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Comparative genomic hybridization (CGH) is a modern ge-
netic method which enables a genome-wide survey of chro-
mosomal imbalances. For each chromosome region, one ob-
tains the information whether there is a loss or gain of ge-
netic material, or whether there is no change at that re-
gion. Usually it is not possible to evaluate all 46 chromo-
somes of a metaphase, therefore several (up to 20 or more)
metaphases are analyzed per individual, and expressed as
average. Mostly one does not study one individual alone
but groups of 20–30 individuals. Therefore, large amounts
of data quickly accumulate which must be put into a logi-
cal order. In this paper we present the application of a self-
organizing map (Genecluster) as a tool for cluster analysis
of data from pT2N0 prostate cancer cases studied by CGH.
Self-organizing maps are artificial neural networks with the
capability to form clusters on the basis of an unsupervised
learning rule, i.e., in our examples it gets the CGH data as
only information (no clinical data). We studied a group of 40
recent cases without follow-up, an older group of 20 cases
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with follow-up, and the data set obtained by pooling both
groups. In all groups good clusterings were found in the
sense that clinically similar cases were placed into the same
clusters on the basis of the genetic information only. The data
indicate that losses on chromosome arms 6q, 8p and 13q are
all frequent in pT2N0 prostatic cancer, but the loss on 8p has
probably the largest prognostic importance.

Keywords: Artificial neural networks, chromosome aberra-
tions, cluster analysis, comparative genomic hybridization,
multivariate analysis, prognostic factors, prostatic cancer,
self-organizing maps, tumor suppressor genes

Figure 2 on http://www.esacp.org/acp/2001/23-1/
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1. Introduction

Modern molecular biological methods may produce
large amounts of data which are difficult to survey.
This statement applies particularly to array techniques,
where the expression of thousands of genes is mea-
sured. Here the problem may arise to find clusters
of genes which behave in a similar manner [29]. To
a smaller extent, analogous problems are found dur-
ing evaluation of comparative genomic hybridization
(CGH) data.

CGH is a method which allows screening of the
whole genome for gains and losses of the genetic mate-
rial. Genomic DNA of tumor tissue as well as the DNA
of normal tissue are isolated, differentially stained and
hybridized to normal metaphase chromosomes. When
the tumor-DNA is stained green and the normal DNA
is stained red, for example, this leads to a green stain
at locations with a gain of tumor DNA, whereas a red
stain is obtained at locations with losses of tumor DNA
because here the normal DNA dominates (Fig. 2). The
results are quantitated by digital image analysis. This
leads to a series of results for the 24 chromosomes (22
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autosomes and 2 sex chromosomes). For convenience,
during this paper each chromosome arm was taken as a
unit, regardless of its different size. Since the short arm
of the acrocentric chromosomes and the Y chromo-
some are uninformative, 42 chromosome arms as chro-
mosomal regions were taken into account during this
analysis. For each chromosome arm one of the alterna-
tives ‘unchanged’, ‘loss’ or ‘gain’ (or equivalently 1, 0
or 2) is noted. In short, one case is reduced (theoreti-
cally) to a row of 42 numbers, in which each element
can assume the value 0, 1 or 2. Our task consists in the
formation of a certain number of clusters to which the
cases are assigned in a biologically meaningful man-
ner. This task has to be fulfilled without knowing fur-
ther variables, as is usual for clustering methods, solely
on the basis of the CGH data. The present paper is an
example to achieve this for prostatic cancer, which has
been intensively studied by CGH [1,7,24].

The required grouping can be principally obtained
by all kinds of clustering techniques. For example, hi-
erarchical cluster analysis, k-means clustering or fuzzy
c-means clustering may be used [3,8,17]. Hierarchi-
cal clustering forces data points into a strict hierarchy
of nested subsets and has been noted to suffer from a
lack of robustness [22]. K-means and fuzzy c-means
clustering are completely unstructured approaches pro-
ceeding in an entirely local fashion. SOMs allow to im-
pose a partial structure on the clusters (chain, grid) eas-
ing visualization [13,15,26]. Furthermore, they have
been applied to a variety of problems and have been
extensively studied empirically [19]. Here, we used
Kohonen’s SOM as an easy to apply tool of analy-
sis [13–16]. Recently such nets were successfully used
for cluster analysis in gene expression [29]; our group
has applied related networks of the same authors with
a supervised learning rule for predictive purposes in
prostate carcinoma research [20,21].

