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Streptococcus agalactiae or group B streptococcus (GBS) is a leading cause of serious
neonatal infections. GBS is an opportunistic commensal constituting a part of the
intestinal and vaginal physiologic flora and maternal colonization is the principal route of
GBS transmission. GBS is a pathobiont that converts from the asymptomatic mucosal
carriage state to a major bacterial pathogen causing severe invasive infections. At
present, as many as 10 serotypes (Ia, Ib, and II–IX) are recognized. The aim of the current
review is to shed new light on the latest epidemiological data and clonal distribution
of GBS in addition to discussing the most important colonization determinants at a
molecular level. The distribution and predominance of certain serotypes is susceptible to
variations and can change over time. With the availability of multilocus sequence typing
scheme (MLST) data, it became clear that GBS strains of certain clonal complexes
possess a higher potential to cause invasive disease, while other harbor mainly
colonizing strains. Colonization and persistence in different host niches is dependent
on the adherence capacity of GBS to host cells and tissues. Bacterial biofilms represent
well-known virulence factors with a vital role in persistence and chronic infections. In
addition, GBS colonization, persistence, translocation, and invasion of host barriers
are largely dependent on their adherence abilities to host cells and extracellular matrix
proteins (ECM). Major adhesins mediating GBS interaction with host cells include
the fibrinogen-binding proteins (Fbs), the laminin-binding protein (Lmb), the group B
streptococcal C5a peptidase (ScpB), the streptococcal fibronectin binding protein A
(SfbA), the GBS immunogenic bacterial adhesin (BibA), and the hypervirulent adhesin
(HvgA). These adhesins facilitate persistent and intimate contacts between the bacterial
cell and the host, while global virulence regulators play a major role in the transition
to invasive infections. This review combines for first time epidemiological data with
data on adherence and colonization for GBS. Investigating the epidemiology along
with understanding the determinants of mucosal colonization and the development
of invasive disease at a molecular level is therefore important for the development of
strategies to prevent invasive GBS disease worldwide.
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INTRODUCTION

Streptococcus agalactiae or group B streptococcus (GBS) is a
pathobiont that is often part of the normal microbiota found in
the gastrointestinal and genitourinary tracts of healthy women
(Verani et al., 2010). It can cause serious neonatal infections
and adult infections. During the early 1930s, GBS was initially
identified as a veterinary pathogen and a frequent source of
bovine mastitis (Keefe, 1997). The first reported cases of fatal
human GBS infections were investigated by Fry (1938). Severe
perinatal GBS infections were originally described in the 1960s
(Hood et al., 1961). Shortly afterward since the 1970s, GBS
emerged as a leading cause of neonatal mortality and morbidity
in the United States (Dermer et al., 2004).

The gastrointestinal tract is recognized as a reservoir for GBS
and represents most probably the source of vaginal colonization
(Meyn et al., 2009). Maternal colonization is the principal route
of GBS transmission in early-onset infections as bacteria can
spread either in utero by ascending infection or during birth
through neonatal aspiration of contaminated amniotic or vaginal
fluids (Maisey et al., 2008a; Rajagopal, 2009; Verani et al., 2010).
About 30–70% of colonized mothers deliver GBS colonized
newborns and 1–2% of these develop early-onset infections
where heavy colonized mothers are more likely to transmit
GBS to their offspring (Anthony et al., 1979; Barcaite et al.,
2008; Melin, 2011; Melin and Efstratiou, 2013). However, the
route for GBS acquisition in late-onset infections is less clear.
It may develop through vertical transmission from mother to
neonate, nosocomial transmission, contaminated breast milk or
prematurity (Rajagopal, 2009; Le Doare and Kampmann, 2014;
Zimmermann et al., 2017).

Group B streptococcus diseases in neonates which develop
within the 1st week after birth are designated as early-onset
disease (EOD). Late-onset infections (LOD) develop between the
7th day of birth and 2 or 3 months of age. Early-onset infections
usually manifest as pneumonia and sepsis while meningitis
is most common as a Late-onset event (Verani et al., 2010;
Melin and Efstratiou, 2013). Newborns with EOD frequently
suffer from respiratory failure which rapidly develops into
bacteremia and septic shock. Infants surviving LOD meningitis
will develop chronic neurologic sequelae including seizures,
cognitive impairment, hearing loss and blindness in up to 50%
(Schuchat, 1998; Maisey et al., 2008a; Libster et al., 2012; Melin
and Efstratiou, 2013).

During the mid-1990s, the American College of Obstetricians
and Gynecologists (ACOG), Centers for Disease Control and
Prevention (CDC) and the American Academy of Pediatrics
(AAP) recommended intrapartum antibiotic prophylaxis (IAP)
to prevent perinatal GBS disease (Schuchat, 1998). This was
followed by revised guidelines for the prevention of GBS disease
issued in 2002 and the updated guidelines in 2010 (Verani
et al., 2010; Schrag and Verani, 2013) which are currently in
use. These recommendations included a universal culture-based
screening for pregnant women at 35–37 weeks of pregnancy in
order to limit IAP to a certain risk group. Widespread active
implementation of an IAP program in the United States resulted
in an outstanding decrease in the incidence of the disease.

