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Abstract

Vibrations through substrates are an important source of information for diverse organisms,

from nematodes to elephants. The fundamental challenge for small animals using vibra-

tional communication is to move their limited mass fast enough to provide sufficient kinetic

energy for effective information transfer through the substrate whilst optimising energy effi-

ciency over repeated cycles. Here, we describe a vibratory organ found across a commer-

cially important group of plant-feeding insects, the planthoppers (Hemiptera:

Fulgoromorpha). This elastic recoil snapping organ generates substrate-borne broadband

vibrations using fast, cyclical abdominal motion that transfers kinetic energy to the substrate

through the legs. Elastic potential energy is stored and released twice using two different

latched energy-storage mechanisms, each utilising a different form of elastic recoil to

increase the speed of motion. Comparison to the acoustic tymbal organ of cicadas (Hemi-

ptera: Cicadomorpha) reveals functional convergence in their use of elastic mechanisms to

increase the efficacy of mechanical communication.

Author summary

Animals use substrate-borne vibrations for eavesdropping and communication over an

immense range of body size—from elephants to nematodes. Vibrational communication

is especially challenging for small animals because of the high mechanical power that is

needed to transmit information effectively over extended distances through a substrate.

Here, we show that planthoppers, a commercially important group of insects, produce

vibrations for communication using a reciprocal elastic recoil mechanism that proves

remarkably effective at small body size. By combining morphological and biomechanical

analyses of a previously overlooked vibratory organ on the abdomen, we show that

planthoppers use fast, cyclical abdominal motions to generate substrate-borne vibrations.

This novel, to our knowledge, mechanism, which we term the snapping organ, makes use

of slow energy storage and fast elastic recoil twice during each cycle of motion, involving
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two distinct elastic elements. This cyclical mechanism allows planthoppers to transmit sig-

nal pulses containing a broad range of frequencies to the substrate. The mechanism is effi-

cient, achieving fast cyclical motion without relying on high muscle power and mass, both

of which are limited for animals of small size. The snapping organ is ubiquitous across

planthoppers and presents an interesting example of how elastic mechanisms can be used

to enable nonacoustic vibrational communication between animals.

Information transfer involving substrate-borne vibrations along surfaces or through materials

is important to a wide variety of taxa, from elephants to nematode worms [1]. The key chal-

lenge for successful vibration generation lies in balancing energy-efficient motion for repeated

signalling [2] with effective and robust information transfer [3]. Signalling efficiency can be

optimised by minimising the frequency of active muscle contraction [4], whereas signalling

efficacy is optimised by maximising the kinetic energy transferred to the substrate. One solu-

tion to this tradeoff, as we show here, is to make use of elastic recoil mechanisms in which elas-

tic energy is stored slowly and then quickly released. This is sometimes referred to informally

as power amplification because the time over which work is performed is reduced [2],

although this is not true amplification in the sense of adding energy into the system from an

outside source. This rapid release of energy is essential because kinetic energy scales with mass

and with speed squared such that signalling efficacy is increased by producing faster, higher-

amplitude motions that improve the chances of the signal reaching and stimulating its poten-

tial receivers. A further reason for favouring faster motions is that broadband signals are more

robust to frequency-based filtering and environmental noise than are narrowband signals [5]:

for mechanical impulses, or taps, a higher speed of motion increases the frequency content of

the signal by producing a sharper impulse [6]. Frequency filtering and noise level will vary

with the physical properties of the substrate [5].

Achieving the fast motions needed for effective vibrational communication is a particular

challenge for smaller animals. Other things being equal, their lower mass means that faster

speeds are needed to transfer kinetic energy to the substrate. Smaller animals also have shorter

lever arms that limit output speed and amplitude for a given motor input, and their smaller

muscles have limited potential for high motor input through direct muscle action [7]. Natural

mechanisms for increasing the speed of motion, especially in smaller animals, involve elastic

recoil mechanisms in which energy is elastically stored slowly and released quickly. This is par-

ticularly well studied for one-off ballistic motions such as the closing of ant jaws [8] or mantis

shrimp claws [9], the projecting of toad tongues [10], or the jumping of froghoppers [11].

Much less is known about whether and how biological systems use elastic recoil to achieve

very fast cyclical motions, in which the added challenge is to accommodate this within an effi-

cient cycle of multidirectional motion. Perhaps the only good example of elastic recoil cyclical

motion is the buckling of the drum-like tymbal organ of cicadas, which can generate loud

acoustic vibration through an efficient bistable motion [12]. Insect flight provides another

example of elastic energy storage in a fast oscillatory system, but the cyclical motions of the

flight motor are mainly optimised for smooth transfer of kinetic and potential energy through

the cycle, producing a nearly sinusoidal motion of the wingtips in a typical insect such as a

hoverfly [13]. In contrast, vibration generation in the cicada’s buckling tymbal organ relies on

the sudden release of energy [2]. Good examples from other contexts are lacking, meaning that

general insights into how biological systems overcome these challenges have yet to be drawn.

This leads to the fundamental research question that we set out to answer in this study: how do
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very small animals achieve the very fast motions needed for effective and efficient vibration

generation?