2. Materials and methods

2.1. Patient population

Group I. This material consisted of 40 recently ob-
tained primary uncultured prostate carcinomas. All
cases were adenocarcinomas, the pTNM classification
was pT2N0 [23,28]. The primary tumor specimens
were prostatectomy specimens. Small tissue blocks of
tumor material and normal seminal vesicle tissue from
the same patient were flash-frozen in liquid nitrogen
immediately after surgical removal. Fiveµm sections
were cut from freshly frozen tumor and normal sem-

inal tissue blocks and stained with hematoxylin and
eosin to ensure the histological representativeness of
the samples. Based on microscopic evaluation the tu-
mor region was selected and removed for DNA extrac-
tion with a scalpel [27]. Qiagen-Blood & Cell Culture-
Kit (Qiagen GmbH, Hilden, Germany), following the
instructions of the supplier.

Group II. The archive of the Urological Depart-
ment of the University of Ulm from 1985–1995 was
searched for patients with prostatic cancer in stage
pT2N0 in whom a radical prostatectomy with pelvic
lymphadenectomy had been performed (228 cases).
The current TNM classification according to the UICC
was used, and the series included cases in stages pT2a
and pT2b [20]. When at least one postoperative PSA
level was found to be above 0.5 ng/ml serum, or if
a local relapse or a metastasis was found, a case was
defined as tumour with progression, otherwise as tu-
mour without progression. All cases of the group with
progression (n = 27), from which technically accept-
able CGH data could be obtained, were selected for the
study (10 cases). From the large group of cases without
progression (n = 201), 10 cases matched by age, du-
ration of follow-up, and preoperative PSA level were
selected as control group [20]. The serum level of PSA
was measured in all patients with the Hybritech kit. It
was necessary to go back to 1985 to find enough of
the rare pT2N0 cases with postoperative progression,
hence the preoperative PSA levels were not available
in a few cases.

Pathology. The prostatectomy specimens were eval-
uated histopathologically at the Department of Pathol-
ogy of the University of Ulm. The specimens were
step sectioned at 3–5 mm slice thickness, and at least
2 additional sections from the resection margins and
at least 1 additional section from each seminal vesicle
were taken. The tumor-bearing slides of all prostate-
ctomy specimens were reevaluated by the first author
with respect to Gleason score, WHO grade, maximum
diameter of the cut tumour tissue on section, and var-
ious further parameters not considered in this paper.
While reevaluating the specimens, the investigator was
blinded with respect to postoperative progression.

2.2. Comparative genomic hybridization (CGH)

CGH was performed as described previously [2,9,
10] with minor modifications. We currently use stan-
dard nick translation for labeling genomic DNAs with
biotin-16-dUTP (tumor DNA) and digoxigenin-11-
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dUTP (normal DNA). The fragment length of our ge-
nomic probes after nick translation was 500 to 1600
bp. Oneµg of labeled tumor and normal DNA were
precipitated together with 70µg Cot-1 DNA. The mix-
ture was dissolved in 12µl of hybridization buffer:
50% formamide, 10% dextran sulfate, and 2× SSC
(1 × SSC: 0.15 M NaCl, 0.015 M sodium citrate,
pH 7). This hybridization mixture was denatured at
75◦C for 6 minutes and pre-annealed for 30 min-
utes at 37◦C and hybridized to a slide with normal
male lymphocyte (46,XY) metaphase spreads, dena-
tured separately in a formamide solution (70% for-
mamide, 2× SSC, pH 7–7.2) for 2 minutes at 70◦C
and dehydrated through a series of graded solutions
of 70%, 90% and 100% ethanol. The hybridization
was performed for 2 to 3 days at 37◦C in a moist
chamber. After hybridization, the slides were washed
3 times in 50% formamide, 2× SSC, pH 7–7.2 for
5 minutes at 42◦C and 3 times in 0.1× SSC, pH
7–7.2 for 5 minutes at 60◦C. The tumor DNA was
detected with a single layer of avidin-conjugated flu-
orescein isothiocyanate (FITC) (Vector Laboratories,
Inc., Burlingame, CA), and the normal DNA was de-
tected with anti-digoxigenin antibody conjugated to
rhodamine (Boehringer Mannheim GmbH, Mannheim,
Germany) for 45 minutes at 37◦C. The chromosomes
were counterstained with 4,6-diamidino-2-phenylin-
dole (DAPI) (Sigma-Aldrich Chemie GmbH, Stein-
heim, Germany) and embedded in antifade solution
(Vector Laboratories, Inc., Burlingame, CA).

