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)e influx of hospital patients has become common in recent years. Hospital management departments need to redeploy
healthcare resources to meet the massive medical needs of patients. In this process, the hospital length of stay (LOS) of different
patients is a crucial reference to the management department. )erefore, building a model to predict LOS is of great significance.
Five machine learning (ML) algorithms named Lasso regression (LR), ridge regression (RR), random forest regression (RFR), light
gradient boosting machine (LightGBM), and extreme gradient boosting regression (XGBR) and six feature encoding methods
named label encoding, count encoding, one-hot encoding, target encoding, leave-one-out encoding, and the proposed encoding
method are used to construct the regression prediction model. )e Scikit-Learn toolbox on the Python platform builds the
prediction model. )e input is the dataset named Hospital Inpatient Discharges (SPARCS De-Identified) 2017 with 2343569
instances provided by the New York State Department of Health verify the model after removing 2.2% of the missing data, and the
model ultimately uses mean squared error (MSE) and coefficient of determination (R2) as the performance measurement. )e
results show that the model with the LightGBM algorithm and the proposed encoding method has the best R2 (96.0%) and MSE
score (2.231).

1. Introduction

Globally, due to the pandemic and population changes,
hospital inpatient departments are becoming more and
more likely to face the influx and congestion of patients [1, 2]
and hospitals in anticipation of the need to redeploy
healthcare resources to meet the massive medical require-
ments of patients [3]. )e LOS indicates the number of days
between admission and discharge, and it can often affect the
admission plan of emergency patients [4] or whether there is
the possibility of transfer [5]. Moreover, when technical
means can reduce the long duration of LOS, the con-
sumption of healthcare resources would also be reduced to
some extent [6]. However, the inpatient department does
not know when existing patients will leave the hospital in
most cases. If hospitals could accurately predict LOS, they
could implement and improve healthcare resource man-
agement correctly [7, 8]. )erefore, this study tries to es-
tablish an ML model using the information about the

diagnosis, treatment, service, and cost of individual patients
to predict LOS.

In the study, five ML algorithms (LR, RR, RFR, XGBR,
and LightGBM) and six feature encoding methods (label
encoding, count encoding, one-hot encoding, target
encoding, leave-one-out encoding, and the proposed
encoding method) were used and compared during the
model building. )e rest of the study is organized as follows:
Section 2 reviews some related studies on LOS. Section 3
introduces the dataset used in this study and each step of the
proposed framework in detail. Section 4 presents the ex-
perimental results and then discusses them. Section 5 draws
the conclusions and direction of future work.

2. Related Works

Several researchers have conducted related studies on pre-
dicting hospital LOS. Some of them discrete the LOS value
that transforms the regression problem into classification.
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For example, Bacchi et al. [9] proposed an artificial neural
network (ANN)-based prediction model for predicting the
LOS in stroke patients. )e objective is to predict whether
the LOS was less than 8 days. And they finally achieved 0.62
and 0.66 area under curve (AUC) values on the inner and
outer validation sets. Similarly, Daghistani et al. [10] con-
verted the LOS values into three classes (<3 days, 3–5 days,
and >5 days) and then used information gain (IG) to select
features. )ey compared Random Forest (RF), Bayesian
Network (BN), Support Vector Machine (SVM), and ANN
technology for LOS prediction. )e final RF model out-
performed all other models (sensitivity (0.80), accuracy
(0.80), and AUROC (0.94)). Furthermore, Zheng et al. [11]
compared two discrete methods that are two (1-3 days and
≥4 days) and three (1–3 days, 4-8 days, and ≥9 days) classes.
Six ML algorithms were applied to the model to make
comparative predictions and finally obtained the best ac-
curacy score (ACC) of 0.7689 and 0.6594 in the training and
test sets, respectively. Furthermore, Ling et al. [12] used the
RF algorithm and general medical characteristics to predict
LOS in patients in the intensive care unit (ICU), and the
AUC value of the optimal model is 0.86.

)e limitation of classification-type studies is their
generally poor performance and difficulty in guiding long-
term LOS (e.g., LOS≥ 10 days) prediction due to the small
number of classes. Models of this discrete type are unrealistic
to deploy and not recommended when hospitals hope to
predict the LOS precisely (e.g., ±1 day).

Data balancing techniques can improve model perfor-
mance in predicting LOS. For example, Naemi et al. [13]
proposed a multistage data processing method. )e method
first used k-nearest neighbors (KNN), decision tree (DT),
gradient boosting (GB), Bayesian ridge (BR), Gaussian
process (GP), and RF for missing value imputation and then
used SMOTE to overcome data skewness. After these steps,
the model used DT to predict the hours of stay. It ended up
with an R2 score of 0.729. Alsinglawi et al. [14] constructed a
LOS prediction framework for lung cancer patients using RF
and oversampling techniques (SMOTE and ADASYN). )e
framework gets an AUC score of 100% on the MIMIC-III
dataset.

)e datasets used in the above two studies have been
artificially altered. Even though model performance is good
on synthetic balanced data, it often does not perform well on
unbalanced data. As a result, models using data balancing
techniques are difficult to deploy because data tend to be
biased in real life.

According to historical data, regression is the method
that occupies the majority proportion of LOS prediction
[15]. For example, Siddiqa et al. [16] used multiple linear
regression (MLR), decision tree regression (DTR), LR, RR,
XGBR, and RFR techniques to predict LOS. )ey found that
RFR is the best model that achieved the 5 MSE and 0.92R2

scores. In another study, Abbas et al. [17] established a
model based onmultilayer perceptron (MLP) to predict LOS
for total knee arthroplasty.)emodel uses medical data such
as a patient’s white blood cell count and type of anesthesia,
and finally received 0.715 and 0.690 MSE scores on training
and test sets, respectively. Zhong et al. [18] compared three

models based on backpropagation neural network (BPNN),
support vector regression (SVR), and principal component
regression (PCR). )e best experimental result of the 1.5254
mean absolute error (MAE) score is on the PCR model. )e
study of Kolchun et al. [19] established a prediction model
for passenger LOS after a motor vehicle collision. After
comparing variousMLmethods, theMAE of LOS prediction
by the neural network (NN) algorithm reaches 2.23.

Previous regression models have two limitations. First,
some models are built on specific or posthospital physical
examination data, so they lack generality. )e other model
built on datasets with high versatility is insufficient in
performance (R2< 0.95). Based on the deficiencies of the
three model types, this study attempts to propose a model
that does not use artificially synthesized data and excels in
both generality (e.g., using prehospital diagnosis results) and
performance.