Invasive EOD GBS infections declined from 1.8 cases/1000 live
births in the early 1990s to 0.26 cases/1000 live births in 2010
(Schrag and Verani, 2013). However, IAP had no impact on late-
onset infections and thus LOD GBS diseases continue as the
leading cause of neonatal morbidity and mortality (Verani et al.,
2010; Schrag and Verani, 2013).

Asymptomatic GBS carriage is frequent and in general
harmless in healthy women. GBS can, however, cause serious
infections in pregnant women. Invasive maternal illness due to
GBS in pregnant and postpartum women include bloodstream
infections, meningitis, osteomyelitis, and endocarditis. Non-
invasive maternal diseases manifest as bacteriuria, amnionitis,
fasciitis, cellulitis, endometritis and wound infections associated
with episiotomies or cesarean deliveries. In addition, GBS has
been increasingly reported as being responsible for invasive
disease in elderly and immunocompromised patients. In non-
pregnant adults, GBS diseases include arthritis, endocarditis,
pneumonia, bacteremia and urinary tract infections, as well as
soft tissue, skin, and bone infections. Susceptibility to GBS is
increased in the elderly and immunocompromised individuals
with underlying conditions such as diabetes, cancer, and HIV
(Schuchat, 1998; Farley, 2001; Phares et al., 2008; Sendi et al.,
2008; Skoff et al., 2009). Overall neonatal as well as adult
infections are, to a large percentage, endogenous infections with
colonization of gastrointestinal and vaginal mucosal surfaces as a
first crucial step. Nevertheless, in many cases, GBS persists as a
commensal bacterium of the microbiota and does not proceed to
cause invasive infections. During the last decades, hypervirulent
clones have been identified and GBS regulators have been
characterized that control the expression of major virulence
factors, however, the switch from commensal to invasive
pathogen is still incompletely deciphered. Understanding the
determinants of GBS mucosal colonization as well as the
different stages of the pathobiont lifestyle at a molecular level is
therefore important for the development of prevention strategies
to control invasive GBS disease. This review combines for
first time epidemiological data with data on adherence and
colonization for GBS. It covers the following aspects: GBS
colonization rates and serotype distribution in different countries
and the molecular epidemiology of GBS colonization, determined
through MLST sequence types. Adherence properties of GBS will
be summarized under the following headings, biofilm formation,
and GBS colonization and adherence at a molecular level,
which is be subdivided into (i) GBS adhesins to extracellular
matrix proteins (ECM), (ii) GBS adhesins to cellular targets,
and (iii) GBS pili. The last two sections describe the transition
of GBS from commensal to pathogen and current efforts on
immunoprophylaxis.

GBS COLONIZATION IN DIFFERENT
COUNTRIES: COLONIZATION RATES
AND SEROTYPE DISTRIBUTION

Since vaginal GBS colonization represents the most important
risk factor for the development of invasive neonatal infections,
colonization rates have been investigated in many different
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TABLE 1 | Geographical distribution of the most prevalent colonizing group B
streptococcus (GBS) serotypes.

Most prevalent
colonizing
serotype(s)

Region Reference

Ia, Ib, II, III, V North America,
United States,
Europe

Johri et al., 2006; Ippolito
et al., 2010; Lamagni et al.,
2013; Melin and Efstratiou,
2013; Florindo et al., 2014;
Fabbrini et al., 2016

Ia Mexico Ippolito et al., 2010

IV, Ia United Arab Emirates Amin et al., 2002

V Egypt Shabayek et al., 2014

Ia, VI Malaysia Karunakaran et al., 2009;
Dhanoa et al., 2010

VI, VIII Japan Lachenauer et al., 1999;
Matsubara et al., 2002

countries. Interestingly the GBS colonization rate among
pregnant women in vagina and/or rectum is quite similar
worldwide with some variations ranging from 10 to 30% in
United States, 6.5% up to 36% in Europe, 7.1 to 16% in
Asia, 9.1 to 25.3% in the Middle East, and 11.9 to 31.6% in
Africa (Schuchat, 1998; Barcaite et al., 2008; Ippolito et al.,
2010; Verani et al., 2010). The GBS colonization status,
however, is intermittent and can be transient during pregnancy.
Positive colonizers in early or mid-pregnancy may turn into
negative colonizers at delivery (Hansen et al., 2004; Verani
et al., 2010). Hence, timing of GBS screening and specimen
collection is important to accurately predict colonization status
at delivery. According to the CDC guidelines, the intrapartum
colonization status is best determined in the late third trimester
at no more than 5 weeks before delivery (Verani et al.,
2010).