2.3. Digital image analysis

Three single-color images (matching DAPI= blue,
FITC = green and rhodamine= red) were acquired
from 15–20 metaphases using a Zeiss fluorescence
microscope (Carl Zeiss, Oberkochen, Germany) and
a Hamamatsu chilled charge-coupled-device (CCD)
camera (Hamamatsu Photonics K.K., Tokyo, Japan)
interfaced to a computer workstation. The ISIS dig-
ital image analysis system (Metasystem GmbH, Al-
tlussheim, Germany) was used with CGH analysis
software (Version 3.02). Fluorescence ratio (green : red)
for each chromosome type were derived for these
metaphase cells. All ratio profiles from each chromo-
some were averaged, and the standard deviation of the
profile was calculated at each point. For all the pro-
files, losses of DNA sequences are defined as chromo-
somal regions in which the mean green : red ratio is be-
low 0.8 whereas gains are defined as chromosomal re-
gions in which this ratio is above 1.25. These thresh-

old values are symmetric cutoff values, 1.25 and its re-
ciprocal value, 0.8. Interpretation of CGH-results fol-
lowed previously described protocols [11]. Hybridiza-
tion of FITC-labeled normal DNA with rhodamine-
labeled normal DNA was used as negative control.
Some chromosomal regions have been shown to give
unreliable results. The distal part of chromosome arm
1p(1p34-pter) and chromosome arm 16p are difficult
to evaluate. Heterochromatin blocks such as the distal
long arm of the Y chromosome or the centromeres, and
the near-centromere heterochromatic regions of chro-
mosomes 1, 9, 16 were excluded from CGH analysis as
well as centromeres and short arms of the acrocentric
chromosomes 13, 14, 15, 21, and 22.

2.4. Short introduction to self-organizing maps

Artificial neural networks (ANN) are information
processing systems consisting of a number of sim-
ple units (neurons), communicating with each other by
connections. Such systems ‘learn’ by processing exter-
nal information; according to the learning rule, they are
classified into ANNs with supervised learning and with
unsupervised learning. Here, the unsupervised SOM
has been used, as good teacher signals like tumor pro-
gression were only available in group II (20 cases).
Considering the small number of samples (60: group I
+ group II) with a feature number of 30, a classifica-
tion using training and test data sets in terms of predic-
tion of tumor status would be inappropriate. Hence, we
centered on a purely exploratory approach.

Self-organizing maps (SOMs) belong to the ANNs
with an unsupervised learning rule. That means, we
have an ANN, to which only the input vectors (input
data, input information) are presented, and no output
vectors. The task of a typical SOM consists in finding
clusters of the input data, with similar vectors in the
same clusters.

The fundamental structure of a SOM is a layer of
neurons. This layer has a thickness of 1 neuron and
usually has a simple geometric shape, e.g., a plane, or
a line (chain) in the plane [15]. These neurons have
weight vectors, that lie in then-dimensional space of
the input vectors. The basic active neurons are called
Kohonen neurons, the layer is the Kohonen layer.
The Kohonen neurons are locally connected with each
other, for example, by a quadratic or hexagonal lat-
tice when the Kohonen layer is a plane. During the
learning process the weight vectors are moved in the
n-dimensional space until they have moved as close
as possible to the input vectors. That neuron whose
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weight vector has come nearest to an input vector is
called a winner neuron. This event leads to a second
effect: the weight vectors of all neurons from the vicin-
ity of the winner neuron are modified according to a
predefined neighbourhood function. On the whole, the
learning process has the effect that properties of the
n-dimensional input space are projected to the low-
dimensional space of the Kohonen neurons (d = 1
or 2). In particular, input vectors lying close to each
other will form a cluster in the Kohonen layer.

The classical implementation of a SOM is the pack-
age SOMPAK, generated by Kohonen and cowork-
ers. It can be obtained as free academic software by
anonymous ftp from the server cochlea.hut.fi under
/pub/som_pak and runs under Unix (Linux) and DOS.
The input variables are fed as ASCII file into the sys-
tem, and the user has to enter a number of system pa-
rameters such as the number of neurons (nodes) in the
Kohonen plane, the neighbourhood function and oth-
ers.