3. Materials and Methods

3.1. DataDescription. )e study used the Hospital Inpatient
Discharges (SPARCS De-Identified) 2017 dataset provided
by the New York State Department of Health [20]. )is
dataset uses the Open Database License (ODbL 1.0), which
grants anyone to use the dataset for the duration of any
applicable copyright and Database Rights. )ese rights ex-
plicitly include commercial use and do not exclude any field
of endeavor [21]. )e dataset contains 2343569 instances
with 34 features that de-identify the detailed information of
patient characteristics, diagnosis, treatment, services, and
costs.)e “Length of Stay” in the dataset is the target feature,
while the purpose of the proposed model is to predict it by
others. Table 1 shows the description of the features of the
dataset.

3.2."e Proposed Framework. )is study uses a few steps to
build a complete application model. First, the raw data use
visualization to analyze the internal relationship, and then
the data are preprocessed for duplicates, missingness, and
meaningless information.)e third step determines whether
each feature of the dataset positively affects the target, and
the model only needs the positive partial. )en the six
encodings make the information in the dataset unusable into
a usable form.

)e above steps make modifications to the raw data.
)en the model divides data into a training set and a test set
in a 99: 1 ratio, where the training set uses a 10-fold cross-
validation technique to improve model reliability. After the
five ML algorithms have trained the model, MSE and R2 will
judge the model performance to support analysis.

Figure 1 presents the framework proposed in this study.
And this framework fully expresses the methodology used to
construct the model for this study. )e following sections
explain each step of the framework in detail.

3.3. Data Visualization Analysis. )e study leverages visu-
alization techniques to analyze datasets and find relation-
ships between independent and dependent features. )e
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results produced by visualization methods are usually easily
understandable by people who are not necessarily knowl-
edgeable about ML [22]. Table 1 shows that the dataset has
two or three class categorical, ordered categorical, random
categorical, and continuous features, in which the target
“Length of Stay” belongs to the continual type.

Figure 2 shows the density distribution of the target
feature. It belongs to the long-tail distribution with an av-
erage value of 5.38. )erefore, all analysis methods that
assume the normal distribution are less suitable for this
study. Figure 3 shows the proportion of LOS in different
categories of patients in the three features of “Gender,” “APR
Medical Surgical Description,” and “Emergency Department
Indicator.” )e results showed that the LOS of the female
patients was longer than that of the male patients but was
uniform. In the middle of the figure, the LOS of medical
inpatients accounts for about three-quarters of the total, of
which the type is much longer than surgical inpatients. And
the LOS of emergency patients is about twice that of non-
emergency patients, showing that the condition of emer-
gency patients is more ill and needs a longer recovery time.
Figure 4 shows the density distribution of two continuous
features, and the trend is similar to Figure 2. )is figure

demonstrates that the two features correlate with the target.
Finally, Figure 5 shows the LOS of two ordered categorical
features, which shows that the younger the age and the
higher the disease mortality rate, the shorter the LOS.

3.4. Data Preprocessing. Outliers and missing values during
model building would affect the model performance [23],
then data preprocessing is crucial. Among the 34 features,
the missing value of “Payment Type 2” is missing com-
pletely at random (MCAR) and is missing at random
(MAR) [24] in “Payment Typology 3” and “Birth Weight.”
)e proportion of their missing values is about 37.5%,
74.1%, and 90.3% [25]. Hence the process removed three
features directly. )e remaining dataset also needs to
remove about 2% of the instances that still contain MCAR
orMAR, as well as 20 samples with the value of “Unknown”
in the “Gender” feature. It is worth mentioning that all
eigenvalues “120+” were uniformly changed to “120” for
the convenience of calculation in the feature “Length of
Stay.” Finally, there are 2304296 instances with 31 features
left in the dataset that the preprocessing process deleted
2.2% instances.

Table 1: Feature description of the dataset.

Feature name Type Description
Hospital Service Area

Radom categorical

Describe the location of the hospitalHospital County
Permanent Facility ID Hospital service informationFacility Name
Operating Certificate Number

Patient diagnostic information

Type of Admission
CCS Diagnosis Code
CCS Diagnosis Description
CCS Procedure Code
CCS Procedure Description
APR DRG Code
APR DRG Description
APR MDC Code
APR MDC Description
APR Severity of Illness Code
APR Severity of Illness Description
Payment Typology 1

Patient cost informationPayment Typology 2
Payment Typology 3
Zip Code - 3 digits

Patient personal information

Race
Ethnicity
Patient Disposition
Birth Weight
Age Group Ordered categoricalAPR Risk of Mortality Patient diagnostic informationAPR Medical Surgical Description )ree classesGender Patient personal information
Discharge Year One class Patient treatment informationAbortion Edit Indicator Binary classesEmergency Department Indicator Patient service information
Length of Stay

Continuous
Target feature

Total Charges Patient cost informationTotal Costs
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Figure 1: Visualization of the proposed framework.
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Figure 2: Density plot of length of stay.
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3.5. Feature Selection. Among the remaining 31 features of
the dataset after preprocessing, the five features of “CCS
Diagnosis Description,” “CCS Procedure Description,”
“APR DRG Description,” “APR MDC Description,” and
“APR Severity of Illness Description” are different repre-
sentations of the same information as the five features of
“CCS Diagnosis Code,” “CCS Procedure Code,” “APR DRG
Code,” “APR MDC Code,” and “APR Severity of Illness
Code,” respectively, which are meaningless to the model and
therefore deleted.

Among the 24 remaining features of the dataset, the
“Length of Stay” is the continuous target feature. And others
are divided into four types (Binary, Ordered Categorical,
Random Categorical, and Continuous). Regarding the
correlation between them and the target feature, it is nec-
essary to use various techniques to investigate.

3.5.1. Binary Features. )e point-biserial correlation is the
value of Pearson’s product-moment correlation when one of
the variables is dichotomous and the other variable is metric
[26]. )e calculation formula of the point-biserial correla-
tion coefficient is as follows:

cpb �
Y1 − Y0

sn

�������
n1n0

n(n − 1)

􏽲

, (1)

where n1 and Y1 represent the frequency of the binary
feature X � 1 and the mean of the corresponding target
feature, respectively. n0 and Y0 represent the frequency of
the binary variable X � 0 and the mean of the corresponding
target feature, respectively. And the sn in the denominator
represents the standard deviation of the target feature [26].
Finally, the closer the absolute value of cpb is to 1, the higher
the correlation between features.

