
ARTICLE

Received 9 May 2016 | Accepted 21 Feb 2017 | Published 10 Apr 2017

Exosome-delivered EGFR regulates liver
microenvironment to promote gastric cancer
liver metastasis
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The metastatic organotropism has been one of the cancer’s greatest mysteries since the

‘seed and soil’ hypothesis. Although the role of EGFR in cancer cells is well studied, the effects

of secreted EGFR transported by exosomes are less understood. Here we show that EGFR in

exosomes secreted from gastric cancer cells can be delivered into the liver and is integrated

on the plasma membrane of liver stromal cells. The translocated EGFR is proved to effectively

activate hepatocyte growth factor (HGF) by suppressing miR-26a/b expression. Moreover,

the upregulated paracrine HGF, which binds the c-MET receptor on the migrated cancer cells,

provides fertile ‘soil’ for the ‘seed’, facilitating the landing and proliferation of metastatic

cancer cells. Thus, we propose that EGFR-containing exosomes derived from cancer cells

could favour the development of a liver-like microenvironment promoting liver-specific

metastasis.
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T
he fact that certain tumours are inclined to metastasize to
specific organs has been recognized for over a century1.
The Paget’s ‘seed and soil’ hypothesis suggests that the

successful growth of metastatic cancer cells largely depends on
the properties of target organs (soil) and cancer cells (seeds)1,2.
Liver is the organ where various types of metastatic tumours take
place3,4; however, the knowledge on the mechanism that liver
promotes cancer cell colonization and growth is still absent.

Exosomes are small vesicles that are secreted from cells and have
been found to mediate signalling transduction between neighbour-
ing or distant cells5,6. Exosomes (30–200 nm) and shedding
vesicles (200–1,000 nm) are two main forms of extracellular
vesicles. The previous study has shown that exosomes bear surface
receptors or ligands of the original cells; therefore, they have the
tendency to specifically interact with target cells7. Although
exosomes are well known to deliver microRNAs (miRNAs) and
messenger RNAs8–10, the role of proteins in exosomes, especially
membrane proteins, has not been fully understood yet. Epidermal
growth factor receptor (EGFR) is located in the cytomembrane,
which is well known to play a dominant role in tumorigenesis and
development. Recent studies showed that EGFR can be secreted
from cells via the transport of vesicles and these EGFR-containing
exosomes are proved to regulate signalling pathways of endothelial
cells and T cells11–13. Moreover, microvesicles containing
EGFRvIII are found to merge with the plasma membranes of
cancer cells lacking this type of receptor and the share of EGFR
mutants between cancer cells promote tumour development14.

Hepatocyte growth factor (HGF) was first discovered in mouse
liver and has been found to be linked with tumour development.
Serum HGF is upregulated in various types of cancer, which is a
potential biomarker for prognosis15–17. C-MET is the receptor of
HGF and is widely expressed in various types of cancer. The
HGF-cMET pathway is involved in cell invasion, proliferation
and angiogenesis, and is believed to be a novel target for cancer
therapy18,19. Gastric cancer (GC) with liver metastasis is one of
the main forms in advanced GC20,21; however, the molecular
mechanism in this process remains unclear. Liver has adequate
supply of blood and may provide nutrition for cancer cells;
however, the role of paracrine growth factors has not been the
cause for concern. Liver-derived HGF may contribute to the
landing and fast growth of metastatic GC cells.

In the present study, we first find that c-MET, but not HGF, is
highly expressed in the liver metastases of GC, suggesting that GC
metastases mainly bind with liver paracrine HGF. Exosomes,
derived from GC cells, are proved to activate liver HGF by
suppressing miR-26a and miR-26b; the two miRNAs directly target
the 30-untranslated region (UTR) of HGF mRNA. Subsequently, we
show that secreted EGFR, which is found in the exosomes of GC
serum and GC cells, is finally located in membrane of mixed liver
cells, including stromal cells. In addition, EGFR-absent exosomes
lost the ability to regulate miR-26/HGF pathway in the liver.
Moreover, in vivo studies provide direct evidence that liver HGF
plays a key role in determining the ratio of hepatotropic metastasis
as well as the growth of liver metastases. Hence, exosomes secreted
from primary gastric tumour regulate liver micro-environment to
promote liver metastasis and the upregulated liver paracrine HGF
provides fertile ‘soil’ for the metastatic cancer cells.