Hemiptera, or true bugs, have expanded the use of vibrational signalling more than any

other insect order [14]. Although there is a large and growing body of research into the beha-

vioural ecology of vibrational communication [1], there are few studies detailing the mecha-

nisms by which these enigmatic vibrations are generated. Hemiptera are known to generate

vibrations in various ways, ranging from the use of buckling tymbals (ribs that pop between

bent and straight conformations) [15] or stridulatory structures (body parts that are rubbed

together, often as a scraper and a file) [16] to the use of wing buzzing [17], leg drumming [18],

and tremulation (vibration of the body relative to legs) [17, 19]. With the exception of tremula-

tion, which does not generate much acoustic vibration, these various mechanisms all emit

acoustic and substrate-bound vibrations simultaneously [20]. Here, we report a novel, to our

knowledge, vibratory organ, the snapping organ, in planthoppers (Hemiptera: Fulgoromorpha).

These bugs are a speciose infraorder comprising over 12,500 described species [21] and contain-

ing several economically important crop pests [22, 23]. Planthoppers generate vibrations pri-

marily for mate localisation and courtship [24, 25], and their vibrational signals are remarkably

consistent across taxa, with the exception of planthoppers in the family Delphacidae [25], at

least some of which generate unusual vibrations using so-called ‘drumming’ organs [26].

Planthopper vibrations have previously been assumed to be generated by tymbal-like organs,

homologous to those of cicadas [19, 27], or by the highly specialised delphacid ‘drumming’

organs [26, 28]. Yet morphological evidence from a range of planthopper taxa was lacking, and

their vibration-generation mechanism was unknown. Here, we use a state-of-the-art morpho-

logical investigation of all 21 families of planthoppers (S1 Table) to study the vibration genera-

tion organs that are present throughout the group. We combine this analysis with experimental

measurement of behavioural kinematics and the vibrations they produce to describe the

remarkable mechanism of vibration generation in planthoppers and to explore the use of fast

cyclical motions in the hidden world of substrate-borne vibrational communication.

Results

Snapping organ morphology

We begin by characterising the morphology of the newly-described snapping organ in our

model species, Agalmatium bilobum (Fulgoromorpha: Issidae). The snapping organ can be

found dorsally on each side of the body at the junction between the metathorax and the abdo-

men, spanning the first two abdominal segments (Fig 1A and 1B and S1 Movie). The organ

has a W shape; a ridge (Fig 1B) articulates at its base with the thorax (first ‘V’) and fuses at its

tip to the anterior arm of a Y-lobe (Fig 1B), which has resilin (Fig 1B) between its arms (second

‘V’; Figs 1B and S1). The posterior arm of the Y-lobe is fused with the second segment, tergum

2 (tg2; Fig 1B) of the abdomen. The Y-lobe is linked at its base to an internal spine (sp; Fig 2C)

of the second segment via a membranous connector (Figs 1B, 2A and 2C). Eight muscle pairs

are directly associated with the snapping organ (Fig 2 and S2 Table and S1 Text), comprising

three pairs of dorsal longitudinal muscles (DLMs) and five pairs of dorsoventral muscles

(DVMs). Four other muscle pairs are indirectly associated with the snapping organ (ventral

longitudinal muscles [vlms] IIIvlm2, Ivlm1, and IIvlm2 and intersegmental dorsoventral mus-

cle [IIisdvm]) (Fig 2A). The snapping organ is not sexually dimorphic.

Homologous vibrational organs are present throughout the entire planthopper clade (Fig 3

and S1 Table). The defining features of the musculature (Fig 2 and S2 and S3 Tables), innerva-

tion (S2 Fig), and external morphology (the ridge, Y-lobe, and connector) of the snapping

organ are consistent and identifiable, despite variation in its proportions and shape across the
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Fig 1. Vibration generation in planthoppers, using A. bilobum as a model. (A) Red box marks the snapping organ

location. The forewings of this live specimen were removed to expose the snapping organ and its location on the

abdomen. (B) False-colour SR-μCT scan of the snapping organ of A. bilobum, lateral view (scans deposited at CXIDB:

http://cxidb.org/id-93.html). (C) Measured VIB for one sample recording and inferred activity of DLMs Idlm1-Idlm2

(purple) and DVMs IIedvm1-IIedvm2 (black) of the snapping organ during one cycle of vibration. (D) Schematic of

the proposed four steps of the snapping organ required to generate one cycle of vibration. Muscles assumed to be in a

relaxed state are transparent and labelled OFF, whereas those contracted are filled in red and labelled ON. Purple text

refers to DLMs and black to DVMs. Loading and unloading result in the vibrational peaks seen in panel C. Structures

and arrows colour-coded as follows: yellow, rg; brown, lb; light brown, cn (panel B only); dark blue: membrane with rs;

green: tg2. Arrows indicate the direction of motion of these parts, whereas grey arrow denotes motion of abdomen.