An alternative to SOMPAK is the recently published
SOM Genecluster, presented in [29]. The input data
are also given as an ASCII data set. For the calcula-
tions only very few parameters have to be indicated
to the system, most parameters are preset to standard
values. For details of our application see Results sec-
tion. The result consists in tables where each data point
is assigned to one cluster; here we selected to ascribe
the data to three clusters. The motivation was that it
is most convenient to perform the grading of malig-
nancy in three steps, e.g., I–III, indicating low, inter-
mediate and high malignancy. Genecluster is free aca-
demic software and runs under Windows NT. It can be
obtained by internet under http://genome.wi.mit.edu.

3. Results

First we report on the basic findings in the two
groups. In group I (40 cases) 18 cases showed chro-
mosomal alterations, whereas a normal gene dosage
was detected with CGH in 22 cases. The most frequent
changes were loss on 8p and 13q (8 cases). Mean Glea-
son score was 5.6, mean WHO grade 1.87.

An overview of the CGH-findings in group II is
shown in Fig. 1b. The most frequent findings in this
group were 8p loss (8 cases) and 8q gain (4 cases). As
there are two subgroups with 10 patients each (no pro-
gression and progression), we have displayed the data
in two columns in Table 1.

Evaluation with the nonparametricU -test (see leg-
end to Table 1) showed significant results. Cases with
progression had significantly more losses, more gains,
a higher Gleason score and a higher WHO grade.

The third group results from pooling groups I and
II (60 cases). The results are somewhere intermediate
between these groups: mean Gleason score 6.2, mean
WHO grade 2.0, mean number of losses: 1.0, mean
number of gains: 1.15. The most frequent change by
far was 8p loss (16 cases), followed by 11 cases of 13q
loss and 8 cases of 6q loss.

Finally, SOM Genecluster was applied to our data.
The program was applied to the groups I and II sep-
arately, and then to the pooled dataset III. We con-
sider the chromosomal findings as the only known in-
put variables and a number of prognostically impor-
tant biological variables, such as grading, progression,
Gleason-score, etc. as dependent variables. In all these
3 studies, there were 30 input variables each, corre-
sponding to all chromosome arms that could be stud-
ied by CGH and in which at least one imbalance oc-
curred (when no case in any group showed an im-
balance for a chromosome arm, this arm was consid-
ered as noninformative). In the following learning pro-
cess, the SOM acts solely on the input variables, as de-
scribed above. When operating with Genecluster, stan-
dard settings were used. The number of clusters was set
to 3 corresponding to a chain of 3 units length. Num-
ber of iterations per run was set to 5000, as thereafter
one could not see significant changes of the error. As
the neighbour function of the SOM the step function
(bubble) was used. The initial and final learning rate
values wereαi = 0.1 andαf = 0.005, and the initial
and final radius values of the step function wereri = 5
andrf = 0.2. The map was initialized using random
vectors. We performed 20 repeated runs for each net-
work. The results were sometimes the same in repe-
titions, or they changed slightly (no more than 1 case
per group). When the clustering had been finished, we
recorded the result by giving the number of the clus-
ters, the number of cases, progression (if applicable),
the mean number of gains, the mean number of losses,
the mean Gleason score and the mean WHO grade,
by combining the case numbers again with the depen-
dent variables. Moreover, the frequencies of the most
abundant changes – losses of 8p, 6q and 13q – were
recorded per cluster. First, we show the result for group
I (40 cases) in Table 2.

How do we have to interpret this outcome? The
SOM has created cluster 3 with the least deviation from
normality; this is by far the largest cluster. There is no
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(a)

(b)

Fig. 1. (a) CGH-data of group I. Summary of all gains and losses of DNA sequences observed in 40 prostate carcinomas by CGH – without
follow-up. (b) CGH-data of group II. Summary of all gains and losses of DNA sequences observed in 20 prostate carcinomas by CGH – with
follow-up.
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Fig. 2. Example of the CGH analysis. Ratios of the fluorescence intensities generated by tumour and control DNA were obtained from 15
metaphase cells, and the average ratio profile was plotted along each single chromosome. The three vertical lines next to each ideogram indicate
the balanced state of the chromosomal copy number (central line, ratio value 1.0) as well as the diagnosis thresholds (red line, ratio value 0.8;
green line, ratio value 1.25) indicating chromosomal losses or gains, respectively. Red bars on the left of the chromosomes indicate DNA loss, and
green bars on the right indicate DNA gains (here not shown). This figure can be viewed on http://www.esacp.org/acp/2001/23-1/mattfeldt.htm.

loss on 6q, 8p and 13q, which are the most frequent
losses. The Gleason score and WHO grade of cluster
3 are the lowest, it has the fewest losses and gains in
general. The clusters 1 and 2 are very similar to each
other in many aspects, however there are more gains in
cluster 1 than in cluster 2. Whether this has a biological
implication, cannot be determined from this group be-
cause there is no follow-up. Anyway, it is known that
the Gleason-score is a very strong indicator of progno-
sis, but the Gleason-score is not increased in cluster 1
compared to cluster 2 here. We come to the results of
group II (20 cases, Table 3).

