMM analysis returned a considerable num-
ber of significant SNPs. Overall, we found stronger associations (i.e., 
higher number of SNPs) with migration-related variables rather than 
spawning site variables (Figure 6a). The top migration-specific vari-
ables with the most associations were precipitation of the wettest 
month (minimum and range), precipitation (minimum and range), 
solar radiation, mean temperature of the warmest quarter (range), 
and elevation (maximum and range). There was a strong peak on 
Chr28 for elevation (maximum and range; Figure S4). For site-specific 
variables, mean diurnal temperature range, terrain roughness, max-
imum temperature of the warmest month, stream order, and eleva-
tion, had the most associations (Figure S5). There was a strong peak 
on Chr28 for all these top site-specific variables. Several additional 
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F I G U R E  5   Principal component plot 
comparing the summer- (blue) and fall- 
(red) run populations of Chinook salmon 
using (a) the full, filtered genomic dataset, 
(b) the SNP positions determined by the 
sliding FST test on Chr2, Chr9, Chr10, 
Chr12, Chr13, Chr14, Chr17, Chr19, 
and Chr29, and (c) the SNP positions 
determined by the sliding FST test on 
Chr28



16902  |     ALSHWAIRIKH et al.

F I G U R E  6   List of the environmental variables and their associated number of SNPs identified by the (a) LFMM analysis, and (b) BayPass 
analysis. Arranged from highest number of SNPs to lowest. Light gray shading indicates migration-related variables; dark gray shading 
indicates site variables. Abbreviations for environmental variables correspond with those in Table 1
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variables showed a strong peak on Chr28; for site-specific variables, 
these were mean temperature of the coldest quarter, annual mean 
temperature, temperature seasonality (standard deviation ×100), 
August water temperature, and Heat Load Index. For migration-
specific variables, these were elevation (mean) and August water 
temperature (mean; Figure S6). Filtering for significant SNPs and 
across all four runs of LFMM, yielded 36,675 SNPs, of which most 
were associated with Chr1 (6.28%), Chr28 (5.98%), Chr6 (5.49%), 
Chr2 (4.87%), and Chr8 (4.49%).

For the four BayPass analyses, there was no one region of the 
genome in which there was a cluster of significant SNP positions. 
Overall, there were a higher number of SNPs identified as significant 
(BF > 20) with migration-related variables compared with spawning 
site variables (Figure 6b). The top migration variables with the most 
associations were solar radiation, the maximum temperature of the 
warmest month, the annual precipitation, and the precipitation of 
the wettest month. For the site-specific variables, the top variables 
with the most associations across the genome were isothermality, 
precipitation seasonality, mean temperature of the coldest quarter, 
and terrain roughness.

Multiple GEA approaches were used in this study in order to 
compare across analysis types (i.e., Bayesian vs. univariate and multi-
variate frequentist methods) and to mitigate false positives and neg-
atives. Of the four GEA tests performed, only BayPass and LFMM 
provided a set of putatively adaptive SNPs with significant associ-
ations with environmental variables. We were unsuccessful in using 
redundancy analysis despite multiple attempts.

Filtering for SNPs in common between at least one BayPass test 
and one univariate test (LFMM) yielded a set of 300 candidate SNPs 
(Figure 7). Of those 300 candidate SNPs, 193 SNPs were in common 

with at least one outlier test (FST, SFST, FET, or FLK). Most of the 
300 SNPs in common between BayPass and LFMM were on Chr1 
(10.7%), Chr28 (10.36%), and Chr2 (8.0%). There were no significant 
GO terms associated with any of the 300 candidate SNPs. Similarly, 
there were no significant GO terms associated with the set of SNPs 
in common between at least one outlier test and one GEA test.

4  | DISCUSSION

In this study, we examined seven populations of Chinook salmon 
(interior ocean-type lineage) from the Columbia River basin to un-
derstand the relationship between landscape and environmental 
conditions driving selection in this species. We assessed the neutral 
population genetic structure among populations to aid in discerning 
signatures of underlying population structure and genomic signa-
tures that may be correlated to environmental variables. Through 
different combinations of environmental datasets and GEA meth-
ods, we show that environmental variation experienced throughout 
the shared migration corridor imposed a greater selective pressure 
on Chinook salmon than conditions at spawning sites. The genomic 
regions identified by GEA analyses were generally independent 
(14% of SNPs overlapped between the LFMM and outlier tests) from 
those regions identified by outlier tests that did not incorporate en-
vironmental variables.