While GBS colonization rates may appear quite similar
in different regions of the world, serotype prevalence and
distribution is geographically distinct. Serotype classification
is based on a sialic acid-rich capsular polysaccharide (CPS)
which is one of the most important virulence factors in GBS
that is involved in GBS persistence and survival within the
host. CPS plays a critical role in immune evasion through its
mimicry with the host carbohydrate epitopes. It also interferes
with the complement-dependent defense pathways, dampens
the phagocytic function of neutrophils and facilitates bacterial
internalization and intracellular survival inside dendritic cells.
Moreover, CPS has been reported to mediate biofilm formation
of GBS in the presence of human plasma (Lemire et al., 2012;
Pezzicoli et al., 2012; Chang et al., 2014a,b; Xia et al., 2015).
At present, as many as 10 serotypes (Ia, Ib, and II–IX) are
recognized (Slotved et al., 2007; Le Doare and Heath, 2013). The
distribution and predominance of certain serotypes is susceptible
to variations and can change over time. Serotypes Ia, Ib, II,
III, and V are prevalent colonizers in the United States and
Europe (Johri et al., 2006; Ippolito et al., 2010; Lamagni et al.,
2013; Melin and Efstratiou, 2013; Florindo et al., 2014; Fabbrini
et al., 2016). Serotypes VI and VIII are the most prevalent
among pregnant women in Japan (Lachenauer et al., 1999;

Matsubara et al., 2002) while serotypes IV and V predominate
in the United Arab Emirates and Egypt, respectively (Amin
et al., 2002; Shabayek et al., 2014). Serotype Ia is common
in Mexico and is consistently higher in North America in
comparison to other areas (Ippolito et al., 2010). The most
recently characterized novel GBS serotype IX was reported from
Denmark (Slotved et al., 2007). The geographical distribution
of the most prevalent colonizing serotypes is shown in Table 1.
On the other hand, serotype III is the most dominant invasive
clone accounting for the majority of late-onset meningitis cases
in neonates (Lamy et al., 2006; Tazi et al., 2010; Bellais et al.,
2012; Florindo et al., 2014; Alhhazmi et al., 2016) while serotype
Ia and V are dominant invasive isolates in non-pregnant cases
(Phares et al., 2008; Alhhazmi et al., 2016). However, recent
studies indicate the emergence of invasive serotype IV strains
in neonates and adults (Ferrieri et al., 2013; Teatero et al.,
2015; Alhhazmi et al., 2016) and among colonizing strains
(Diedrick et al., 2010). A similar scenario could be expected
for serotypes VI and VIII which are rarely reported outside
Japan. In Malaysia, serotype VI was found among the dominant
colonizing strains and the second most common isolate in adults
with skin and soft tissue infections due to GBS (Karunakaran
et al., 2009; Dhanoa et al., 2010). In Egypt, serotype VI was
reported as a common colonizing serotype in women (Shabayek
et al., 2014). And recently, Lin et al. (2016) reported a clonal
dissemination of serotype VI among colonizing and invasive
isolate in central Taiwan. Likewise, several studies identified
sporadic strains of serotype VIII both as colonizing strains and
as causative agents for invasive GBS disease (Paoletti et al.,
1999; Hoshina et al., 2002; Ekelund et al., 2003; Karunakaran
et al., 2009; Ippolito et al., 2010; Alhhazmi et al., 2016). Similar
serotype emergence was earlier reported for serotype V in the
United States and in Europe (Hickman et al., 1999; Flores
et al., 2015). An increasing diversity of GBS serotypes, as
well as serotype switching, represent powerful immune evasion
strategies that may severely impair vaccine efforts, that currently
rely on a conjugate vaccine incorporating a limited number of
GBS serotypes. A close monitoring of the changing serotype
distribution occurring in many different countries is therefore
crucial in guiding GBS vaccination development.

EPIDEMIOLOGY OF GBS
COLONIZATION: MLST SEQUENCE
TYPES

Capsular serotyping is the traditional tool used in GBS
classification for epidemiological purposes. However, in the era
of molecular epidemiology with the availability of numerous
bacterial genomes and novel nucleotide sequencing-based tools
our traditional picture of GBS epidemiology changed. In respect
to corresponding genomes, gene content does not necessarily
correlate with the assigned serotype. In 2003, a seven-gene
multilocus sequence typing scheme (MLST) was introduced for
GBS classification. First studies employing this MLST scheme
revealed that capsular serotype is not restricted to a particular
MLST sequence type (ST) and GBS strains with the same ST
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may have different serotypes (Jones et al., 2003). Several STs are
grouped into clonal complexes (CC) when sharing six or seven
matching alleles. The number of a particular CCs is designated
after its ancestor ST or the predominant ST within this clone
(Luan et al., 2005). By MLST the vast majority of the human GBS
isolates can be grouped into six CCs which are CC1, CC10, CC17,
CC19, CC23, and CC26 (Sørensen et al., 2010; Da Cunha et al.,
2014). Interestingly, most of the bovine strains were exclusively
designated as subtypes of the CC61 and CC67 which have never
been reported for any of the human strains (Bisharat et al., 2004;
Sukhnanand et al., 2005; Sørensen et al., 2010; Yang et al., 2013;
Springman et al., 2014).

With the availability of MLST data, it became clear that
GBS strains of certain CCs possess a higher potential to cause
invasive disease, while other harbor mainly colonizing strains.
MLST for a global GBS collection identified STs 1 and 19 to
be significantly more associated with asymptomatic colonization
and ST-23 was common for carriage and invasive GBS (Jones
et al., 2003). This is in agreement with a study (Manning et al.,
2008) that reported STs 1, 19, and 23 as the predominant
colonizers in pregnant women and identified them as being
well adapted to the vaginal mucosa with a poor invasion
ability. Consistently, Teatero et al. (2017) found STs 1 and
23 the most frequent clones in colonized pregnant women.
In general, the dominance of strains belonging to CCs 1, 23,
and 19 among asymptomatic pregnant women was consistently
reported (Jones et al., 2003; Luan et al., 2005; Springman et al.,
2014), indicating that for these CCs being a mucosal commensal
predominates.