3.5.2. Ordered Categorical Features. )e correlation of or-
dered categorical features with continuous features requires
first converting the latter to the former type. )e two most
popular measures of association for this feature type are
Kendall’s tau and Spearman’s rho [27]. )is study uses the
Spearman coefficient for correlation analysis, and the gen-
eral idea is as follows:

)e method of Spearman first converts the string data
Xi � [Xi

1, Xi
2, . . . Xi

n] in the ordered categorical features into
numerical grade data xi � [xi

1, xi
2, . . . xi

n]. Table 2 shows the
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Figure 4: Density plot of Total Costs and Total Charges.
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conversion detail. And the data y � [y1 � 1, y2 � 2, . . . yn �

120] in the target feature are used directly without modi-
fication. )e method then uses formula (2) [28, 29] to
calculate the correlation between x and y. )e absolute value
of the result ρX,Y is between 0 and 1, and the closer to 1, the
more correlated the features are.

ρx,y �
􏽐(x − x)(y − y)

���������

􏽐(x − x)
2

􏽱 ���������

􏽐(y − y)
2

􏽱 . (2)

3.5.3. Random Categorical Features. Since the target feature
does not satisfy the normal distribution (Figure 2), it is
suitable to use the Kruskal–Wallis test to calculate the
correlation with the target feature.)e Kruskal–Wallis test is
a nonparametric statistical test that assesses the differences
among three or more independently sampled groups on a
single, nonnormally distributed continuous feature [30].)e
basic idea is as follows:

)e Kruskal–Wallis test first arranges the eigenvalues in
ascending order, then finds their rank Ri, and examines
whether there is a significant difference in the mean μi of the
ranks of each eigenvalue. H0: μ1 � μ2 � . . . μk is the null
hypothesis, and the alternative hypothesis H1 is that at least
two μi are not equal. )e calculation formula [31] is as
follows:

H �
12

N(N + 1)
Σ
i�1

k

niR
2
i − 3(N + 1). (3)

)rough H in the above formula, the Kruskal–Wallis test
can query the critical value table to get the corresponding P
value. If the P value is below the significance level, there is a
correlation between the features. And this study sets the
threshold at 0.01.

3.5.4. Continuous Features. Since the target feature is not
normally distributed (Figure 2), its correlation with con-
tinuous features needs to be judged by the Spearman cor-
relation coefficient [32].

Finally, Table 3 summarizes the correlation between each
feature and the target feature. And the results show the
model could keep all features.

3.6. Feature Encoding. All categorical attributes of the
dataset are represented by strings, while machine learning
algorithms can only calculate numerical eigenvalues. Hence
these features need to be rerecorded into numbers.

3.6.1. Label Encoding. In the label encoding method, the
eigenvalues of each categorical feature are first sorted by
frequency from small to large and then are assigned a value
from 0 to N− 1 in order (N indicates how many different
eigenvalues the feature has). Even if there is no relationship
between the eigenvalues before encoded, the algorithm
would regard them according to the size of the values.
Table 4 shows a sample of this method on one particular
feature.

3.6.2. Count Encoding. Count encoding is a method that
uses the frequency of eigenvalues as labels. In this method,
the frequency of one feature will replace the value of this
feature. And different eigenvalues may be encoded into the
same number. When the frequency of categorical features
correlates with the target feature, this method has positive
significance for model training.

3.6.3. One-Hot Encoding. When a feature with M unique
values, one-hot encoding will create M corresponding new
features, where the new value (1 or 0) indicates whether the
instance has the represented original categorical value. Ta-
ble 5 demonstrates the principle of one-hot encoding.
However, there are too many eigenvalues in discrete features
in the dataset. If all features use one-hot encoding, more than
1500 new will be generated and will be too sparse. Hence,
only features with a small number of unique values will use
this method.

3.6.4. Target Encoding. Target encoding is a preprocessing
scheme for high-cardinality categorical features based on a
well-established statistical approach to models (empirical
Bayes). It is a method based not only on the independent
eigenvalues but also on the corresponding dependent feature
[33]. )is method depends on the distribution of dependent
features, but the feature dimension remains unchanged after
encoding, and its calculation formulas (4) and (5) [33] are as
follows:

Si � λ ni( 􏼁
􏽐k∈Li

Yk

ni

+ 1 − λ ni( 􏼁( 􏼁
􏽐

NTR

k�1 Yk

nTR

, (4)

λ ni( 􏼁 �
1

1 + e
− (n− k/f)

. (5)

In formula (4), 􏽐k∈Li
Yk represents the sum of the cor-

responding target feature’s values when the categorical ei-
genvalue is i. Its denominator ni represents the frequency of
categorical eigenvalue i. And the 􏽐

NTR

k�1 Yk on the right side of
the formula represents the sum of the values of the target
feature in the training set.

Table 2: Numerical conversion details of ordered categorical
features.

Feature name Original string
data

Converted numerical
data

Age Group

“0 to 17” 0
“18 to 29” 1
“30 to 49” 2
“50 to 69” 3

“70 or older” 4

APR Risk of
Mortality

“Minor” 0
“Moderate” 1
“Major” 2
“Extreme” 3
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Table 4: Label encoding example for the “Patient Disposition” feature.

Raw eigenvalues Sorted eigenvalues Numerical eigenvalues
Home or self-care Short-term hospital 0
Skilled nursing home Expired 1
Court/law enforcement Hospice - medical facility 2
Skilled nursing home Home or self-care 3
Court/law enforcement Home or self-care 3
Short-term hospital Skilled nursing home 4
Court/law enforcement Skilled nursing home 4
Home or self-care Court/law enforcement 5
Expired Court/law enforcement 5
Hospice - medical facility Court/law enforcement 5

Table 5: One-hot encoding example for the “Race” feature.

Raw feature New features after numerical encoding
Race Race-White Race-Black/African American Race-other race
White 1 0 0
White 1 0 0
White 1 0 0
Black/African American 0 1 0
Black/African American 0 1 0
Black/African American 0 1 0
Black/African American 0 1 0
Other race 0 0 1
White 1 0 0

Table 3: Feature importance and selection results.

Feature name Correlation or P value Retain feature
Gender 0.053

Yes

APR Medical Surgical Description 0.043
Emergency Department Indicator 0.051
Hospital County P � 2.2e − 16
Operating Certificate Number P � 2.2e − 16
Permanent Facility Id P � 2.2e − 16
Facility Name P � 2.2e − 16
Zip Code - 3 digits P � 2.2e − 16
CCS Diagnosis Code P � 2.2e − 16
CCS Procedure Code P � 2.2e − 16
APR DRG Code P � 2.2e − 16
APR MDC Code P � 2.2e − 16
Patient Disposition P � 2.2e − 16
Hospital Service Area P � 2.2e − 16
Ethnicity P � 2.2e − 16
Type of Admission P � 2.2e − 16
Payment Typology 1 P � 2.2e − 16
Race P � 2.2e − 16
APR Severity of Illness Code P � 2.2e − 16
APR Risk of Mortality 0.376
Age Group 0.228
Total Charges 0.602
Total Costs 0.651
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k in formula (5) represents the minimum times the
eigenvalue must appear in the calculated feature. And λ
represents the smoothing coefficient that the higher the
value, the stronger the regularization of the formula.