Population genetic structure based on putatively neutral 
markers identified two main clusters corresponding to summer-
run and fall-run populations. This level of neutral divergence is 
greater than determined with previous studies of Chinook salmon 
in the interior Columbia River that found no significant divergence 

F I G U R E  7   Venn diagrams showing the number of significant SNPs identified by (a) the four outlier tests, and from (b) BayPass, LFMM2, 
and the outlier tests combined
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between summer- and fall-run fish in fine-scale population struc-
ture analyses from multiple marker types (Narum et al., 2008; 
Waples et al., 2004). While we still estimated low FST values be-
tween summer- and fall-run populations (mean of 0.006), the vast 
number of neutral markers in this study likely provided improved 
power to distinguish these populations over previous studies. 
However, the outlier tests with all SNPs across the genome con-
firmed that the main driver of genetic divergence based on run-
type is due to a region on Chr28 (GREB1L/ROCK1; Figure 5c) that 
has been identified previously in Chinook salmon (Narum et al., 
2018; Prince et al., 2017; Thompson et al., 2019, 2020; Waples & 
Lindley, 2018; Willis et al., 2021).

Beyond the neutral population genetic structure of a species, 
environmental and topographic variation across a species’ native 
landscape can generate local selective pressures that contribute to 
local adaptive divergence (Hecht et al., 2015). Our cluster analyses 
based on the environmental conditions indicated that locations that 
were more environmentally similar were occupied by populations 
with similar migration timing, and summer-run populations cluster 
separately from those migrating in the fall. This suggests that there 
may be an interplay between the selective pressures of migration 
timing and the local environmental conditions during migration—for 
example, high or low river flows, water temperature–that ultimately 
contribute to the overall genomic signatures observed in Chinook 
salmon.

Among topographic features, terrain roughness (ruggedness) 
was one of the top variables associated with adaptive genetic vari-
ation at spawning sites and identified by two GEA methods. Terrain 
ruggedness provides a measure of topographic heterogeneity. 
Specifically, it is a measure of elevation differences between a grid 
cell and its neighboring cells (Riley et al., 1999) and reflects stream 
gradient in freshwater ecosystems. Elevation was another topo-
graphic feature that had strong associations with adaptive genetic 
variation at both migration corridors and spawning sites. Higher el-
evation habitat tends to be cooler, whereas lower elevation habitat 
tends to be warmer. Warmer water environments at lower eleva-
tions could create strong selective pressures on Chinook salmon (see 
below for further discussion of water temperature). Stream gradient 
and elevation are important features consistent with migratory tim-
ing as fall-run Chinook salmon primarily spawn in low gradient main-
stem sites versus summer-run fish that spawn in tributary locations 
(Myers et al., 1998).

The long, up-stream migration distance to return to spawning 
grounds by salmonids is an energetically costly process (Bowerman 
et al., 2017; Brett, 1995; Crossin et al., 2004; Mesa & Magie, 2006). 
Previous genomic work has identified migration distance as an im-
portant variable for adaptive genetic variation in Chinook salmon 
(Hecht et al., 2015) and Steelhead (Micheletti et al., 2018). Similarly, 
here we identified migration distance through one GEA analysis 
(BayPass) as an important environmental variable. This measure 
reflects both the distance that juvenile salmonids travel to reach 
the ocean and the distance adults travel to return to spawning sites 
(Healey, 1991; Willis et al., 2021), impacting fish during multiple life 

history stages, and could explain why migration distance may im-
pose a strong selective pressure on Chinook salmon. Longer migra-
tion distance also tends to be correlated with increased encounters 
with dams (Mesa & Magie, 2006). Interestingly, although there were 
candidate SNPs associated with the number of dams along migration 
corridors, this was not one of the top variables identified by the GEA 
analyses. The number of dams encountered was a significant vari-
able in Steelhead returning to the Columbia River basin (Micheletti 
et al., 2018), however, many of the Steelhead populations used for 
that study were located in the upper Salmon River basin. These fish 
have several more dams to cross before reaching their spawning 
grounds compared with most of the Chinook salmon populations in 
the current study.

For temperature-related variables, maximum temperature of 
the warmest month was consistently identified as a variable with 
strong associations with adaptive genetic variation at both migra-
tion corridors and spawning sites. Temperature is known to have 
important potential contributions to local adaptation in various sal-
monids and can influence various phenotypic changes across the 
life stages of fish, such as migration and spawning timing, growth, 
fecundity, among others (Crozier & Hutchings, 2014; Muñoz et al., 
2015). Therefore, it is not surprising that we found temperature 
to be an important environmental variable at both migration and 
spawning sites. Water temperature, represented as 20-year mean 
of August water temperatures, was also a relatively top variable 
in our GEA analyses, and there is evidence in the literature for the 
important role that water temperature plays for the life history of 
salmonids (Crozier & Hutchings, 2014). For example, water tempera-
ture can influence swim speed of fish. At a determined optimum of 
16°C, the swim speed of migratory Chinook salmon was found to 
increase when water temperature was above the optimum, and to 
decrease when the temperature was below the optimum (Salinger & 
Anderson, 2006).