A major clone responsible for a large proportion of invasive
neonatal infections are the CC17 strains mostly belonging to
serotype III. ST-17 strains first gained special interest due to their
strong association with neonatal meningitis. Strains belonging
to the CC17 are reported to be hypervirulent accounting for
more than 80% of the GBS late-onset neonatal infections and
are often but not exclusively associated with meningitis (Jones
et al., 2003; Lamy et al., 2006; Manning et al., 2009; Tazi et al.,
2010; Bellais et al., 2012; Florindo et al., 2014). Comparative
phylogenetic analysis of human and bovine isolates revealed
CC17 strains as a homogenous group with a recent origin and
limited recombination in comparison to other CCs (Sørensen
et al., 2010; Da Cunha et al., 2014). Moreover, evolutionary
analysis between GBS isolates of human and bovine origin
found ST-17 as the only human lineage that is clustered within
the bovine population (Bisharat et al., 2004). The investigation
suggested ST-17 to have bovine ancestors (Bisharat et al.,
2004), which was supported by another study (Héry-Arnaud
et al., 2007) providing evidence for a bovine origin of CC17
by investigating the prevalence of mobile genetic elements.
However, a very close connection between the bovine CC67 and
the human CC17 was also challenged by a more comprehensive
genetic analysis of 238 bovine and human strains (Sørensen
et al., 2010). The emergence of a highly virulent GBS clone,
causing a large majority of neonatal infections, from a bovine
ancestor provides intriguing phylogenetic aspects for placing
GBS close to zoonotic diseases. Thus the question of how
zoonotic GBS may be is currently controversially discussed and

represents an exciting and ongoing scientific question to be
solved.

For adult invasive infections, molecular clones other than
CC17 are important. A significant percentage of GBS invasive
disease in non-pregnant adults is resulting from strains belonging
to serotype V (Phares et al., 2008; Lamagni et al., 2013;
Teatero et al., 2014; Flores et al., 2015). Molecular epidemiology
revealed a remarkable association of ST-1, a subtype of CC1,
with serotype V GBS causing invasive disease. ST-1 invasive
isolates from adults and neonates are mostly belonging to
serotype V (Salloum et al., 2011). A recent analysis of a
large cohort of GBS isolates of invasive serotype V strains
from adults in United States and Canada (Flores et al., 2015).
reported 92% of the serotype V strains as ST-1 whereas the
most predominant sequence type among the non-ST-1 clones
was ST-19. The authors regard the emergence of ST-1 strains
as a leading cause of adult disease in the 1990s. Similar to
human ST-17, the human ST-1 is suspected to originate from
a bovine ancestor. Whole-genome sequencing recognized a
1992 ST-1 clone to be closely related to a 1970s Swedish
strain causing cow mastitis. The ST-1 human GBS were found
to possess mutations at loci involved in capsule production,
pilus expression, and two-component regulatory systems (Flores
et al., 2015) which all have been reported as key virulence
factors in GBS (Maisey et al., 2008a; Rajagopal, 2009) and
may thus represent the adaptation of this strain to human
infections.

Particular interest should also be paid to the increasing
emergence of type IV among colonizing and invasive GBS
isolates. In several recent investigations, this serotype appears
to be a hotspot for genetic recombination events, supported
by the detection of serotype IV strains with different genetic
backgrounds. Multiple studies demonstrated ST-196 as the most
frequent sequence type of serotype IV isolates (Gherardi et al.,
2007; Héry-Arnaud et al., 2007; Martins et al., 2007; van
der Mee-Marquet et al., 2008; Lartigue et al., 2009; Diedrick
et al., 2010). However, other investigations reported the STs
452 and 459, belonging to CCs 23 and 1, respectively, as the
predominant colonizing type IV strains and found ST-196 less
frequently (Diedrick et al., 2010; Ferrieri et al., 2013; Teatero
et al., 2017). Comparing a collection of emerging type IV
isolates in United States belonging to two distinct time periods
from 1995 to 2000 and from 2004 to 2008, the older strains
were more like a 1970s prototype reference strain with similar
PFGE profiles whereas the more recent isolates showed PFGE
profiles with considerable differences (Diedrick et al., 2010).
Independent studies identified the invasive characteristics of
type IV strains to be a result of capsular switching in CC17
strains accompanied with the acquisition of the HvgA adhesin,
which has initially been isolated from hypervirulent CC17
serotype III strains (Teatero et al., 2014; Alhhazmi et al., 2016).
Capsular switching events of CC17 strains have previously been
observed (Da Cunha et al., 2014) leading to serotype IV ST-256
lineage.