3.6.5. Leave-One-Out Encoding. )e leave-one-out encoding
method uses the same principle and formula as target encoding.
But to reduce the influence of outliers, when calculating the
encoding value of an instance, the program will ignore the
current and only use the remaining for target encoding.

3.6.6. Proposed Encoding Method. One-hot encoding
method can obtain the information of categorical features
well, but it will lead to sparse data.)e other methods do not
have the problem of sparsity but will lose a lot of data in-
formation. )is study attempts to balance model perfor-
mance and data dimensionality, thus combining two
encodings to form a new method. Table 6 shows the
encoding adopted for each feature.

3.7. Comparative Algorithms

3.7.1. Lasso Regression. LR is to fit the dataset D � (x1
1,􏼈

x2
1, . . . ,x

m
1 ,y1),(x1

2,x
2
2, . . . ,xm

2 ,y1), . . . ,(x1
n,x2

n, . . . ,xm
n ,y1)} (m

represents the number of features and n indicates the
number of instances) with a linear function (6) and mini-
mize the cost function (7) [34], where f(x) represents the
predicted values and yi is true values. )e purpose of the
operation is to find a solution (W,b) that minimizes J(w).
LR imposes constraints on the model parameters (i.e., adds a
penalty λ‖wj‖ to the loss function) that shrink the regression
coefficients to zero [35]. For example, if a feature highly
correlates with the target, LR will select it and then shrink
others uncorrelated with zero and exclude them from the
model. )is approach reduces bias and improves the ac-
curacy of linear regression models.

f(x) � W
T

· X + b

� 􏽘
n

j�0
wjx

(i)
j ,

(6)

J(w) � 􏽘
m

i�1
yi − 􏽘

n

j�0
wjx

(i)
j

⎛⎝ ⎞⎠

2

+ λ wj

�����

�����. (7)

By calculating the partial derivative concerning w of the
residual on the left side and the penalty term on the right side
of formula (7) could obtain formulas (8) and (9).

z

zwk

RSS(w) � − 2􏽘
m

i�1
x

(i)
k y

(i)
− x

(i)
k 􏽘

n

j�0,j≠ k

wjx
(i)
j − wkx

(i)2

k
⎛⎝ ⎞⎠, (8)

z

zwk

R(w) �

− λ, wk < 0,

[− λ, λ], wk � 0,

λ, wk > 0,

⎧⎪⎪⎨

⎪⎪⎩
(9)

where x
(i)
k 􏽐

n
j�0,j≠ k wjx

(i)
j − wkx

(i)2

k � x
(i)
k 􏽐

n
j�0 wjx

(i)
j . Set

Pk � 􏽐
m
i�1[x

(i)
k (y(i) − 􏽐

n
j�0,j≠ k wjx

(i)
j )] and Zk � 􏽐

m
i�1 x

(i)2

k ,
then combine (8) and (9) to obtain the partial derivative of
(7) and solve it:

wj �

Pk +(λ/2)( 􏼁

Zk

, Pk < −
λ
2

􏼠 􏼡,

0, −
λ
2

􏼠 􏼡≤Pk ≤
λ
2

􏼠 􏼡,

Pk − (λ/2)( 􏼁

Zk

, Pk >
λ
2

􏼠 􏼡.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(10)

3.7.2. Ridge Regression. RR is similar to LR and uses the
linear formula (6). It obtains regression coefficients at the
cost of losing some information and reducing accuracy
by giving up unbiasedness. RR adds a penalty term to the
loss function in standard linear regression to alleviate
multicollinearity and overfitting problems [36]. Its es-
timates of regression coefficients tend to become too
large in absolute values, and some may even have the
wrong sign [37]. Formula (11) [38] is the loss function of
RR, which is the penalty term added by λ‖wj‖

2. And λ is a
hyper-parameter used to control the strength of the
penalty. )e larger the λ, the simpler the generated
model.

Jβ(β) � 􏽘
n

i�1
yi − 􏽘

j

wjx
(i)
j

⎛⎝ ⎞⎠

2

+ λ wj

�����

�����
2
. (11)

3.7.3. Random Forest Regression. RFR adopts the Bootstrap
[39] technique to randomly divide the dataset D into n

subsample sets D1, D2, . . . , Dn􏼈 􏼉. )e CART regression tree
will build on these subsets and output the results, and the
final RFR outputs the average of all predictions. )ere is no
relationship between each regression tree, an increase in the
number of trees does not cause the RFR to overfit the data
[40]. Furthermore, RFR is insensitive to multicollinearity,
and the results are robust to missing and unbalanced data
[41].

)e 31 features of each divided subsample set Di are
set to A � A1, A2, . . . , A31􏼈 􏼉. )e CART algorithm first
sorts the features Ai and then tries to use each interval
between adjacent feature values as the segmentation
point S. )e set of eigenvalues on the left side of S is
R1 (Ai, S) and the right side is R2 (Ai, S) (12). c1 and c2 are
the mean values of the target feature corresponding to
R1 (Ai, S) and R2 (Ai, S), respectively (13). )e next step of
the algorithm is to find which S can make the MSE of the
feature minimum (14) and then use the segmentation
point S together with the feature as the node of the tree.
After the algorithm divides all features, the CART re-
gression tree uses the average of all leaf nodes as the
output (15) [42].
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R1 Ai, S( 􏼁 � x|x
Ai ≤ S􏽮 􏽯,

R2 Ai, S( 􏼁 � x|x
Ai ≤ S􏽮 􏽯,

(12)

c1 � ave yi|xi ∈ R1 Ai, S( 􏼁( 􏼁,

c2 � ave yi|xi ∈ R2 Ai, S( 􏼁( 􏼁,
(13)

minAi,s
� minc1

􏽘

xi∈R1 Ai,s( )

yi − c1( 􏼁
2

+ minc2
􏽘

xi∈R2 Ai,s( )

yi − c2( 􏼁
2⎡⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎦, (14)

f(x) � 􏽘
31

m�1
cmI x ∈ Rm( 􏼁. (15)

3.7.4. Extreme Gradient Boosting Regression. Unlike RFR in
the bagging form, XGBR is a boosting integrated ML al-
gorithm based on the CART regression tree, which belongs
to the regression implementation of extreme gradient
boosting (XGBoost). It uses the second-order Taylor ex-
pansion and adds regularization to the objective function.
And the algorithm adopts accurate greedy ideas in the tree
generation [43]. Finally, XGBR uses the sum of the pre-
dictive values of all regression trees for the sample as the
output of this sample in the system, and the definition
function (16) [43] is as follows:

􏽢yi � 􏽘
K

k�1
fk Xi( 􏼁, fk ∈ F, (16)

where Xi is the sample feature and fk(Xi) is the prediction
of the Kth tree. )e sum of values of all trees is the
predicted value 􏽢yi for the entire model. Since the algo-
rithm belongs to the additive model, the predicted value of

the Kth tree 􏽢yk
i can be expressed by formula (17). Let the

sum of the truth values be yi. Formula (18) [43] sum-
marizes the objective function.