Latin numerals for muscles indicate segmental identity, whereas Arabic numerals indicate muscle set. cn, membranous

connector; CXIDB, Coherent X-ray Imaging Data Bank; DLM, dorsal longitudinal muscle; DVM, dorsoventral muscle;

edvm, external dorsoventral muscle; lb, Y-lobe; rg, ridge; rs, resilin; SR-μCT, synchrotron radiation microcomputed

tomography; tg2, tergum 2; VIB, velocity of midabdomen in dorsoventral direction.

https://doi.org/10.1371/journal.pbio.3000155.g001
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planthoppers (Fig 3B–3E and S1 Text). Two groups deviate from this general picture: part of

the family Delphacidae, in which the exoskeleton and musculature have been drastically reor-

ganized to form an entirely different type of vibrational organ (S3 Fig and S1 Text), and part of

Derbidae, which have an externally obscure snapping organ and also possess tentative stridula-

tory structures (Fig 3 and S4 Table). Based on their phylogenetic position, the deviations

observed in these two groups are likely to be derived (Fig 3).

Snapping organ biomechanics

To determine the kinematics of the snapping organ, we used high-speed videography and laser

vibrometry on our model species, A. bilobum (Fig 4 and S1 Movie and S1 Data). Each

Fig 2. Generalized schematic of internal structure and musculature of the snapping organ. (A) Complete musculature of the first two abdominal segments. Square

inset marks ventral junction of the lb base and tg2. (B) Transverse SR-μCT section of muscle-bearing apodeme of segment two, with hypertrophied Idlm1 inserting on it.

(C) Confocal laser scanning microscopy image of lateral view of lb base-tg2 junction, with primary DVMs IIedvm1 and IIedvm2 inserting on sp (interrupted line). The

angle of muscles IIedvm1 and IIedvm2 is somewhat distorted because of the fact that their ventral attachments have been severed. Colour coding of structures: yellow, rg;

brown, lb; purple, rs membrane; green, tg2. Latin numerals for muscles indicate segmental identity, whereas Arabic numerals indicate muscle set. apo, apodeme of tergum

2; DLM, dorsal longitudinal muscle; DVM, dorsoventral muscle; edvm, external dorsoventral muscle; idvm, internal dorsoventral muscle; isdvm, intersegmental

dorsoventral muscle; lb, Y-lobe; lt, list of base of Y-lobe; pcx, postcoxale; rg, ridge; rs, resilin; sp, spine of tergum 2; SR-μCT, synchrotron radiation microcomputed

tomography; tg2, tergum 2; vlm, ventral longitudinal muscle.

https://doi.org/10.1371/journal.pbio.3000155.g002
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vibrational cycle began with the snapping organ in its relaxed position (Figs 1D and 4A). Sub-

sequently, the thorax/midabdomen was raised over a 15 ms timescale (Fig 4B). The first

mechanical impulse followed (loading vibrational peak), which resulted in closed Y-lobe arms,

extended ridge, and the base of the Y-lobe pulled down and rotated clockwise (Fig 4C). The

system resonated in response, giving a jagged waveform over a 15–20 ms timescale (Fig 4D).

The cycle was completed by a second mechanical impulse (unloading vibrational peak), in

which the Y-lobe arms reopened, the ridge retracted, and the base of the Y-lobe rose and

rotated back (Fig 4E). This resulted in whole-system resonance ultimately returning the organ

to the same relaxed position as at the beginning of the cycle. Each vibration generation cycle

takes place within 120 ms, and the mechanism does not generate any audible acoustic noise

[27].

We propose that each cycle of vibration generation consists of four main steps (Figs 1D and

4). Transition from the relaxed state to the cocked state was comparatively slow (on a timescale

of 15 ms), and the movements of landmarks on the external exoskeleton suggest that this

phase of the cycle was driven directly by DLM contraction (Figs 2 and 4B). Whilst we do not

have direct recordings of muscle activity, the distance between the origin and insertion points

of both DLMs shortens at this point in the cycle (Fig 4B), and there is no other muscle whose

action could produce this strain. The distance between these points shortens even further at

the transition from the cocked state to the loaded state (Fig 4C), but this change occurs too

Fig 3. The snapping organ likely evolved once in the planthoppers. (A) Systematic distribution of the snapping

organ (green, Fulgoromorpha) indicates a single origin at the root of planthopper phylogeny. White spaces within

planthoppers indicate modification of snapping organs in the non-Asiracinae delphacids and the Derbidae. Numbers

within the white spaces represent character states underlying the morphological transformations of the snapping

organs in these planthoppers (see S4 Table). Other types of known abdominal vibrational organs are shown in the

outgroups. Dorsal views (not to scale) of the snapping organs of (B) male Pentastira sp. (Cixiidae), (C) male Asiraca
clavicornis (Delphacidae: Asiracinae), (D) male Cixidia skaloula (Achilidae), and (E) female Caliscelis wallengreni
(Caliscelidae). Green dashed lines link snapping organs to their respective families; the branch of the tree labelled

‘remaining planthoppers’ also includes our model species A. bilobum (Issidae). Phylogenetic reconstruction is based on

previous studies [29, 30]. R, remaining delphacid planthoppers.

https://doi.org/10.1371/journal.pbio.3000155.g003
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Fig 4. Stages of snapping organ mechanism in a male A. bilobum, illustrating external landmarks used to infer

muscle strains internally (left) with corresponding stages of proposed mechanism shown diagrammatically