For colonizing as well as invasive GBS strains dominant
serotype-MLST genotypes associations have been observed
such as serotype III with ST-17, serotype V with ST-1 and
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serotype IV with ST-196. Unusual associations are most
likely to be due to capsular switching which resulted from
recombination events around the capsular locus (Teatero
et al., 2017). Investigation of the increase of type IV strains
suggested the evolution of hybrid genomes including sequences
from hypervirulent ST-17 strains (Teatero et al., 2016). Thus
growing evidence points to an ongoing emergence of novel
virulent GBS clones requiring continuous epidemiological
surveillance.

BIOFILM FORMATION

Colonization and persistence in different host niches is
dependent on the adherence capacity of GBS to host cells
and tissues. This then facilitates bacterial cell aggregation and
formation of sessile communities known as biofilms. Bacterial
biofilms represent well-known virulence factors with a vital role
in persistence and chronic infections. In the host environment,
bacteria are often protected from the immune system by
building sessile colonies embedded in an extracellular matrix of
polysaccharides representing the biofilm. For GBS the bacterial
capsule and type IIa pili have been demonstrated to play an
important role in biofilm formation (Konto-Ghiorghi et al., 2009;
Xia et al., 2015). Host environmental conditions are crucial
determinants in developing bacterial biofilms (Costerton et al.,
1999; Lewis, 2005; Nobbs et al., 2009; Rosini and Margarit, 2015).
Contradictory data are available concerning the environmental
cues favoring biofilm communities in GBS (Rosini and Margarit,
2015). As a normal inhabitant of the vagina, acidic pH seems to
be optimal for GBS colonization. Early investigations reported
enhanced GBS adherence to vaginal epithelial cells under low
pH in comparison to neutral pH (Zawaneh et al., 1979; Tamura
et al., 1994). In line with these observations, a significantly higher
biofilm production of colonizing GBS isolates from pregnant
women was demonstrated at pH 4.5 vs. pH 7 (Ho et al., 2013).
Similarly, enhanced biofilm formation of GBS was shown under
acidic pH conditions in comparison to neutral pH with the
strongest biofilm producing GBS isolates belonged to the ST-17
sequence type. In respect to GBS origins, higher frequencies of
strong biofilm producers were found among neonatal strains in
comparison to colonizing strains (D’Urzo et al., 2014). However,
a recent investigation reported invasive GBS belonging to CC17
and CC19 lineages as weak biofilm formers while GBS isolated
from asymptomatic carriers were found to be strong biofilm
producers (Parker et al., 2016). One possible explanation for this
discrepancy is the experimental set up of the study since GBS
biofilm formation was tested at neutral pH conditions and not
under acidic pH. Furthermore, the presence of human plasma
was shown to promote GBS biofilm formation (Xia et al., 2015).

In summary, biofilms allow long-term bacterial persistence
and protect bacteria from recognition by the immune system.
For GBS low pH and the presence of plasma appear as crucial
environmental factors through controlling the expression of
bacterial surface-associated structures, such as pili and the
capsule, which are both involved in promoting bacterial biofilm
formation.

GBS COLONIZATION AND ADHERENCE
AT A MOLECULAR LEVEL

GBS Adhesins to Extracellular Matrix
Proteins
As an opportunistic commensal constituting a part of the
intestinal and vaginal physiologic flora, GBS colonization,
persistence, translocation, and invasion of host barriers are
largely dependent on their adherence abilities to host cells
and ECM (Singh et al., 2012; Landwehr-Kenzel and Henneke,
2014). Functionally characterized adhesins mediating GBS
adherence and/or invasion within the host are the fibrinogen-
binding proteins (Fbs), the laminin-binding protein (Lmb), the
group B streptococcal C5a peptidase (ScpB), the streptococcal
fibronectin-binding protein A (SfbA), and the GBS immunogenic
bacterial adhesin (BibA). In addition, surface-protruding
structures comprised of multiples genes like pili are considered
as essential adhesins in promoting GBS colonization, persistence,
biofilm production, and central nervous system invasion. Major
adhesins mediating GBS interaction with host cells are depicted
in Figure 1.

Up to date, five Fbs have been characterized in GBS; FbsA
(Schubert et al., 2004), FbsB (Gutekunst et al., 2004), the serine-
rich repeat glycoproteins Srr1 and Srr2 (Seo et al., 2012, 2013),
and recently FbsC or BsaB (Buscetta et al., 2014; Jiang and
Wessels, 2014). In general, invasive GBS isolates display stronger
fibrinogen-binding abilities in comparison to colonizing ones
(Rosenau et al., 2007). FbsA was mainly shown to promote
adherence (Schubert et al., 2004) whereas FbsB was shown to
be required for invading human cells (Gutekunst et al., 2004).
Srr1 and Srr2 were reported to mediate invasion of microvascular
endothelial cells (Seo et al., 2012, 2013). Additionally, Srr1 was
demonstrated to promote vaginal colonization and persistence,
since a Srr1-deficient mutant displayed reduced persistence in a
mouse GBS vaginal colonization model (Sheen et al., 2011). FbsC
was recently characterized to promote invasion of epithelial and
endothelial barriers. FbsC deletion mutant of GBS displayed a
drastic reduction in abilities for adherence, invasion and biofilm
formation. Besides, virulence abilities of FbsC deletion mutant
were impaired in murine infection models (Buscetta et al., 2014).
Interestingly, the fibrinogen-binding abilities of the hypervirulent
CC17 clones are mainly attributable to FbsB more than FbsA.
Deletion mutants of fbsB displayed 78–80% reduction in their
binding abilities vs. 49–57% as encountered with fbsA deletion
mutants of CC17 strains (Al Safadi et al., 2011). Accordingly,
the relative transcription level of fbsB was up to 12.7-fold
higher than fbsA gene in CC17 stains (Al Safadi et al., 2011).
Moreover, Srr2 was highly expressed and exclusively detected
in ST-17, however, Srr1 was absent (Seifert et al., 2006; Seo
et al., 2013). Furthermore, CC17 strains are devoid of FbsC.
The fbsC gene is not adequately expressed in CC17 strains
because of a lineage-dependent frameshift mutation (Buscetta
et al., 2014).