􏽢y
k
i � 􏽢y

k− 1
i + fk Xi( 􏼁, (17)

min L(φ) � 􏽘
i

l 􏽢yi, yi( 􏼁 + 􏽘
k

Ω fk( 􏼁 � 􏽘
i

l fk Xi( 􏼁 + 􏽢y
k− 1
i , yi􏼐 􏼑 + 􏽘

k

Ω fk( 􏼁⎛⎝ ⎞⎠,

(18)

where 􏽐kΩ(fk) � 􏽐
K− 1
i�1 Ω(fj) +Ω(fK). 􏽐il(􏽢yi, yi) is the

loss function between the predicted and true values that is
MSE (11) in XGBR. Since the results of K-1 trees have been
determined and remain unchanged when training the Kth
tree, 􏽐kΩ(fk) can convert to Ω(fK). )en, the Taylor
expansion can transform the objective function on the right
side of formula (18) into (19).

min L(φ)≃􏽘
i

l 􏽢y
k− 1
i , yi􏼐 􏼑 + gi · fk Xi( 􏼁 +

1
2
hi · f

2
k Xi( 􏼁􏼔 􏼕 +Ω fK( 􏼁⎛⎝ ⎞⎠,

(19)

where 􏽐il(􏽢yk− 1
i , yi) is the sum of the prediction losses of the

firstK-1 trees. And it does not change when computing theKth
tree and can therefore be ignored. gi � z

􏽢y
(k− 1)

i

l(􏽢yk− 1
i , yi) and

hi � z2
􏽢y

(k− 1)

i

l(􏽢yk− 1
i , yi) can be treated as a constant too. fk(Xi)

represents the prediction result of the Kth tree, and it also
indicates the leaf node position on the Kth tree where the
sample Xi. Here, the function q(Xi) can be defined to rep-
resent the sample position in leaf nodes, and wq(Xi)

� fk(Xi)

can express to solve the sample position. XGBoost defines
Ω(fK) � cT + 1/2λ􏽐

T
t�1 (ωt)

2 as the penalty function (where
λ represents the penalty intensity and T is the number of leaf
nodes) [43]. Formula (19) can convert to formula (20) by
removing the constant term and substituting the penalty.

Table 6: )e proposed encoding method.

Feature name Encoding method
Gender

Label encoding

APR Medical Surgical Description
Emergency Department Indicator
Hospital County
Operating Certificate Number
Permanent Facility Id
Facility Name
Zip Code - 3 digits
CCS Diagnosis Code
CCS Procedure Code
APR DRG Code
APR MDC Code
Patient Disposition
Hospital Service Area

One-hot encoding

Ethnicity
Type of Admission
Payment Typology 1
Race
APR Severity of Illness Code
APR Risk of Mortality Sort the feature values from low to high and then encode them from 0 to N-1.Age Group

Computational Intelligence and Neuroscience 9



min L(φ) � 􏽘
i

gi · wq Xi( ) +
1
2
hi · w

2
q Xi( )􏼔 􏼕 + cT +

1
2
λ􏽘

T

t�1
ωt( 􏼁

2
� 􏽘

T

j�1
􏽘
i∈Ij

gi
⎛⎜⎝ ⎞⎟⎠ · wj +

1
2

􏽘
i∈Ij

hi + λ⎛⎜⎝ ⎞⎟⎠ · w
2
j

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦ + cT⎛⎜⎝ ⎞⎟⎠, (20)

where only wj is unknown, so the objective function be-
comes a typical quadratic type. XGBR adopts the CART
regression tree that could fix the tree structure q(Xi). At this
time, the minimum solution of the function is
w∗j � − ((􏽐i∈Ij

gi)/(􏽐i∈Ij
hi + λ)), substituting into formula

(20) can get the objective function solution
− (1/2) 􏽐

T
j�1((􏽐i∈Ij

gi)
2/(􏽐i∈Ij

hi + λ)) + cT.

3.7.5. Light Gradient Boosting Machine. Microsoft launched
an upgraded version of XGBoost named LightGBM in 2017.
)e LightGBM in this article uses the histogram algorithm to
reduce the number of candidates’ split points and the
mutually Exclusive Feature Bundling (EFB) algorithm to
reduce the number of features [44].

)e histogram algorithm refers to discretizing contin-
uous floating-point eigenvalues into k integers and con-
structing a histogram with a width of k. )e algorithm
counts the floating-point values within the range of the
discretized values in the histogram according to the k values
as an index. )en traverses the discretized values to find the
optimal segmentation point. XGBoost travels all floating-
point values, while LightGBM only travels k values by
establishing histograms. EFB will compare and analyze the
difference between features by sparse coding. When the
difference between the two features is minor, it considers
that there is a conflict. Otherwise, the two features will be
one. EFB reduces the feature dimension through this
method to speed up.

Hence LightGBM is more efficient run on the set in large-
scale data. With the same performance as XGBR, LightGBM
is 10x faster than train and consumes less memory [44].

3.8.ModelValidation. Although the dataset has more than 2
million instances, the model is still at risk of overfitting.
Secondarily, the model training process is necessary to avoid
information leakage caused by using the test set multiple
times. Based on the above factors, the validation process
divides the dataset into a training set and a test set in a 99:1
ratio. )en the training set is used for 10-fold cross-vali-
dation, and the test set checks the model performance. )e
entire validation process will use the training set ten times,
but the test set only once.

)e 10-fold cross-validation method could alleviate the
overfitting and information leak [45]. )e reason for
choosing 10 is the estimate of prediction error is almost
unbiased [46]. )e 10-fold method will use different 90%
training sets to train the model ten times, and the remaining
measures the model performance.