(right). Muscle action was inferred from high-speed videography and laser vibrometry in conjunction with a separate

microscopic study of the musculoskeletal anatomy to identify their origins and insertions (centre inset: Disp. of

prothorax against time in seconds for one sample recording; identical axes on each panel): (A) relaxed, (B) cocked, (C)

loaded, (D) pretrigger, (E) relaxed. (C) and (E) also have insets showing vibrometry recording for loading and

unloading, respectively (Disp.–time). Origins and insertions of snapping organ muscles are symbolised by coloured

circles (black: Idlm1; white: Idlm2; red: DVMs IIedvm1-IIedvm2). Muscle IIdlm is not included because the area it

occupies does not undergo any noticeable change during stages (A)–(E) and is unlikely to contribute to the snapping
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quickly to be explained by direct muscle action alone. Specifically, the rate of change in the

kinetic energy of the abdomen during loading implies energy release at a much higher power

density than the DLMs and DVMs combined (Idlm1, Idlm2, IIedvm1, IIedvm2) could possibly

supply through contraction (7,080 W kg−1, which is nearly 15 times the typical 500 W kg−1

power density for a muscle [31]; see S1 Methods and S1 Data). It follows that some form of

elastic recoil, which acts as a kind of mechanical power amplifier, must be involved in the tran-

sition between the cocked and loaded states. This fast phase (0 to peak velocity taking 0.35 ms),

which we term loading, is responsible for producing the first mechanical impulse transferring

vibrational energy to the substrate. The distance between the origin and insertion points of the

DVMs also shortens at this point in the cycle (Fig 4C), but contraction of these muscles alone

cannot supply the mechanical energy at a high enough rate to explain the rapidity of the load-

ing phase. Instead, the events at this transition are consistent with DVM contraction serving as

an unlatching mechanism that triggers the rapid pulling down of the abdomen, followed by

system resonance (Fig 4C).

The next phase of the cycle, in which the system transitioned to its pretrigger state, was a

slow phase, probably involving muscle relaxation, over a 15–20 ms timescale. The subtle shift

of exoskeleton positions, and particularly the lengthening of the distance between the points of

origin and insertion of the DLMs (Fig 4D), is consistent with the DLMs relaxing during this

phase. In contrast, the distance between the points of origin and insertion of the DVMs remain

constant through this phase of the cycle, suggesting that they remain in their contracted state.

The final transition in the cycle was from the pretrigger state to the relaxed state. This second

fast phase, which we term unloading, is responsible for producing the second mechanical

impulse transferring vibrational energy to the substrate. The associated increase in distance

between the points of origin and insertion of the DVMs (Fig 4E) suggests that unloading is

triggered by DVM relaxation, which causes the rapid return of the snapping organ to its

relaxed conformation through a second release of stored elastic potential energy. There is no

evidence for muscle contraction at this phase of the cycle, and we therefore infer that this elas-

tic potential energy is likely to be stored in the deformed exoskeletal elements of the snapping

organ.

To verify whether passive release of elastic potential energy could be responsible for the fast

unloading phase, we built a simplified mathematical model of the snapping organ, in which we

replaced the ridge and the anterior arm of the Y-lobe with a pair of rigid bars connected in

series to the thorax by a pair of torsional springs (Figs 5A and S4). The stiffness constants of

these torsional springs were determined experimentally in a static loading experiment (S1

Methods). The abdomen and posterior arm of the Y-lobe were modelled as a mass-spring–

damper system attached to the free end of the second rigid bar (Figs 5A and S4), and the spring

constants and damping coefficients of this system were fitted as free parameters (S1 Methods).

Quantitative comparison of the measured and modelled motion supports our supposition that

the unloading phase can be explained through passive recoil of the Y-lobe, in which mechani-

cal energy is stored elastically (Fig 5B and S1 Methods). When released, the elastic potential

energy of these stiff springs acts to move the mass of the abdomen back to its relaxed state,

resulting in resonant motion of the abdominal mass. More harmonic content is apparent in

organ mechanism. Unfilled coloured circles mark position of the respective muscle attachment in the previous panel;

the change in distance between the points of muscle attachment indicates the extent of the muscle strain. Green and

blue circles indicate position of other selected areas of the snapping organ in the current and previous panel,

respectively. Red box on laser vibrometry inset panel indicates vibrational activity associated with the stage of motion

represented in that panel. The underlying vibrometry data can be found within S1 Data. Disp., displacement; DLM,

dorsal longitudinal muscle; DVM, dorsoventral muscle; edvm, external dorsoventral muscle.

https://doi.org/10.1371/journal.pbio.3000155.g004
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the measured vibrations than the modelled ones, which is not surprising given the simplicity

of the model, but importantly from the perspective of information transfer, both the measured

and the modelled spectra involve a broad range of different frequencies (Fig 5C and 5D).