Results
EGFR is located in the serum exosomes of GC. Although EGFR
is well known to be upregulated in tumour tissues, few studies
have been focused on circulatory EGFR delivered by exosomes.
We first isolated serum exosomes (sr-exosomes) by high-speed
centrifugation and determined EGFR levels. As is shown in
Fig. 1a, the sizes of these exosomes were mostly around 100 nm.

EGFR is enriched in sr-exosomes of GC patients but not in
exosomes of normal human serum (n¼ 20); full-length EGFR
was detected at 185 kDa (Fig. 1b). In addition, the content of
exosome EGFR was increased in serum of stage IV GC patients
(n¼ 20, Fig. 1b). These results illustrated that GC sr-exosomes
contains EGFR oncoprotein, which may play an important role in
the development of GC.

The expression of HGF and c-MET in GC liver metastases.
Although HGF has been reported to be upregulated in various
types of cancer, the expression pattern of HGF in tumour
metastases is little known. To explore whether HGF is expressed
in the liver metastases of GC, we determined HGF expression by
using immunohistochemistry and western blotting. The results
showed that HGF is highly expressed in para-carcinoma tissues
and liver but not in the GC metastases (Fig. 1c,d). However, the
HGF receptor, c-MET and phosphorylated c-MET (p-c-MET) is
obviously expressed in GC liver metastases (Fig. 1c). Liver
metastases from 30 patients were detected and the positive
detection rate of HGF is only 15%, whereas the positive rate of
c-MET is 90% (Fig. 1e). These data suggested that the cancer cells
in the metastases mainly bind with liver HGF, which is released
into the liver microenvironment through paracrine manner.

Exosome-mediated EGFR is located in the liver cell membrane.
Although EGFR is found in the sr-exosomes of GC patients, the
levels of EGFR in exosomes secreted from GC cells is not known.
As EGFR is known to be a membrane protein, the correct loca-
tion of exosome-mediated EGFR in target cells is important for it
to function. In this study, exosome secreted from SGC7901 cells
(SGC-exosomes) were isolated (Fig. 2a) and co-cultured with
primary mouse liver cells. This indicated that the primary liver
cells contain stromal cells, such as kupffer cells. We first checked
the exosome EGFR levels of SGC7901 cells. As is shown in
Fig. 2b, EGFR was detected in the exosomes of SGC7901 cells,
whereas the levels of EGFR in both SGC cells and exosomes were
strongly decreased by transfection of small interfering RNA
(siRNA). To confirm the biological function of exosome EGFR,
5� 105 primary mouse liver cells were incubated with 50mg
exosomes derived from SGC7901 cells (Fig. 2c). These exosomes
were found to rapidly enter into the recipient cells (Fig. 2d).
Moreover, green fluorescent protein (GFP)-tagged EGFR was
expressed in SGC7901 cells and the SGC-exosomes were isolated
and incubated with mixed primary liver cells. As is expected, the
GFP-tagged EGFR is detected in the outer membrane of mixed
liver cells and is co-localized with E-cadherin (Fig. 2e). To
monitor the concentration and sizes of exosomes secreted by
SGC7901 cells, Nanosight NS300 system was used (Fig. 2f). Most
of the isolated vesicles were around 100 nm, which is the typical
size of exosomes. Taken together, these results clearly demon-
strated that the membrane protein EGFR can be delivered into
the liver by SGC-exosomes and implied that EGFR is located in
the membrane system through membrane fusion.

Characterization of primary liver cells. The types of primary
liver cells were characterized using marker stromal cells and liver
cells. As is shown in Fig. 3a,b, F4/80 (marker for Kupffer cells),
alpha smooth muscle actin (a-SMA) and desmin (markers for
hepatic stellate cells) are enriched in primary cells. Theses mar-
kers were also detected by using immuno fluorescence (Fig. 3c)
and it is proved that SGC exosomes containing EGFR-GFP can be
taken up by Kupffer cells and hepatic stellate cells (Fig. 3c).