Also in this group, Genecluster has created two
small clusters and one large cluster. Just as above,
the large cluster (3) has the most ‘relatively benign’
cases: lowest proportion of progression (25%), lowest
Gleason-score, lowest WHO grade, smallest number

of losses, the number of gains is also relatively small.
Note there is no 8p-loss in this cluster. In contrast, both
clusters 1 and 2 have 8p-loss in all cases, and nearly
no losses of 6q and 13q. In these clusters, progression
is 75–100%. Table 4 shows the results of group III
(pooled data, 60 cases).

In this table, the proportions of cases with progres-
sion is only given for the cases from group II, be-
cause only for this group follow-up is known. Also
in the pooled group, we found a similar distribution
of cases in clusters as in groups I and II. A large
group of 40 cases constituted a cluster of cases of rela-
tively low malignancy: low Gleason-scores and WHO
grades, low numbers of losses and gains, no 8p-loss.
The outcome of the 8 cases in cluster 2 and the 12
cases in cluster 3, in contrast, was relapse in a high
proportion (80%). All cases in cluster 3 and half of

http://www.esacp.org/acp/2001/23-1/mattfeldt.htm
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Table 1

Data of group II

Group Without Progres- U P

progression sion

Median number 0 2.0 19.0 0.019

of losses

Median number 0 1.5 23.0 0.041

of gains

Median Gleason score 6.5 8.5 14.0 0.007

Median WHO grade 2.0 2.75 13.5 0.006

Group II consists of 20 cases for whom a follow-up is available. The
left column gives median values for the 10 cases without, the right
column for the 10 cases with progression. The number of gains and
losses as well as the tumour grades are strongly elevated in the group
with postoperative tumour progression. The nonparametricU -test
was used for comparisons to be free from assumptions on distribu-
tions of the variables which might be not fulfilled.U = test statistic
of theU -test,p = probability of getting a result as extreme or more
extreme than the one observed, assuming that there is no difference
between the groups.

Table 2

Analysis of CGH-data of group I using Genecluster

Cluster 1 2 3

Cases 6 9 25

Cases with 6q-loss 0/6 2/9 0/25

Cases with 8p-loss 3/6 5/9 0/25

Cases with 13q-loss 3/6 5/9 0/25

Mean Gleason score 5.8 6.3 5.3

Mean WHO grade 1.9 2.1 1.8

Mean number of losses 2.2 2.2 0

Mean number of gains 3.5 0.2 0.2

The CGH data of group I (40 cases without follow-up) have been
subjected to a cluster analysis by Genecluster. The three resulting
clusters are indicated as the three columns with 6, 9, and 25 cases.
Cluster 3 has nearly no aberrations. Clusters 1 and 2 are rich in
8p-losses and 13q-losses. These clusters have also higher Gleason-
scores and WHO grades than cluster 3. The only larger difference
between them is the very high number of gains in cluster 1.

the cases in cluster 2 have an 8p-loss. Gleason-score,
WHO grade and number of losses are similar, however
cluster 3 has a higher number of gains.

4. Discussion

In the present paper, we have applied a self-org-
anizing map for the first time to data from comparative
genomic hybridization. The small datasets used here
(20–60 cases) are typical for CGH, because evaluation
of a single case is rather laborious. In order to make
SOMs for CGH popular, we presented the rather easy

Table 3

Analysis of CGH-data of group II using Genecluster

Cluster 1 2 3

Cases 4 4 12

Cases with 6q-loss 0/4 1/4 3/12

Cases with 8p-loss 4/4 4/4 0/12

Cases with 13q-loss 0/4 0/4 3/12

Progression 3/4 4/4 3/12

Mean Gleason score 7.8 8 6.7

Mean WHO grade 2.6 2.6 2.2

Mean number of losses 2.2 2.0 0.8

Mean number of gains 6.8 0.8 0.9

This table shows the result of a cluster analysis by Genecluster in
group II (20 cases with follow-up). The two small clusters 1 and 2
have 100% 8p losses, whereas cluster 3 has no 8p-loss. On the other
hand, there was 75–100% progression in clusters 1 and 2 and only
25% progression in cluster 3. The small clusters again differ in the
total number of gains (see Table 2).