Snapping organ elastic recoil and transformation

The motion generated by the snapping organ during the two fast loading and unloading phases

was on a timescale that would not have been possible through direct muscle action alone. The

snapping organ instead uses two distinct elastic recoil mechanisms, each of which involves

storing energy in springs, then releasing the stored energy quickly [8–11]. During the loading

phase, the obvious candidate locations for elastic energy storage are the DLMs themselves,

given that the exoskeleton itself deforms very little during loading (Fig 4B). This would mean

that these muscles act both as engines, actively generating the force required for loading, and

Fig 5. Modelled and measured motion of the snapping organ during unloading. (A) Schematic of the mathematical model and location of the laser vibrometry

measurement in relation to the snapping organ. The model comprised two stiff beams in series representing the rg and anterior arm of the lb and could rotate at points 0

(junction of thorax and rg), B (junction of rg and lb), and C (base of lb). The thorax was fixed, but point C was connected to tg2 and the rest of the abdomen’s mass (m).

Springs and damping elements not shown; see S4B Fig). Modelled (dashed blue line) and measured unloading motions in the dorsoventral direction (black, dark grey, and

grey lines; measurements from the midabdomen of the same bug over three different cycles). The inset gives the same data over a shorter timescale, as indicated by the

green box. (C and D) Frequency response from measured and modelled outputs, respectively, in which the colour scale gives relative magnitude in arbitrary units on an

identical scale from low (blue) to high (red). The underlying data can be found within S1 Data. lb, Y-lobe; rg, ridge; tg2, tergum 2.

https://doi.org/10.1371/journal.pbio.3000155.g005
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as springs, storing elastic energy within their deformed structure when subject to resistance

against shortening from the exoskeleton. Muscles have previously been suggested to act as

springs [10], and here the elastic energy storage is in the range achievable by the cross-bridges

(energy density for paired Idlm1 and Idlm2 conservatively c. 2.47 J kg−1) [32]. We therefore

suggest that resistance to shortening of the contracted DLMs allows these muscles to act as an

elastic spring during the loading phase [31], storing energy slowly, then releasing this quickly

when triggered. A latch must be involved to prevent early release of energy, and a mechanical

constraint at the base of the Y-lobe could act as a latch that is removed when the DVMs con-

tract, acting to trigger the release of elastic potential energy stored in the DLMs.

During the unloading phase, a more straightforward passive elastic recoil is the likely mech-

anism, as captured by our mathematical model (Fig 5). Energy is stored in stiff springs within

the W-shaped exoskeleton linkage system that are deformed and therefore loaded during the

loading phase (Fig 4C), but which return to their resting position and are therefore unloaded

following the unloading phase (Fig 4E). The first elastic recoil event during the active loading

phase thereby stores the energy that is released during the second elastic recoil event, which is

the passive unloading phase. DVM relaxation is the likely trigger, with the membranous

connector and acting as a possible cuticular latch preventing early release (Fig 2). Rapid recoil

is made possible by DLM relaxation during the pretrigger step, and resilin between the Y-lobe

arms (S1 Fig) will act to limit damage during recoil. Additional muscles may modulate the

vibration during unloading (e.g., IIIvlm2), but the muscles are far too small to account for the

power density during unloading (c. 765,000 W kg−1 if normalising the mechanical power by

IIIvlm2 mass; Fig 2A and S1 Data).

In summary, the snapping organ uses two muscle contraction events per cycle and typically

repeats its cycle every 0.3–1 s [33], giving a muscle contraction frequency of under 5 Hz (S5A

Fig). In contrast, the frequencies of the mechanical impulses resulting from this motion as mea-

sured on the midabdomen were broadband under 3 kHz (shown for recoil in Fig 5C and 5D).

Crucially, from a communication perspective, the complete system also acts to transfer mechan-

ical motion from the snapping organ to the substrate. This represents another form of mechani-

cal power transformation, albeit one that is modulated by the substrate. For motion vertical to

the plant stem for one individual, the velocity ratio of motion measured on the plant relative to

motion measured on the insect midabdomen indicates that the velocity of motion is attenuated

by 83% (average −15.5 ± 6.2 dB), with lower attenuation in velocity of motion between the pro-

thorax and plant at 71% attenuation (average −10.5 ± 5.5 dB, S1 Data and S5 Fig).

Discussion

The consistency of the snapping organ’s morphology, and its systematic distribution across

planthoppers indicates that this most likely represents a conserved mechanism for generating

abdominal vibrations across the Fulgoromorpha. Previous studies have only examined delpha-

cid vibrational organs [24, 26, 34], but our analysis of their peculiar morphology indicates that

the drumming organs of delphacids are the exception and not the rule. The consistency of

snapping organ morphology across the rest of the planthoppers provides a clear mechanistic

explanation for the observed uniformity of their vibrational signals [25, 33]. These findings

reflect the fundamental importance of vibrational signals in planthopper communication.

The functional morphology of the snapping organ also reveals some remarkable functional

convergences and some equally remarkable mechanistic differences between the mechanical

communication mechanisms of planthoppers and their close relatives, the cicadas [12, 24].