3.9. Performance Measurement. )e model in this study
attempts to solve a regression problem, in which people
usually achieve model performance measurement by

comparing the MSE and R2. )e closer the MSE value is to 0,
the smaller the gap between the predicted and the actual
value. Formula (21) [47] calculates the MSE by subtracting
each prediction from the truth, adding all the squared re-
sults, and dividing by the total number added.

MSE �
1
n

􏽘 yi − 􏽢y( 􏼁
2
, (21)

where yi represents the actual value, 􏽢y represents the pre-
dicted value, and n represents the total number of squared
values.

When the dimensions are different, MSE does not say
much about the performance of the regression concerning
the distribution of the ground truth elements. However, the
R2 score does not have the interpretability limitations of
MSE and is more informative and truthful [48]. )e value of
the R2 score is between − ∞ and 1. R2 = 1 indicates the
predicted values are the same as the actual values. Hence, the
closer the score is to 1, the better the model performance.
Formula (22) [48] defines the calculation method for R2.

R
2

� 1 −
􏽐

n
i�1 yi − yi􏼐 􏼑

2
/n

􏽐
n
i�1 yi − y( 􏼁

2/n

� 1 −
MSE(􏽢y, y)

Var(y)
,

(22)

where the numerator in the rightest is the MSE, and the
denominator is the variance of the actual value.

4. Results and Discussion

4.1. Results

4.1.1. Model Processing. )e dataset remains 2304296 in-
stances with 53 features after preprocessing, feature selec-
tion, and feature encoding.)is study builds themodel using
the Scikit-Learn ML toolkit on the Python platform with 8
cores and 16GB RAM. To ensure reproducible results, all
steps involving random processes set the random seed to 0.

)e hyper-parameter λ in LR and RR models has the
highest impact on performance. )is study uses the default
penalty coefficient λ� 1 in the toolkit. RFR, XGBR, and
LightGBM are all tree-type models, and the hyper-parameter
that most affects their performance is the number of CART
regression trees (n_estimators). )e more the number of
trees, the higher the model performance may be, but the
computing cost rises with it. )e default n_estimators� 100
for RFR, and to facilitate the horizontal comparison of the
threemodels, XGBR and LightGBM refer to the same order of
magnitude of fitting time (Table 7) to set n_estimators to 500
and 25000, respectively. In particular, the LightGBM algo-
rithm can set the number of features discarded ratio at each
iteration to prevent overfitting, which is 0.6 in this study.
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4.1.2. Experimental Analysis. Table 7 shows the performance
of models built with LR, RR, RFR, XGBR, and LightGBM
algorithms, while the study results of Siddiqa et al. [16] are
also listed side-by-side as a control. In the model of this
study, the MSE (5.882) and R2 (0.675) metrics of LR on the
test set are the worst, and its training time (3.654s) is also
longer than another linear algorithm RR (1.653s). )e
performance of the RR algorithm (MSE� 5.680 and
R2 � 0.702) outperforms the LR by a small margin, but the
performance of both linear algorithms is far from
satisfactory.

)e RFR and XGBR-based models achieved MSE scores
of 2.295 and 2.287, and the R2 scores are both 0.958 on the
test set, which is well behaved as ideal. )eir single-fold
fitting consumption is 946.465s and 900.799s, respectively.
However, the LightGBM algorithm surpasses them in fitting
time (874.331s), MSE (2.231), and R2 (0.960), which per-
forms best in the tree-type model.

Table 8 compares the performance variation of the best-
performing LightGBM model in different encoding
methods, where the hyper-parameter remains unchanged.
In the results, label encoding (MSE� 2.248, R2 � 0.959),
target encoding (MSE� 2.252, R2 � 0.959), and count
encoding (MSE� 2.252, R2 � 0.959) have similar perfor-
mance, while leave-one-out (MSE� 7.777, R2 � 0.221) per-
forms the worst. And the proposed encoding (MSE� 2.231,
R2 � 0.960) is the best method.

4.2. Discussion. )e LR (R2 � 0.675) and RR (R2 � 0.702)
models based on linear algorithms are far from ideal, which
means that the datasets used in this study tend to be
nonlinear, and linear algorithms are difficult to apply in
practice to the process of predicting LOS. However, the three
tree-type models (RFR, XGBR, and LightGBM) performed
pretty well, especially the LightGBM model. Its R2 score of
0.960 is improved by 4.4% compared to the best-performing
RFR model (5 MSE and 0.92R2) in the past study [16] as the
control group, while the MSE score of 2.231 is a relative
decrease of 55.4%. XGBR and RFR models in this study
ranked second and third in performance, with 2.5% and
2.8% respective higher MSE and 0.2% lower R2 scores rel-
ative to the best model.

Compared with the previous study [16], the encoding
method in this study is a majority different. )e models
composed of LR, RR, RFR, and XGBR algorithms have
significantly lower MSE scores (decreased by 86.3%, 85.2%,
54.1%, and 59.3% respectively) after using the proposed
encoding method in this study, and R2 scores are improved
(117.7%, 89.2%, 4.1%, and 5.5% higher). )e LightGBM
model using the proposed encoding also reduces the MSE
score by at least 0.76% compared to label encoding, count
encoding, target encoding, and leave-one-out encoding and
R2 scores improved by at least 0.1%.

)e model in this study can help the hospital to estimate
the LOS of the patient, and the data to construct the model
only need some prehospital diagnostic characteristics of the
patient, thus reducing the threshold for the actual deploy-
ment and increasing the reality. In addition, the modeling

process balances the conflict between the curse of dimen-
sionality and information retention. Even for millions of
instances, the model can be trained and deployed quickly
using a personal computer. However, the model perfor-
mance highly correlated with the “Total Charges” and “Total
Costs” feature. Where “Total Charges” can be obtained when
the patient admitted to the hospital, but “Total Costs” need
to be estimated from the doctor’s experience and other
information about the patient. Uncertainty in the estimation
results may affect model performance in reality.

5. Conclusions

)e objective of this study was to construct a model to predict
LOS in the hospital by exploring the prehospital diagnostic
information of potential hospitalized patients. Many ML al-
gorithms such as RFR, LR, RR, XGBR, MLP, and DTR are
being investigated in recent studies for regression prediction of
LOS. Eventually, the performance of themodels constructed by
these algorithms can hardly meet the requirements of actual
deployment. Where the linear model is not suitable for pre-
dicting LOS and the tree model overfitting is obvious. )is
study proposed a model using one-hot encoding+ label
encoding combined with the LightGBM algorithm to inves-
tigate how to improve the accuracy of LOS prediction. )e
model is based on the 2017 dataset provided by the New York
State Department of Health. )e average LOS for patients in
this dataset is 5.38days, and most patients stay in the hospital
for 1–5days for minor illnesses, and more than 70% of illness
types are medical. )ere was no significant difference in LOS
between men and women, but over 50 spent more time in
hospital.)is study used a hybrid feature encoding approach to
improve LOS prediction performance. And feature selection is
also computed, which compared correlation scores to remove
features that were not positive for prediction.)e results of the
correlation analysis showed that “Total Charges” and “Total
Costs” were the features most associated with LOS. )e pro-
posed model ultimately successfully extends the results of
related studies, with MSE and R2 achieving the best scores of
2.231 and 0.960, respectively, which is much higher than the
previous study. In the future, the problem of model overfitting
still deserves more research to obtain higher accuracy for
predicting LOS.