Table 4

Analysis of CGH-data of group III using Genecluster

Cluster 1 2 3

Cases 40 8 12

Cases with 6q-loss 2/40 4/8 2/12

Cases with 8p-loss 0/40 4/8 12/12

Cases with 13q-loss 9/40 1/8 1/12

Progression 2/10 3/4 5/6

Mean Gleason score 5.6 7.4 7.0

Mean WHO grade 1.8 2.4 2.4

Mean number of losses 0.4 2.2 2.1

Mean number of gains 0.4 0.6 3.8

Group III is the pooled set of cases from Groups I and II. Progres-
sion is therefore indicated only for 20 cases. The large cluster 1
has only 20% progression, no 8p-loss but an appreciable number of
13q-losses. Gleason score and WHO grade are low. In contrast, the
smaller clusters 2 and 3 have 50–100% 8p-losses and 75–83% pro-
gression, with high Gleason score and WHO grade. Only cluster 3
has a high number of gains.

to use program ‘Genecluster’, equipped with a graph-
ical interface of Windows-type and preset parameters
(which can be changed if desired, nevertheless).

From our point of view, the results as manifested by
the clusters are reasonable. We have set the network to
produce three clusters, because the data sets are small
and we wanted to get clusters with three degrees of ma-
lignancy. In fact, the numerical outcome was compara-
ble: the SOM regularly produced one larger cluster and
two relatively small clusters (group I: 25, 6 and 9 cases;
group II: 12, 4 and 4 cases; group III: 40, 8 and 12
cases). Closer examination showed that the large clus-
ter included the majority of the cases with a low grade
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of malignancy in all groups: they had the lowest Glea-
son scores and WHO grades in general; where known,
they had the smallest probability of progression; they
had the lowest number of gains and losses altogether.
The two small clusters had cases with much worse
properties. In general, these tended to higher WHO-
grades and Gleason-scores, more gains and losses, and
in group II progression was drastically more frequent.
The main differences between the small clusters con-
sisted mainly in the fact that one of these clusters had
a higher number of gains – this could be shown repro-
ducibly in all groups I–III. So we may summarize that
our SOM managed, from the CGH information alone,
to discern clusters in all groups which fit well to the
biological characteristics of the tumours – strong ev-
idence that in prostate cancer, genetic information as
obtained by CGH is tightly coupled to biological ag-
gressiveness.

Subsequently we analyzed the genetic differences
between the clusters more thoroughly. As our research
program is focused on early prostatic cancer and pre-
neoplasic lesions, we have concentrated on losses of
genetic material because these seem to form the earli-
est alterations of the genome here. Among these, losses
at 8p, 6q and 13q were most frequent. In fact, loss
of 8p seems to be associated with clusters with poor
prognosis, whereas loss of 6q and 13q are not clearly
associated with poor prognosis. This is easiest to ob-
serve in the small clusters of group II and III, where
all or nearly all cases have a loss at 8p. From these
data it seems that losses at 8p, 6q and 13q are all fre-
quent in pT2N0 prostatic cancer, but the prognostic im-
portance of a loss at 8p is larger than a loss at 6q or
13q. In general, loss of 8p in prostate cancer is well-
known [1,4,6,7]. The eminent role of an 8p-loss in
early carcinogenesis has been documented also for the
urinary bladder [12]. It is tempting to speculate which
changes at the level of the genes occur in the aforemen-
tioned losses. Potential tumor suppressor genes at 6q
are: CCNC (cyclin C) and IGFR2 (insulin-like growth
factor II) [5], at 8p: MSR1 (macrophage scavenger
receptor I) [4] and N33 (Putative prostate cancer tu-
mour suppressor) [18], and at 13q: RB1 (retinoblas-
toma 1) [25] and BRCA 2 (breast cancer 2) [30], but
the relative role of these genes in prostate cancer has
not been fully elucidated.

5. Conclusions

A cluster analysis of CGH data can be performed
successfully with self-organizing maps. The results in-

dicate that losses at chromosome arms 6q, 8p and 13q
are all frequent in pT2N0 prostate cancer, but a loss at
8p seems to have the highest prognostic importance.
The results indicate that a simple rule based on these
preliminary findings of losses could improve progno-
sis.
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