Both make use of paired elastic recoil mechanisms and low-frequency active muscle contrac-

tions to enhance the efficiency and efficacy of communication, using exoskeletal integration to
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transform mechanical impulses into substrate vibration [2, 12]. Driven by a single muscle, the

cicadas’ tymbal organs use buckling instability of multiple stiff ribs to store and release elastic

energy, turning slow muscle contraction into fast motion as the ribs buckle [12]. Muscle relax-

ation and the release of energy stored in resilin pads causes the ribs to restraighten again, lead-

ing to a second step involving elastic energy release [15]. In contrast, the snapping organ uses

two different energy-storage mechanisms for paired elastic recoil: elastic storage in contracted

muscle for loading and elastic storage in the deformed exoskeleton for unloading. Instead of

buckling like the ribs of a tymbal, the arms of the Y-lobe in the snapping organ use snapping

motions similar to those used in fast raptorial strikes by jaws and claws [8, 9]. Finally, whereas

tymbal vibrations in most cicadas are often associated with resonant chambers that act to

transform motion into loud acoustic signals [12], the snapping organ is specialised for sub-

strate-borne vibration generation, with comparable muscle contraction rates that act to trans-

fer mechanical energy into vibrations of the substrate [12].

In conclusion, the unique biomechanics of the snapping organ demonstrate the general

importance of elastic recoil mechanisms in the fast motions of small arthropods, extending

our knowledge of such mechanisms beyond the simpler one-off ballistic motions that charac-

terise jumping, predatory strikes, and feeding. Elastic recoil is a very general mechanism allow-

ing small animals to overcome the limitations of their size and enabling robust vibrational

communication.

Materials and methods

Insects

Individuals of A. bilobum, the model planthopper species used in this study, were collected in

large numbers (n = 250) in late April 2017 as fourth/fifth-instar larvae or adults from Lycabet-

tus Hill, Athens, Greece, and were imported to Oxford, UK under DEFRA Plant Health

Licence no. 52972/198417/6. Larvae were reared into adulthood in mesh cages (47.5 cm × 47.5

cm × 47.5 cm) kept at 22–29˚C, 50% humidity, with a 16:8 photoperiod (light/dark).

In addition, the morphology of specimens from more than 130 taxa were examined, cover-

ing the entire phylogenetic spectrum of Fulgoromorpha. S1 Table details the techniques used

to examine the morphology of the snapping organ for each species, along with its preservation

method.

Morphological analysis

Planthoppers belonging to 12 families (including three specimens of A. bilobum: adult male,

female, and larva) were used for synchrotron radiation microcomputed tomography (SR-μCT)

at the TOMCAT beamline, Swiss Light Source (SLS), Paul Scherrer Institute, Switzerland (S1

Table). All specimens were scanned at a beam energy of 15.99 keV with a final pixel size of

1.625 μm, allowing visualisation of even the smallest muscles and nerves of the snapping organ

(Figs 1B and 2B and S2 and S3B–S3D), which were otherwise not detected by other techniques.

Three-dimensional reconstruction was carried out using Amira 6.1 software (Mercury Sys-

tems, Andover, MA, USA). All shown tomographic data (reconstructed TIFFs) for the two

imaged species (A. bilobum and Stenocranus minutus) are freely available at CXIDB (http://

cxidb.org/id-93.html) [35]. Colouration and labelling of figures were performed in Adobe

Illustrator CS6. In order to reveal the primary DVMs operating the snapping organ in A. bilo-
bum, the ventral junction between the Y-lobe and tg2 were excised from an ethanol-preserved

(70%) male (Fig 2C). The dissected sample was placed between two cover slips in 70% ethanol

and was imaged with a laser confocal scanning microscope (Olympus FV1000; Olympus,

Tokyo, Japan) at a laser wavelength of 488 nm. The morphologies of specimens belonging to
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all 21 planthopper families were examined under light microscopy. Images of the snapping

organ of four species of planthoppers shown in Fig 3 were taken using a Leica M165c micro-

scope equipped with a Leica DFC490 camera (Leica, Wetzlar, Germany). The final, stacked

images were combined using Helicon Focus (Helicon Soft, Kharkiv, Ukraine). Image bright-

ness adjustment was performed in Adobe Photoshop, and drawings were generated in Adobe

Illustrator CS6.

Laser Doppler vibrometry

To record vibrational signals, planthoppers were placed on a dried grass (Schedonorus gigan-
teus) stem (17 cm in height). The base of the stem was inserted inside an empty c. 1-cm–diam-

eter tube and was held in place by aluminium foil. Vibrational signals were recorded by a laser

Doppler vibrometer (Polytec PDV-100; Polytec, Waldbronn, Germany), focussed at different

positions approximately orthogonal to the stem and bug. A sampling frequency of 9.6 kHz was

used for recordings at a gain of 100 mm/s/V. Recording started immediately once the

planthoppers were placed on the stem. Each recording lasted 6 minutes and was repeated until

the animal either ended its vibrational call or after four recordings if no songs were present.

A total of 61 recordings were made, 31 on single planthoppers, 26 on male–female groups,

and four on male–male groups, using a total of 19 individuals (12 males, 7 females). Record-

ings from two individuals are included in S1 Data, in which the laser was focussed on the plant

stem (individual 1), bug prothorax (individual 1), bug genitalia (individual 2), or bug midab-

domen (individual 1). All vibrometry recordings were similar in the type and pattern of

motion observed, so the data presented in S1 Data and S5 Fig are assumed to be representative.