Data Availability

)e data that support the findings of this study are publicly
available at https://health.data.ny.gov/Health/Hospital-
Inpatient-Discharges-SPARCS-De-Identified/gaf8-ac33.

Table 8: )e performance changes in different encoding methods.

Encoding Method
MSE R2

Training Test Training Test
Label encoding 1.120 2.248 0.990 0.959
Count encoding 1.129 2.252 0.990 0.959
Target encoding 1.129 2.252 0.990 0.959
Leave-one-out encoding 0.023 7.777 0.999 0.221
Proposed encoding method 1.116 2.231 0.990 0.960

12 Computational Intelligence and Neuroscience

https://health.data.ny.gov/Health/Hospital-Inpatient-Discharges-SPARCS-De-Identified/gaf8-ac33
https://health.data.ny.gov/Health/Hospital-Inpatient-Discharges-SPARCS-De-Identified/gaf8-ac33


Conflicts of Interest

)e author declares that there are no conflicts of interest
regarding the publication of this article.

References

[1] N. Kokudo and H. Sugiyama, “Hospital capacity during the
COVID-19 pandemic,” Global Health & Medicine, vol. 3,
no. 2, pp. 56–59, 2021.

[2] A. Chiarenza, M. Dauvrin, V. Chiesa, S. Baatout, and
H. Verrept, “Supporting access to healthcare for refugees and
migrants in European countries under particular migratory
pressure,” BMC Health Services Research, vol. 19, no. 1, p. 513,
2019.

[3] V. N. Prachand, R. Milner, P. Angelos et al., “Medically
necessary, time-sensitive procedures: scoring system to eth-
ically and efficiently manage resource scarcity and provider
risk during the COVID-19 pandemic,” Journal of the
American College of Surgeons, vol. 231, no. 2, pp. 281–288,
2020.

[4] E. S. Powell, R. K. Khare, A. K. Venkatesh, B. D. Van Roo,
J. G. Adams, and G. Reinhardt, “)e relationship between
inpatient discharge timing and emergency department
boarding,” Journal of Emergency Medicine, vol. 42, no. 2,
pp. 186–196, 2012.

[5] H. Baek, M. Cho, S. Kim, H. Hwang, M. Song, and S. Yoo,
“Analysis of length of hospital stay using electronic health
records: a statistical and data mining approach,” PLoS One,
vol. 13, no. 4, Article ID e0195901, 2018.

[6] A. W. Artenstein, N. K. Rathlev, D. Neal et al., “Decreasing
emergency department walkout rate and boarding hours by
improving inpatient length of stay,” Western Journal of
Emergency Medicine, vol. 18, no. 6, pp. 982–992, 2017.

[7] M.-T. Chuang, Y.-h. Hu, and C.-L. Lo, “Predicting the pro-
longed length of stay of general surgery patients: a supervised
learning approach,” International Transactions in Operational
Research, vol. 25, no. 1, pp. 75–90, 2018.

[8] A. T. Lamere, S. Nguyen, G. Niu, A. Olinsky, and J. Quinn,
“Predicting the length of stay in hospital emergency rooms in
Rhode Island,” Advances in Business and Management
Forecasting, vol. 14, pp. 35–48, 2021.

[9] S. Bacchi, L. Oakden-Rayner, D. K. Menon et al., “Prospective
and external validation of stroke discharge planning machine
learning models,” Journal of Clinical Neuroscience, vol. 96,
pp. 80–84, 2022.

[10] T. A. Daghistani, R. Elshawi, S. Sakr, A. M. Ahmed, A. Al-
)wayee, and M. H. Al-Mallah, “Predictors of in-hospital
length of stay among cardiac patients: a machine learning
approach,” International Journal of Cardiology, vol. 288,
pp. 140–147, 2019.

[11] L. Zheng, J. Wang, A. Sheriff, and X. Chen, “Hospital length of
stay prediction with ensemble methods in machine learning,”
in Proceedings of the 2021 International Conference on Cyber-
Physical Social Intelligence (ICCSI), pp. 1–5, Beijing, China,
December 2021.

[12] Y. Ling, Y. Chen, V. Chirikov et al., “A prediction model for
length of stay in the icu among septic patients: a machine
learning approach,” Value in Health, vol. 21, no. S5, p. S5,
2018.

[13] A. Naemi, T. Schmidt, M. Mansourvar, A. Ebrahimi, and
U. K. Wiil, “Quantifying the impact of addressing data
challenges in prediction of length of stay,” BMC Medical
Informatics and Decision Making, vol. 21, no. 1, p. 298, 2021.

[14] B. Alsinglawi, O. Alshari, M. Alorjani et al., “An explainable
machine learning framework for lung cancer hospital length
of stay prediction,” Scientific Reports, vol. 12, no. 1, p. 607,
2022.

[15] V. Lequertier, T. Wang, J. Fondrevelle, V. Augusto, and
A. Duclos, “Hospital length of stay prediction methods: a
systematic review,”Medical Care, vol. 59, no. 10, pp. 929–938,
2021.

[16] A. Siddiqa, S. Abbas Zilqurnain Naqvi, M. Ahsan, A. Ditta,
H. Alquhayz, and M. Adnan Khan, “Robust length of stay
prediction model for indoor patients,” Computers, Materials
& Continua, vol. 70, no. 3, pp. 5519–5536, 2022.

[17] A. Abbas, J. Mosseri, J. R. Lex et al., “Machine learning using
preoperative patient factors can predict duration of surgery
and length of stay for total knee arthroplasty,” International
Journal of Medical Informatics, vol. 158, Article ID 104670,
2022.

[18] H. Zhong, B. Wang, D. Wang et al., “)e application of
machine learning algorithms in predicting the length of stay
following femoral neck fracture,” International Journal of
Medical Informatics, vol. 155, Article ID 104572, 2021.