Exosome EGFR activates liver HGF by suppressing miR-26a/b.
HGF is mainly expressed in the liver and is known to be a tumour
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promoter22. Therefore, we subsequently checked the effects of
SGC-exosomes on liver HGF. Forty micrograms of SGC
exosomes were added into the medium of 106 primary liver
cells seeded in a six-well plate. It was showed that SGC-exosomes
significantly promote HGF and EGFR expression in mixed liver
cells (Fig. 4a); however, enhanced HGF expression was blocked
when EGFR was removed from exosomes (Fig. 4a). Similarly,
overexpression of EGFR in primary liver cells results in the
upregulation of liver HGF (Fig. 4c). However, both SGC-
exosomes and EGFR overexpression cause little change of
HGF mRNA (Fig. 4b,d). Thus, it is believed that exosome

EGFR activates liver HGF by suppressing its upstream miRNAs.
Among all the HGF-related miRNAs predicted by bioinformatics
methods, miR-26a and miR-26b were found to be downregulated
in GC (Fig. 4e,h). In addition, both SGC-exosomes and
overexpressed EGFR strongly inhibit miR-26a/b expression
in liver cells (Fig. 4f,g). Therefore, exosome-mediated EGFR
regulates HGF expression by suppressing miR-26a/b in liver cells.

miR-26a/b directly target HGF in the liver. To give direct evi-
dence of the interaction between miR-26a/b and HGF, we used
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Figure 1 | Clinical analysis of sr-exosome EGFR and HGF-cMET in GC. (a) Electron microscope scanning of exosomes isolated from human serum.

(b) Sr-exosome EGFR is related to the progression of GC. Exosomes were isolated from serum of healthy donors (NC), stage II/III GC patients and stage IV

GC patients, respectively (n¼ 20); Alix, TSG101 and CD63 were used as the internal control of exosomes. (c) The expression of HGF, c-MET and p-c-MET

in para-carcinoma tissue (liver) and GC liver metastases (n¼ 5). (d) Immunohistochemistry (IHC) analysis of HGF in GC liver metastasis. (e) Positive ratio

of HGF and its receptor c-MET in GC liver metastases (n¼ 30). The data represent the mean±s.e.m. *Po 0.05, **Po0.01 (Student’s t-test).
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luciferase reporter plasmid containing either wild-type or
mutant 30-UTR of HGF mRNA; the binding sites of miR-26a/b
were show in Fig. 5a. It was shown that the luciferase activity
was markedly reduced in the cells overexpressed miR-26a or
miR-26b, whereas the inhibition of miR-26a/b relatively
enhanced luciferase activity (Fig. 5b). However, the inhibitory
activity of miR-26a/b on luciferase activity was lost when
the binding sites were lost (Fig. 5b). The HGF protein and
mRNA were also assessed in primary liver cells transfected with
miR-26a/b mimics or inhibitors. Western blotting analysis
revealed that HGF expression was strongly suppressed by over-
expressed miR-26a or miR-26b, whereas the inhibitors of miR-
26a/b relatively enhanced HGF expression (Fig. 5c). miRNAs are
well known to suppress gene expression at the posttranscriptional
level and, as expected, HGF mRNA remained unchanged with the
effects of miR-26a/b mimics or inhibitors (Fig. 5d). In conclusion,
miR-26a and miR-26b regulate HGF expression in primary liver
cells by directly targeting the 30-UTR of HGF mRNA.

HGF regulates biological behaviour of GC cells in vitro. Next,
we assessed the effects of liver HGF on the promotion of cell
invasion and migration of GC cells. Primary liver cells were
divided into two groups. One group was treated with lenti-virus-
containing HGF-overexpressing sequence or HGF short hairpin
RNA (shRNA); the other group was treated with SGC exosomes
or 293T exosomes. These primary liver cells were indirectly

co-cultured with SGC7901 cells using the 0.4 mm polyester
membrane (Fig. 6a); the liver-secreted factors, such as HGF, can
pass through the membrane freely. We use the indirect co-culture
system to simulate the microenvironment of the liver. HGF
expression and secretion in liver cells was determined by western
blotting and enzyme-linked immunosorbent assay (ELISA) assay,
respectively. It was showed that HGF-overexpressing lentivirus
and SGC-exosomes significantly enhanced liver HGF expression
and release (Fig. 6b,d). Exosomes of SGC7901 cells were also
found to clearly promote HGF secretion (Fig. 6c). Subsequently,
the effects of liver HGF on biological behaviour of SGC7901 cells
were determined by EDU assay and Transwell assay, respectively.
As is expected, primary liver cells overexpressed HGF and treated
with SGC-exosomes strongly promoted proliferation, migration
and invasion of SGC7901 cells, whereas the liver cells treated
with HGF shRNA play the opposite function (Fig. 6e–g). As is
expected, p-c-MET was increased with HGF (Fig. 6h).
These in vitro results support that liver HGF plays a key role in
regulating biological behaviour of GC cells.