In addition to the Fbs family, the Lmb adhesin appears
to have a pronounced role in bacterial tropism of the central
nervous system. Spellerberg et al. (1999) reported Lmb to
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FIGURE 1 | Major adhesins mediating Streptococcus agalactiae (GBS) interaction with host cells. GBS colonization, persistence, translocation, and invasion of host
barriers are largely dependent on their ability to adhere to host cells and extracellular matrix proteins (ECM), an important step in breaching cellular barriers.
The best characterized surface proteins mediating GBS adherence are the fibrinogen-binding proteins Fbs (including FbsA, FbsB, FbsC, or BsaB, the serine-rich
repeat glycoproteins Srr1 and Srr2), the laminin-binding protein (Lmb), the Streptococcal C5a peptidase from group B (ScpB), the streptococcal fibronectin-binding
protein A (SfbA), and the GBS immunogenic bacterial adhesin BibA. In addition, surface-protruding structures like pili are considered as essential adhesins in
promoting GBS colonization, persistence, biofilm production, and central nervous system invasion. Associated virulence traits are illustrated for each adhesin as
follows. FbsA was mainly shown to promote adherence whereas FbsB was shown to be required for invading human cells. Srr1 and Srr2 were reported to mediate
invasion of microvascular endothelial cells. Additionally, Srr1 was demonstrated to promote vaginal colonization and persistence. FbsC was recently characterized to
promote invasion of epithelial and endothelial barriers and biofilm formation. The Lmb adhesin appears to have a pronounced role in bacterial tropism of the central
nervous system (CNS). ScpB interrupts complement activation through cleaving the neutrophil chemoattractant C5a. It is also involved in invasion of human epithelial
cells. The SfbA adhesin is involved in human brain microvascular endothelial cells invasion. Furthermore, SfbA contributes to GBS invasion of vaginal and cervical
epithelial cells and hence may take part in GBS colonization and niche establishment in the vagina. BibA was reported to aid GBS survival in human blood through
interfering with the classic complement pathway by binding the C4-binding protein and by conferring anti-phagocytic activity against opsonophagocytic killing by
human neutrophils. HvgA is specific for the hypervirulent clone ST-17. It was suggested to promote meningeal tropism in neonates. Pili in GBS have been shown to
be primarily involved in epithelial cell colonization, biofilm formation, translocation, and invasion. PI-1 pili were also found to play an important role in evasion of innate
immunity mechanism. The PI-2b protein, however, was demonstrated to increase the intracellular survival in macrophage. Pilus 2b was further identified as important
for infection and penetration of the blood brain barrier.

be essential for GBS colonization of damaged epithelium
and subsequent translocation into the bloodstream. This role
was later confirmed by Tenenbaum et al. (2007) as they
demonstrated mutation of the lmb gene to result in a
dramatic reduction in GBS invasion of the brain microvascular
endothelial cells. In consistence, Al Safadi et al. (2010)
displayed higher expression levels of Lmb in GBS strains
associated with meningitis in comparison to other isolates
whereas the expression levels of other ECM-binding proteins,
such as ScpB mediating fibronectin binding ability, remained
unchanged.

ScpB or the group B ScpB is a surface associated serine
protease that both interrupts complement activation through
splitting the neutrophil chemoattractant C5a and mediates
bacterial binding to fibronectin (Chmouryguina et al., 1996;
Bohnsack et al., 1997; Cheng et al., 2002; Lindahl et al., 2005).
The fibronectin binding ability conferred by the scpB gene
appears to be involved in cellular adherence and invasion.
In frame deletion mutation of scpB gene significantly reduced
invasion of human epithelial cells in vitro (Cheng et al.,
2002). Strikingly, scpB and lmb genes were found to be
encoded on a composite transposon where the scpB gene
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is positioned directly upstream of the lmb gene. The scpB-
lmb intergenic region has been described as a hot spot for
integration of the GBS mobile genetic elements GBSil and
IS1548 which are located in the promoter region of the lmb
gene (Franken et al., 2001; Granlund et al., 2001; Luan et al.,
2003, 2005; Broker and Spellerberg, 2004). Al Safadi et al.
(2010) reported a marked increase in the transcription levels
of lmb gene for invasive GBS isolates carrying IS1548 in
the scpB-lmb intergenic region associated with an increased
laminin binding ability. However, no influence was observed
on the scpB gene. Deletion mutation of IS1548 revealed
IS1548 to act as an lmb gene up-regulator when compared
to the wild-type parent strains. Interestingly the ability of
GBS to colonize human mucosal surfaces seems to be closely
linked to the presence of this composite transposon carrying
scpB and lmb. In a large percentage of bovine strains, the
encoded genes are absent while the presence in human
colonizing strains, as well as invasive strains, is close to
100% (Franken et al., 2001; Sørensen et al., 2010; Rato et al.,
2013).