Precipitation-related variables pertaining to migration corri-
dors were consistently identified as top variables by GEA tests. 
Precipitation-related variables have previously been signaled as driv-
ers of adaptive genetic variation in salmonids (Bourret et al., 2013; 
Hecht et al., 2015; Matala et al., 2014; Olsen et al., 2011). Our results 
add more evidence showing that precipitation-related variables are 
important drivers of environmental selection; yet, we also show here 
that the effect of precipitation is not identical between migration 
and spawning sites. Among precipitation variables, we found that 
annual precipitation, precipitation seasonality, and precipitation of 
the wettest month were strongly associated with adaptive genetic 
variation at migration corridors. Interestingly, only precipitation sea-
sonality was an important variable for spawning sites. It is possible 
that precipitation conditions at migration corridors that influence 
river flow levels are crucial for juveniles that are beginning their mi-
gration to sea, or adults returning to spawn (e.g., Hecht et al., 2015; 
Keefer et al., 2017), since river flow can be a determinant of migra-
tion speed (Salinger & Anderson, 2006).

There were more SNPs in common between the LFMM test and 
the outlier tests (14%) compared with the BayPass tests and the 
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outlier tests (0.2%; Figure 7). Several of the migration-specific and 
spawning site-specific environmental variables with associations 
to adaptive genetic variation exhibited strong peaks on Chr28, es-
pecially from the LFMM test (Figures A4, A5 and A6). These peaks 
correspond to the GREB1L/ROCK1 region that has been associated 
with adult migration timing (Narum et al., 2018; Prince et al., 2017; 
Thompson et al., 2019, 2020; Waples & Lindley, 2018; Willis et al., 
2021). This provides further evidence of the likely interplay between 
environmental selection and adult migration timing in Chinook 
salmon.

Across neutral outlier tests and GEA tests, we identified 193 can-
didate SNPs in common for adaptive selection but did not have any 
significant GO enrichment based on GO analysis. Given that studies 
investigating environmental selection in Chinook salmon reported 
that 5.8–21.8% of genomic variation may be driven by environmen-
tal conditions (Hecht et al., 2015), and that we observed candidate 
SNPs in common between both outlier tests and GEA tests, this may 
indicate that these genomic signals represent adaptive variation in 
the genome. We infer that environmental conditions across Chinook 
salmon habitats are strong drivers of selection, and that migration-
related variables may be imposing stronger selection pressures on 
Chinook salmon compared with spawning sites, similarly to what has 
been shown in anadromous steelhead in the Columbia River Basin 
(Micheletti et al., 2018).

5  | CONCLUSIONS

Accounting for local adaptation has become increasingly important 
in contemporary conservation management strategies because dif-
ferences in local adaptation often indicate responses to different 
environmental threats (Muñoz et al., 2015; Supple & Shapiro, 2018). 
Understanding which environmental variables drive local genetic 
variation in Chinook salmon will allow better conservation manage-
ment of distinct populations and ensure population sustainability 
for future generations (Funk et al., 2012; Waples & Lindley, 2018). 
At migration corridors, we found that stream gradient and elevation 
are important topographic features with important roles in migra-
tion timing and may generate local selective pressures. Migration 
distance and water temperature, which introduce energetic costs 
and influence the optimal swim speed of fish, respectively, are also 
significant environmental features associated with adaptive diver-
gence. We identified maximum air temperature and precipitation 
conditions as two climate variables that may also drive environmental 
selection, likely due to their influence on various aspects of the life 
history of fish such as migration and spawning timing. Our research 
suggests that environmental conditions at migration corridors may 
be more influential on Chinook salmon genetic variation compared 
with spawning site environmental conditions. Previous studies have 
suggested that both neutral and adaptive variation should be consid-
ered when delineating conservation units, as basing them solely on 
overall genetic differentiation might fail to preserve evolutionarily 
important variation (Funk et al., 2012; Prince et al., 2017; Waples 

& Lindley, 2018). Our work adds to the growing body of landscape 
genomics that integrates both spawning/juvenile rearing sites and 
migration pathways (Micheletti et al., 2018). This approach provides 
a more complete assessment of environmental pressures as they re-
late to the life history of a species, as it takes into account the vari-
ous habitats that a migratory species occupies throughout its life.
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