In vivo role of liver HGF in liver metastasis. To access the
in vivo effects of liver HGF on the formation and growth of liver
metastases, we subsequently established mouse tumour model.
Before the orthotropic implantation of GC, mouse livers were
treated with lentivirus containing either HGF-overexpressing
sequence or HGF shRNA by multi-point injection. Mice were
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Figure 2 | SGC-exosomes transport EGFR into liver cells. (a) Electron microscope scanning of exosomes isolated from the medium of SGC7901 cells.

(b) EGFR expression in both SGC exosomes and SGC7901 cells treated with EGFR siRNA. (c) Schematic description of the experimental design. The SGC

exosomes were isolated and 50mg exosomes were used to culture with 5� 105 primary liver cells. (d) Confocal microscopy image of the internalization of

fluorescently labelled exosomes in mixed liver cells. Scale bars, 50mm. (e) SGC-exosome-mediated EGFR is located in the membrane of mixed primary liver
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killed on the 66th day; mouse liver, serum, primary tumour and
liver metastases were obtained on the 60th day post tumour
implantation, followed by the recording of tumour metastases
and gene expression.

The flowchart of in vivo experimental design is shown in Fig. 7a.
EGFR in the primary tumours were first detected and it is
overexpressed in the tumour tissues (Fig. 7b). Sr-exosomes of
tumour-implanted mice were isolated (Fig. 7e) and EGFR is highly
expressed in the sr-exosomes of tumour-implanted mice, but not in
the control group (Fig. 7c). As is expected, liver HGF is significantly
upregulated with the implantation of tumour; multi-point injection
of lenti-virus containing HGF shRNA significantly suppressed HGF
expression in the liver (Fig. 7d). EGFR expression was also clearly
increased in the liver as a result of tumour implantation (Fig. 7d).
Moreover, the high levels of exosome-EGFR in mouse serum
resulted in the inhibition of miR-26a/b (Fig. 7f).

These data based on tumour xenograft model further
demonstrated that tumour-secreted exosomes activate liver
HGF though suppressing miR-26a/b expression.

Exosome-EGFR is located in liver cytomembrane in vivo.
SGC7901 cells were overexpressed with EGFR-GFP and exosomes
were isolated and injected into mice through the tail vein.
Location of exosome EGFR was determined using anti-GFP
antibody and GFP was detected in the outer membrane of liver
cells (Supplementary Fig. 1).

Effects of liver HGF on hepatotropic metastasis. We also
evaluated the regulated liver HGF on GC liver metastasis and
mouse survival. It is clearly shown that upregulated liver HGF
promotes metastasis to the liver, whereas downregulation of liver
HGF suppressed liver metastasis (Fig. 8a,b). High levels of liver
HGF promote the growth of metastases, increasing the size and
weight of metastatic focus (Fig. 8c,d). The expression of HGF and
c-MET was also checked in GC liver metastases and para-carci-
noma tissues, and HGF is highly expressed in liver tissues but not
in the metastases (Fig. 8e,h). Phosphorylation of c-MET is also
characterized using immunohistochemistry assay and western
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blotting assay; as is expected, high levels of liver HGF promotes
the activation of c-MET in metastases (Fig. 8f,g).

Therefore, liver HGF is closely linked with the process of liver
metastasis in mouse model.

Discussion
Liver is linked with the other gastrointestinal organs by hepatic
portal vein, which is conducive to metastasis of GC, colorectal
cancer and pancreatic cancer. However, this cannot fully explain
liver metastasis of the other types of tumours, such as breast
cancer, lung cancer and renal cancer23. As the Stephen Paget’s
hypothesis, studies have been focused on identifying cell-intrinsic
determinants of organ-specific metastasis24–27. Recently,
exosomes have been proved to play a key role in determining
organ-specific metastasis28–30. Our study illustrated exosomes
secreted from cancer cells can regulate the microenvironment of
liver to prepare favourable conditions for future metastasis.