Attenuation of motion during loading and unloading from the midabdomen to the plant stem

and prothorax to the plant stem was calculated in decibels (S1 Data). Vibrometry figures were

drawn using Raven Lite 2.0 (Cornell Lab of Ornithology, Ithaca, NY, USA) and OriginPro 8.

To stimulate vibration generation, we used playback tracks of recorded songs. The stem was

vibrated 7.3 cm from the base by a pin glued to a small piezo disc (RS Components, Corby,

UK), which was glued on an inverted plastic cup. Playback songs consisted of prerecorded and

amplified vibrational signals of both sexes. All males responded to the playback by emitting a

series of pulses for several minutes.

High-speed video recordings

The motion of the snapping organ in A. bilobum was captured with a high-speed camera

(Grasshopper3 2.3 MP Colour USB3 Vision, Sony Pregius IMX174; Point Grey, Richmond,

BC, Canada) mounted on a Leica S8 AP0 stereomicroscope, recording at a rate of 100 frames

s−1. Videos were recorded directly to a computer using Spinnaker SDK-1.3.0.21 software

(Point Grey). A total of three males were video recorded, and a movie and still frames from

one male are given in Fig 4 and S1 Movie. The males were filmed over multiple cycles, frames

were classified into the different stages of the mechanism, and the clearest frames were chosen

from these classified groups within Fig 4. Pixel coordinates of three points on the bug protho-

rax were quantified for each frame used in Fig 4 to check for alignment of the bug within the

video frame over time. Standard deviation over the five frames for each of the three points was

within the order of 0.01 pixels, suggesting the bug has limited movement within the video

frame over successive cycles (also supported by S1 Movie). Prior to recording, it was necessary

to expose the snapping organ by removing the fore and hind wings with a scalpel. The males

were then left on their host plant for one hour to recover after wing removal before playback

recordings were started to stimulate vibration generation. Based on our observations, the
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motion captured in S1 Movie is representative of the vibration-generation mechanism across

different individuals.

Calculations and modelling

The vibrometry recordings were analysed to calculate the peak energy and power of the load-

ing and unloading motions (S1 Data). Maximum and minimum peak velocities and the tim-

ings of the peaks were extracted from the vibrometry data. The peak kinetic energy of the

motion was calculated from the speed of the measured dorsoventral translation of the abdomi-

nal mass, and the corresponding mechanical power was determined by dividing this peak

kinetic energy by the time taken to reach it from rest. The muscle power density that would be

required to generate this motion through direct muscle contraction was calculated by dividing

these values by the relevant muscle mass, as measured from SR-μCT measurements of A. bilo-
bum, modelling muscles as cylinders with a density of 1,060 kg m−3 [36].

A mathematical model was developed to support the interpretation that unloading was due

to elastic recoil of the system (Figs 5 and S4). The model included the abdomen as a mass

attached to two rigid bars in series (anterior Y-lobe arm and ridge, respectively), each with a

stiff rotational spring at their junctions. The anterior bar was fixed to a surface, representing

the thorax. Springs and dampers acting on the mass of the abdomen modelled the combined

action of the muscles, resilin, other exoskeletal components, and interior morphology on the

motion of the mass in the dorso–ventral and anterior–posterior planes. Full details of the

model are given in S1 Methods.

Supporting information

S1 Fig. Dissected snapping organ of a male A. bilobum. (A) Bug viewed under light micros-

copy; (B) bug excited by UV light, the externally visible fluorescence indicating the presence of

rs on the membrane between the arms of the lb (arrowed). Dashed arrow indicates other areas

of fluorescence on the abdomen that are not consistent between specimens. rs whose presence

is revealed by fluorescence on the metathorax is unlikely to participate in the snapping organ

mechanism. lb, Y-lobe; rs, resilin; UV, ultraviolet

(TIF)

S2 Fig. Abdominal nervous system of a generalised planthopper. Nervous system recon-

structed from SR-μCT of A. bilobum and an unidentified nogodinid and fulgorid (S1 Table),

whose gross morphology of the nervous system was similar. The muscles of the second abdom-

inal segment (top right) are innervated from the second abdominal nerve. Muscles from the

first abdominal segment are innervated from their corresponding nerve. Innervation for mus-

cles IIidvm1-IIisdvm could not be traced. idvm, internal dorsoventral muscle; isdvm, interseg-

mental dorsoventral muscle; msg, mesothoracic ganglion; n. ab. 1, abdominal nerve of

segment 1; n. ab. 2, abdominal nerve of segment 2; n. ab. 3, abdominal nerve of segment three;

n. ab. 4–9, abdominal nerve of segments four to nine; n. mt., metathoracic nerves; SR-μCT,

synchrotron radiation microcomputed tomography

(EPS)

S3 Fig. Drumming organ of a generalized non-asiracine male delphacid, S. minutus. (A)

Dorsal view of drumming organ in relaxed conformation in an ethanol-preserved specimen.