More recently, a novel GBS fibronectin binding protein
has been identified (Mu et al., 2014). It was designated as
streptococcal fibronectin-binding protein A (SfbA) and reported
to be highly conserved in GBS mediating cellular invasion but
not adherence. SfbA was shown to be directly involved in
fibronectin binding and human brain microvascular endothelial
cells invasion. When expressed in recombinant non-pathogenic
Lactococcus lactis, fibronectin binding ability was significantly
greater in comparison to a SfbA negative control strain. The
investigation also demonstrated SfbA to be primarily involved
in brain microvascular endothelial cells invasion. Infection
of mice with sfbA mutants resulted in a reduced ability to
breach the blood brain barrier and subsequent meningitis.
This is supported by a study showing SfbA to be crucial
for invasion of astrocytes which are physically associated with
the brain endothelial cells (Stoner et al., 2015). Furthermore,
SfbA contributes to GBS invasion of vaginal and cervical
epithelial cells and hence may take part in GBS colonization and
niche establishment in the vagina (Mu et al., 2014). Another
fibronectin binding protein was described in 2014 (Jiang and
Wessels, 2014). BsaB or the bacterial surface adhesin of GBS
is a fibronectin and laminin-binding protein which is involved
in GBS binding to epithelial cells and in biofilm formation.
Deletion of bsaB gene and a cotranscribed upstream region
significantly abrogated GBS adherence to VK2 vaginal epithelial
cells in vitro and immobilized fibronectin. However, genome and
sequence analysis revealed BsaB and FbsC as identical proteins
encoded by the same gene (Buscetta et al., 2014). The obtained
results are in agreement with Jiang and Wessels (2014), except
that FbsC or BsaB was found to mediate GBS attachment to
fibrinogen instead of fibronectin. Hence, BsaB was renamed to
FbsC.

The multitude of GBS adhesins allowing attachment to
different ECM, stresses the importance of this step in GBS
pathogenesis, which was confirmed in different in vivo models. In
this regard, fibrinogen binding may play an especially important
role as demonstrated by the presence of numerous fibrinogen

binding proteins. These may represent a kind of “backup” system
in cases where the primary fibrinogen adhesin was rendered
non-functional.

GBS Adhesins to Cellular Targets
Besides adherence to ECM, the adhesion to host cells plays
an important role in the pathogenesis of GBS. An essential
adhesin in this context is the GBS immunogenic bacterial
adhesin (BibA). It is a cell wall-anchored protein which is well-
conserved in GBS and is involved in bacterial binding to human
epithelial cells (Santi et al., 2007, 2009b). A knockout mutant
displayed impaired adherence capacity to the lung, intestinal,
and cervical epithelial cells (Santi et al., 2007). Overexpression
of BibA resulted in increased adherence to human epithelial
cells in recombinant wild-type strains harboring a bibA plasmid
(Santi et al., 2007). In addition, BibA was reported to aid GBS
survival in human blood through interfering with the classic
complement pathway by binding the C4-binding protein and
by conferring anti-phagocytic activity against opsonophagocytic
killing by human neutrophils (Santi et al., 2007, 2009b). A total
of four variants of BibA (I, II, III, and IV) were described in
GBS (Brochet et al., 2006; Santi et al., 2007, 2009b). Interestingly,
variant IV, which was found to be highly similar to the bovine
BibA counterparts, was exclusively associated with ST-17 strains
(Lamy et al., 2006; Santi et al., 2009b). Thus, BibA seems
to be a multifactorial virulence factor in regard to GBS as a
pathobiont. It contributes to GBS mucosal colonization and
adherence to host cells and then confers resistance to phagocytic
killing at a stage when the switch to invasive GBS infection has
occurred.

The GBS hypervirulent adhesin (HvgA) is a novel cell
wall anchored protein that is specific for the hypervirulent
clone ST-17. It was first described (Tazi et al., 2010) as being
strongly associated with ST-17 causing neonatal meningitis
in LOD. It was suggested to promote meningeal tropism in
neonates through efficient intestinal colonization and subsequent
translocation across the intestinal and the blood brain barriers.
Bypassing intestinal colonization by intravenous infection
resulted in a significant decrease in the amount of bacteria
reaching the central nervous system. HvgA was required for
intestinal colonization in orally infected mice for meningitis
development. In addition, HvgA was found to mediate GBS
adherence to intestinal epithelial cells, choroid epithelial cells,
and microvascular endothelial cells (Tazi et al., 2010). Clones
expressing HvgA exhibited greater adherence abilities than
non-expressing ones. HvgA thus contributes to colonization
as well as invasion of hypervirulent clones (Tazi et al.,
2010).