In recent years, exosomes have been a provocative topic in both
the early detection of malignant tumours and signalling
transduction between cells31–33. These cell-derived small
particles are also used as a safe vehicle for the delivery of
targeted drugs, as well as miRNAs and siRNAs34–37. Exosomes
have been known to mediate the immune escape, drug resistance

and angiogenesis of tumours7,38,39. However, the role of
exosomes in the communication between primary focus and
future metastatic organs is little known.

Although EGFR has been reported to be delivered by tumour-
derived exosomes11,22, the role of secreted EGFR in the process of
tumour metastasis remains unknown. We found that SGC-
exosomes can transport EGFR into the liver and these EGFR is
finally located in the membrane of stromal liver cells. Our study
first revealed the location of tumour-secreted EGFR in target
organs, explaining how membrane receptors can be transported
between cells. Exosome-mediated EGFR activates liver HGF, thus
preparing ‘soil’ for future cancer cell metastasis. This signalling
pathway comprising exosome EGFR, liver miR-26a/b and
HGF illustrates the novel mechanism involved in liver
metastasis of GC.

In this study, EGFR in SGC cells and exosomes was knocked
down by using siRNA and these EGFR-absent exosomes lost the
function to promote liver HGF expression. However, the silencing
of EGFR may lead to the change of content in exosomes; more
convincing data can be provided by cetuximab or exosome
blocking.

It is believed that exosomes derived from the other types of
cancer can also regulate liver microenvironment to facilitate the
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formation and growth of liver metastases. Abundant HGF makes
the liver one of the common metastatic sites for multiple
tumours. Tumour-derived exosomes regulated the signalling
pathways in the liver and makes it an ideal target for malignancy.
The change of gene expression of liver cells by tumour-derived
exosomes may lead to disorder, fibrosis and field cancerization in
the liver, although this still needs more exploration.

Overall, our findings demonstrate an important role for
tumour-derived exosomes in dictating liver-specific metastasis
by remodelling liver microenvironment. Our results support the
‘seed and soil’ hypothesis, uncovering the novel mechanism of
liver-tropism metastasis.

Methods
Human tissue. Human GC liver metastatic focuses and paired adjacent
non-cancerous tissues were derived from patients undergoing a surgical procedure
at the Tianjin Medical University Cancer Institute and Hospital (Tianjin, China).
Both tumour tissues and non-cancerous tissues were confirmed histologically. The
pathological type of each cancer was determined to be glandular carcinoma.
Written consent was provided by all of the patients and the Ethics Committee
of Tianjin Medical University Cancer Institute and Hospital approved all aspects
of this study. Tissue fragments were immediately frozen in liquid nitrogen at the
time of surgery and stored at � 80 �C.

Animals. Male nude mice (BALB/c-nu, 6B8 weeks) were housed in a pathogen-
free animal facility with access to water and food, and allowed to eat and drink ad
libitum. All of the experimental procedures were performed in accordance with
protocols approved by the Institutional Animal Care and Research Advisory
Committee of Nanjing University.

Cell culture. SGC7901 (human gastric adenocarcinoma cell) was bought from cell
bank of Chinese Academy of Sciences (Shanghai, China) and was cultured in
DMEM medium (Gibco, USA); SGC 7901 cells were tested for mycoplasma
contamination before use; primary mouse liver cells were obtained from the livers
of C57BL/6J mice (6–8 weeks of age) and were cultured in RPMI 1640 (Gibco);

both were supplemented with 10% fetal bovine serum (Gibco) in a humidified
incubator at 37 �C with 5% CO2.

Isolation of exosomes from medium and serum. Exosomes were isolated from
cell culture medium by differential centrifugation, according to previous publica-
tions40. After removing cells and other debris by centrifugation at 300 g and 3,000 g,
the supernatant was centrifuged at 10,000 g for 30 min to remove shedding vesicles
and the other vesicles with bigger sizes. Finally, the supernatant was centrifuged at
110,000 g for 70 min (all steps were performed at 4 �C); exosomes were collected
from the pellet and re-suspended in PBS. Sr-exosomes were isolated by using an
exosome isolation kit (Thermo).