(B) False-colour SR-μCT volume rendered image of the drumming organ. The top part of the

organ is virtually sliced off, revealing the attachments of muscle Idlm1. (C) Lateral view of the

drumming organ. (D) The same image, virtually made transparent to show the DVMs operat-

ing the drumming organ and their attachments. Dashed lines show the boundaries of the
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exoskeletal components of the drumming organ. Colour coding of structures: yellow = rg;

brown = modified lb; green = tg2; pink = tg1. Tomographic data for this species are freely

available at CXIDB: http://cxidb.org/id-93.html. cp, central plate; DLM, dorsal longitudinal

muscle; DVM, dorsoventral muscle; lb, Y-lobe; lt, transverse list of modified Y-lobe; rg, ridge;

SR-μCT, synchrotron radiation microcomputed tomography; tg1, tergum one; tg2, tergum 2

(TIF)

S4 Fig. Mathematical model of snapping organ. Two rigid bars articulate at points 0, B, and

C, as dictated by torsion springs k3 and k4. The first rigid bar is attached to a fixed surface at 0,

and a lumped mass (m) is attached to the second rigid bar at B. A system of linear springs and

dampers connects to the mass at B. All parameters are measured from the real system (see S1

Methods), with the exception of k1, k2, λ1, and λ2, which were fitted by eye to match the mea-

sured motion (Fig 5). The model starts in the loaded state and then moves to the relaxed state;

thus, unloading is modelled.

(TIF)

S5 Fig. Vibrometry recordings of vibration generation in a male A. bilobum, in which

black, grey, and light grey represent recordings from the midabdomen, prothorax, and

plant stem, respectively. Three repeats are plotted on each panel. (A) Time–velocity plots of

recordings across multiple cycles, labelling the location of L and U phases over time. (B) Data

from panel A at higher temporal resolution for L, aligned in the time axis by the first peak max-

imum amplitude. (C) Data from panel A at higher temporal resolution for U, aligned in the

time axis by the first peak maximum amplitude. Sample rates were 9.6 kHz, and all data are

from the same individual. Data also shown in S1 Data, including attenuation calculations for

minimum and maximum peaks during loading and unloading. L, loading; U, unloading

(EPS)

S1 Table. Species list of examined taxa, along with data on individual type of preservation,

observation method, and depository. Examination of dry mounted specimens using micros-

copy only allowed documentation of exoskeletal morphology, while musculature was also

studied in ethanol-preserved specimens. Use of SR-μCT permitted examination of the exoskel-

eton, musculature, and innervation of the snapping organ. Illustrations from the literature

allowed examination of the external morphology of the vibrational organs of certain delpha-

cids. The abovementioned observation methods allowed us to document the presence of a

snapping organ (based on its defining characters) in all examined taxa, with the exception of

non-Asiracinae delphacids, the latter having modified snapping organs. BMNH, Natural His-

tory Museum, London; DPC, Davranoglou Private Collection; MMBC, Moravian Museum,

Brno; OUMNH, Oxford University Museum of Natural History; SR-μCT, synchrotron radia-

tion microcomputed tomography; UG, University of Gdansk

(DOCX)

S2 Table. Muscles operating the snapping organ of Fulgoromorpha, based on dissection of

ethanol-preserved specimens and SR-μCT scans. Function of muscles was inferred by high-

speed videography, power calculations of laser Doppler vibrometry recordings of A. bilobum,

and artificial contraction of the respective muscles using a pair of forceps in ethanol-preserved

specimens. SR-μCT, synchrotron radiation microcomputed tomography

(DOCX)

S3 Table. List of previous names for planthopper muscles (all delphacids), homologised

with the terminology applied in the present study for the snapping organ musculature.

Inferences of homology and segmental identity were based on muscle innervation and location
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from SR-μCT and ethanol-preserved specimens. En-dash (–) denotes that the character is

either absent or not reported by the study in question. SR-μCT, synchrotron radiation micro-

computed tomography

(DOCX)

S4 Table. Character states representing major transformations of the snapping organ in

Fulgoromorpha. Characters of delphacids largely based on the meta-analysis of Asche, 1990

[34] and our own observations of ethanol-preserved and SR-μCT specimens. Order of charac-

ter states does not imply evolutionary sequence. SR-μCT, synchrotron radiation microcom-

puted tomography

(DOCX)

S1 Data. Three tabs show (i) vibrometry data from the midabdomen during loading and

unloading (three measurements from individual 1), along with calculations of peak coordi-

nates, time since x-axis crossing, and attenuation of peak motions from midabdomen to plant

substrate and prothorax to plant substrate; (ii) vibrometry data from the laser focussed on

plant substrate (individual 1), prothorax (individual 1), and bug genitalia (individual 2) during

loading and unloading; and (iii) power calculations.

(XLSX)

S1 Movie. High-speed camera recordings (100 frames per second) of the snapping organ of

a male A. bilobum in action. 0–10 s, lateral view; 10–15 s, caudal view; 15–20 s, dorsal view.

(MP4)

S1 Methods. Gives additional detail for the methods employed, including detail on the

insects, morphological analysis, power calculations, and mathematical model.

(DOCX)

S1 Text. Gives an extended description of the snapping organ in our model species A. bilo-
bum (Issidae), outlines the evidence of the presence of the snapping organ in other

planthopper species, and gives an in-depth description of the delphacid ‘drumming

organ’.

(DOCX)
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