[19] J. P. G. Kolcun, B. Covello, J. E. Gernsback, I. Cajigas, and
J. R. Jagid, “Machine learning to predict passenger mortality
and hospital length of stay following motor vehicle collision,”
Neurosurgical Focus, vol. 52, no. 4, p. E12, 2022.

[20] Health data, “Hospital Inpatient Discharges (SPARCS De-
Identified) Downloadable File,” 2017, https://health.data.ny.
gov/Health/Hospital-Inpatient-Discharges-SPARCS-De-
Identified/gaf8-ac33.

[21] Open Database License, “Open Data Commons Open Da-
tabase License (ODbL) v1.0,” 2011, https://opendata
commons.org/licenses/odbl/1-0/.

[22] A. Vellido, J. D. Mart́ın, F. Rossi, and P. Lisboa, “Seeing is
believing: the importance of visualization in real-world ma-
chine learning applications,” in Proceedings of the 19th Eu-
ropean Symposium on Artificial Neural Networks,
Computational Intelligence and Machine Learning, ESANN
2011, pp. 219–226, Bruges, Belgium, April 2011.

[23] M. L. Brown and J. F. Kros, “Data mining and the impact of
missing data,” Industrial Management & Data Systems,
vol. 103, no. 8, pp. 611–621, 2003.

[24] K. Bhaskaran and L. Smeeth, “What is the difference between
missing completely at random and missing at random?”
International Journal of Epidemiology, vol. 43, no. 4,
pp. 1336–1339, 2014.

[25] S. Bijlsma, I. Bobeldijk, E. R. Verheij et al., “Large-scale human
metabolomics studies: a strategy for data (pre-) processing
and validation,” Analytical Chemistry, vol. 78, no. 2,
pp. 567–574, 2006.

[26] D. Kornbrot, Point Biserial CorrelationWiley StatsRef: Sta-
tistics Reference Online, Hoboken, NJ, USA, 2014.

[27] W. Bergsma and A. Dassios, “A consistent test of indepen-
dence based on a sign covariance related to Kendall’s tau,”
Bernoulli, vol. 20, no. 2, pp. 1006–1028, 2014.

[28] J. L. Myers, A. D. Well, and R. F. Lorch, Research Design and
Statistical Analysis, Taylor & Francis, Oxfordshire, UK, 2013.

[29] T. Cleff, Exploratory data analysis in business and economics,
Springer International Publishing, New York, NY, USA, 2014.

[30] P. E. McKight and J. Najab, “Kruskal-wallis test,” in "e
Corsini Encyclopedia of Psychology, pp. 1–10, 2010.

[31] W. H. Kruskal and W. A. Wallis, “Errata: use of ranks in one-
criterion variance analysis,” Journal of the American Statistical
Association, vol. 48, no. 264, pp. 907–911, 1953.

Computational Intelligence and Neuroscience 13

https://health.data.ny.gov/Health/Hospital-Inpatient-Discharges-SPARCS-De-Identified/gaf8-ac33
https://health.data.ny.gov/Health/Hospital-Inpatient-Discharges-SPARCS-De-Identified/gaf8-ac33
https://health.data.ny.gov/Health/Hospital-Inpatient-Discharges-SPARCS-De-Identified/gaf8-ac33
https://opendatacommons.org/licenses/odbl/1-0/
https://opendatacommons.org/licenses/odbl/1-0/


[32] H. Akoglu, “User’s guide to correlation coefficients,” Turkish
Journal of Emergency Medicine, vol. 18, no. 3, pp. 91–93, 2018.

[33] D. Micci-Barreca, “A preprocessing scheme for high-cardi-
nality categorical attributes in classification and prediction
problems,” SIGKDD Explor Newsl, vol. 3, no. 1, pp. 27–32,
2001.

[34] R. Tibshirani, “Regression shrinkage and selection via the
Lasso,” Journal of the Royal Statistical Society: Series B, vol. 58,
no. 1, pp. 267–288, 1996.

[35] J. Ranstam and J. A. Cook, “LASSO regression,” British
Journal of Surgery, vol. 105, no. 10, p. 1348, 2018.

[36] G. C. McDonald, “Ridge regression,” Wiley Interdisciplinary
Reviews: Computational Statistics, vol. 1, no. 1, pp. 93–100,
2009.

[37] A. E. Hoerl and R. W. Kennard, “Ridge regression: biased
estimation for nonorthogonal problems,” Technometrics,
vol. 12, no. 1, pp. 55–67, 1970.

[38] C. Saunders, A. Gammerman, and V. Vovk, “Ridge Regres-
sion Learning Algorithm in Dual Variables,” Proceedings of
the Fifteenth International Conference on Machine Learning,
ACM, San Francisco, CA, USA, 1998.

[39] B. Efron, “Bootstrap methods: another look at the jackknife,”
in Breakthroughs in Statistics: Methodology and Distribution,
S. Kotz and N. L. Johnson, Eds., Springer, New York, NY,
USA, 1992.

[40] T. Hastie, R. Tibshirani, and J. Friedman, “Random forests,” in
"e Elements of Statistical LearningSpringer, New York, NY,
USA, 2009.

[41] L. Breiman, Machine Learning, vol. 45, no. 1, pp. 5–32, 2001.
[42] T. Hastie, R. Tibshirani, and J. Friedman, “Additive Models,

Trees, and Related Methods,” "e Elements of Statistical
Learning: Data Mining, Inference, and Prediction, Springer,
New York, NY, USA, 2009.

[43] T. Chen and C. Guestrin, XGBoost: A Scalable Tree Boosting
System, ACM, San Francisco, CA, USA, 2016.

[44] G. Ke, M. Qi, F. )omas et al., LightGBM: A Highly Efficient
Gradient Boosting Decision Tree, ACM, Long Beach, CA, USA,
2017.

[45] D. Berrar, “Cross-validation,” in Encyclopedia of Bio-
informatics and Computational BiologyElsevier, Amsterdam,
Netherlands, 2019.

[46] R. Simon, “Resampling strategies for model assessment and
selection,” in Fundamentals of Data Mining in Genomics and
ProteomicsSpringer, New York, NY, USA, 2007.

[47] M. Hossin and S.Mn, “A review on evaluationmetrics for data
classification evaluations,” International Journal of Data
Mining & Knowledge Management Process, vol. 5, no. 2,
pp. 01–11, 2015.

[48] D. Chicco, M. J. Warrens, and G. Jurman, “)e coefficient of
determination R-squared is more informative than SMAPE,
MAE, MAPE, MSE and RMSE in regression analysis evalu-
ation,” PeerJ Computer Science, vol. 7, p. e623, 2021.

14 Computational Intelligence and Neuroscience