Nanoparticle tracking analysis. The number and size of exosomes were directly
tracked using the Nanosight NS 300 system (NanoSight Technology, Malvern,
UK)41,42. Exosomes were re-suspended in PBS at a concentration of 5 mg ml� 1 were
further diluted 100- to 500-fold, to achieve between 20 and 100 objects per frame.
Samples were manually injected into the sample chamber at ambient temperature.
Each sample was configured with a 488 nm laser and a high-sensitivity scientific
complementary metal-oxide semiconductor (sCMOS) camera, and was measured in
triplicate at camera setting 13 with an acquisition time of 30 s and a detection
threshold setting of 7. At least 200 completed tracks were analysed per video. Finally,
data were analysed using the NTA analytical software (version 2.3).

Transmission electron microscopy assay. For conventional transmission elec-
tron microscopy, the exosome pellet was placed in a droplet of 2.5% glutaraldehyde
in PBS buffer at pH 7.2 and fixed overnight at 4 �C. Samples were rinsed in PBS
buffer (3 times, 10 min each) and post fixed in 1% osmium tetroxide for 60 min at
room temperature (RT). The samples were then embedded in 10% gelatin and fixed
in glutaraldehyde at 4 �C, and cut into several blocks (o1 mm3). The samples were
dehydrated for 10 min each step in increasing concentrations of alcohol (30, 50, 70,
90, 95 and 100% � 3). Pure alcohol was then exchanged by propylene oxide and
specimens were infiltrated with increasing concentrations (25, 50, 75 and 100%) of
Quetol-812 epoxy resin mixed with propylene oxide for a minimum of 3 h per step.
Samples were embedded in pure, fresh Quetol-812 epoxy resin and polymerized at
35 �C for 12 h, 45 �C for 12 h and 60 �C for 24 h. Ultrathin sections (100 nm) were
cut using a Leica UC6 ultra-microtome and post stained with uranyl acetate for
10 min and with lead citrate for 5 min at RT before observation in a FEI Tecnai T20
transmission electron microscope, operated at 120 kV.
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Immunofluorescence. Cells were cultured on four-well chamber slides. At the
time of harvest, cells were fixed with 4% paraformaldehyde and then permeabilized
with 0.01% Triton X-100 for 10 min. Then cells were treated with anti-desmin
antibody (Immunoway, YT1326), anti-a-SMA antibody (1:50; Santa Cruz;
sc-53142), and anti-F4/80 antibody (1: 100; Abcam; ab100790). In addition,
all samples were treated with 40 ,6-diamidino-2-phenylindole dye for nuclear
staining (358 nm). For confocal microscopy, a Nikon C2 Plus confocal microscope
was used.

RNA isolation and quantitative reverse transcriptase–PCR. Assays to quantify
mature miRNAs were conducted as previously described, with slight modifica-
tions43,44. Total RNA was extracted from the cultured cells and tissues using TRIzol
Reagent (Invitrogen) according to the manufacturer’s instructions. miRNA
determination was performed using Taqman miRNA probes (Applied Biosystems,
Foster City, CA). All of the reactions were run in triplicate. After the reactions were
complete, the cycle threshold (CT) data were determined using fixed threshold
settings and the mean CT was determined from triplicate PCRs. A comparative CT
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method was used to compare each condition to the control reactions. U6 small
nuclear RNA was used as an internal control of miRNAs and the mRNA levels
were normalized to glyceraldehyde 3-phosphate dehydrogenase (GAPDH).
The relative amount of gene normalized to control was calculated with the
equation 2�DCT, in which DCT¼CT gene�CT control.

Primers of HGF and GAPDH were as follows: 50-AGAAGGCTGGGGCT
CATTTG-30 (GAPDH, sense), 50-AGGGGCCATCCACAGTCTTC-30 (GAPDH,
anti-sense); and 50-CCTGGTGCTACACGGGAAAT-30 (HGF, sense), 50-CACAT
CCACGACCAGGAACA-30 (HGF, anti-sense).

The miRNA target prediction. The miRNA target prediction and analysis were
performed with the algorithms from TargetScan (http://www.targetscan.org/),
PicTar (http://pictar.mdc-berlin.de/) and miRanda (http://www.microrna.org/).

Luciferase assay. The reporter plasmid p-MIR-HGF containing the predicted
miR-26 targeting regions was designed by Genescript (Nanjing, China). Part of the
wild-type and mutated 30-UTR of HGF was cloned immediately downstream of the
firefly luciferase reporter. The 2 mg of b-galactosidase expression vector (Ambion)
was used as a transfection control. For the subsequent luciferase reporter assays,
2 mg of firefly luciferase reporter plasmid, 2 mg of b-galactosidase vector and equal
doses (200 pmol) of mimics, inhibitors or scrambled negative control RNA were
transfected into the prepared cells. At 24 h after transfection, cells were analysed
using the Dual Luciferase Assay Kit (Promega) according to the manufacturer’s
instructions. Each sample was prepared in triplicate and the entire experiment was
repeated three times.

Cell proliferation assay. SGC7901 cells were incubated in 50 mM Edu (RiboBio
Inc.) for 6 h and fixed with 4% paraformaldehyde for 30 min at 25 �C. Next, the
cells were washed in PBS (2� 5 min, RT) and then permeabilized using PBS
containing 0.3% Triton X-100 for 10 min. After extensive washes in PBS, the cells
were incubated in Apollo staining solution (RiboBio, Inc.) for 20 min, washed with

NaCl/Pi (3� 10 min, RT) and then incubated in 40 ,6-diamidino-2-phenylindole
(1:2,500; Roche Diagnostics, Mannheim, Germany) for 10 min at RT.

Cell migration assay. The migration ability of SGC7901 cells was tested in a
Transwell Boyden Chamber (6.5 mm, Costar) with polycarbonate membranes
(8 mm pore size) on the bottom of the upper compartment. Cells were suspended in
serum-free DMEM medium at a total amount of 1� 105 cells; simultaneously,
0.5 ml DMEM with 10% fetal bovine serum was added to the lower compartment
and the Transwell-containing plates were incubated for 6–8 h. At the end of the
incubation, cells that have entered the lower surface of the filter membrane were
fixed with 90% ethanol for 15 min at RT and stained with 0.1% crystal violet
solution. Images of migrant were captured by photo-microscope and cell migration
was quantified by blind counting with three fields per chamber.

ELISA assay. HGF secretion was determined using an ELISA kit according to the
manufacturer’s instructions (Sigma, RAB0212).

Western blotting. The HGF, cMET and EGFR expression was assessed by western
blotting analysis and samples were normalized to GAPDH. Protein extraction was
blocked with PBS-5% fat-free dried milk at RT for 1 h and incubated at 4 �C
overnight with anti-HGF (1:1,000, Abcam), anti-EGFR (1:5,000, Abcam),
anti-cMET (1:1,000, Abcam), anti-p-cMET (1:1,000, Abcam), anti-CD63 (1:2,000,
Abcam), anti-TSG101 (1:1,000, Santa Cruz), anti-Alix (1: 1,000, Santa Cruz),
anti-F4/80 (1:1,000, Abcam), anti-desmin (1:1,000, Immunoway), anti-a-SMA
(1:1,000, Santa Cruz) and anti-GAPDH (1:3,000, Santa Cruz) antibodies,
respectively.

Immunohistochemistry. The tumours were fixed in 4% paraformaldehyde,
embedded in paraffin, sectioned and then stained with anti-c-MET antibodies
(Abcam), anti-p-c-MET antibodies (Abcam) and anti-HGF antibodies (Abcam).
Quantitative analysis was conducted by quantifying the fluorescence intensity from
at least five sections.
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Establishment of tumour in nude mice. SGC7901 cells were injected into nude
mice by orthotopic implantation45. Briefly, 1� 107 cells were first injected
subcutaneously for one mouse and tumours were removed and divided into small
pieces on the 15th day, each with 0.3 g, and the divided small tumours were
implanted into the gastric subserosal haematoma.

Statistical analyses. All data were representative of five or six independent
experiments. Data were expressed as mean±s.e. of at least five separate
experiments. Statistical significance was considered at Po0.05 using the Student’s
t-test. In this study, *Po0.05, **Po0.01 and ***Po0.001.

Data availability. All the data are available within the Article and Supplementary
Information file, or available from the authors upon request.
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