GBS Pili
Further structures that are crucial for GBS adhesion are pili.
Different from their Gram-negative counterparts, pili in GBS
have been shown to be primarily involved in epithelial cell
colonization, biofilm formation, translocation, and invasion. Pili
are cell-wall anchored appendages extending from the bacterial
surface. They contain covalently linked multimeric motifs that
are composed of three pilin proteins, the pilus shaft backbone
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protein (BP) or PilB subunits, and the two ancillary proteins
AP1, AP2 located at the pilus tip (PilA subunit, the pilus-
associated adhesin) and pilus base (PilC subunit, the pilus
anchor), respectively, (Dramsi et al., 2006; Rosini et al., 2006;
Maisey et al., 2007, 2008b; Cozzi et al., 2015). While PilB has
been shown to be involved in bacterial invasion and paracellular
translocation mediating resistance to phagocytic killing and
virulence, PilA was found contributing to cellular adherence and
colonization (Dramsi et al., 2006; Krishnan et al., 2007; Maisey
et al., 2007, 2008b; Pezzicoli et al., 2008; Sheen et al., 2011).
Three pilus variants named PI-1, PI-2a, PI-2b were reported in
GBS representing two pilus islands (PI) where PI-2a and PI-2b
are variants of the pilus island 2 (PI-2). All characterized GBS
strains harbored at least one variant or a combination of two
pilus islands (Rosini et al., 2006; Margarit et al., 2009; Springman
et al., 2014). PI-1 pili were also found to play an important
role in evasion of innate immunity mechanism. They diminished
macrophage-mediated phagocytic killing of GBS by 50% with
no influence on complement-promoted opsonophagocytic killing
by neutrophils (Jiang et al., 2012). Strikingly, PI-1 pili do not
appear to contribute to bacterial adhesion to lung, vaginal
or cervical epithelial cells (Jiang et al., 2012). The PI-2a pili
were found to have a specific involvement in adherence and
biofilm formation and not PI or PI-2b (Konto-Ghiorghi et al.,
2009; Rinaudo et al., 2010). The PI-2b protein, however, was
demonstrated to increase the intracellular survival in macrophage
(Chattopadhyay et al., 2011). In addition, a special role for pilus
type 2b has been suggested in promoting strain invasiveness and
bacterial host cell interactions. Mutants of pilus 2b possess less
adherence and invasion capacities for epithelial and endothelial
cells (Lazzarin et al., 2017). Pilus 2b was further identified
as important for infection and penetration of the blood brain
barrier. These results are supported by an investigation of the
distribution of pilus islands among GBS strains belonging to
ST lineages of human and bovine origin (Springman et al.,
2014). In addition, the distribution of pili islands appears to
determine the capacity for colonization or invasive infections.
Invasive GBS were more likely to carry a combination of
PI and one of the PI-2 variants in comparison to maternal
colonizing isolates. Moreover, GBS causing invasive neonatal
disease including all CC-17 strains were harboring PI-1 plus
PI-2b. Earlier genomic studies showed pilus type 2b to be
conserved in the ST-17 hypervirulent clone (Brochet et al., 2006).
Interestingly PI-2b pilus variants are almost exclusively present
in bovine GBS isolates. These bovine strains mostly lack PI-1,
unlike the human isolates which commonly encode the pilus PI-
1 in association with one of the PI-2 variants (Springman et al.,
2014).

GBS TRANSITION FROM COMMENSAL
TO PATHOGEN

Group B streptococcus is a commensal bacterium of the vagina
and the gastrointestinal tract of healthy adults. However, as a
pathobiont, GBS can convert from the asymptomatic mucosal
carriage state to a bacterial pathogen causing invasive infections.

For neonatal infections that implies a switch from bacterial
survival in the acidic host environment of the vagina to
resistance of the immune system in the pH neutral environment
of human blood. To address bacterial adaptation to these
environmental changes, a genome-wide transcription analysis
was performed in order to investigate GBS responses to acid stress
in comparison to neutral pH conditions (Santi et al., 2009a).
This study demonstrated the modulation of genes involved in
GBS adaptation and vaginal persistence as well as virulence-
related genes in response to fluctuating environmental pH which
are mostly under the control of the CovRS two-component
regulatory system (TCS). Among the adherence factors that
were demonstrated to be under the control of CovRS are
Fbs proteins, Lmb, C5a, BibA, HvgA, and pili (Lamy et al.,
2004; Jiang et al., 2008, 2012; Santi et al., 2009a; Tazi et al.,
2010; Park et al., 2012). These observations suggested that
GBS translocation from acidic to neutral niches switches on
virulence-related genes, favoring the transition from commensal
to invasive bacterial pathogen. The CovRS system is a well-
studied TCS in GBS and a major virulence regulator. The
contribution of CovRS in coordinating GBS gene expression
and virulence has been investigated in many studies (Lamy
et al., 2004; Jiang et al., 2005, 2008; Di Palo et al., 2013;
Faralla et al., 2014). Patras et al. (2013) conducted a global
transcription profiling of human vaginal epithelial cells exposed
to a CovR-deficient mutant in comparison to the wild-type
strain and studied a mouse model of GBS vaginal colonization.
Their major observation was that loss of CovR signaling
promoted exaggerated host inflammatory reactions against GBS
infection. Hence, the authors concluded that CovRS control
of GBS virulence gene expression is crucial in maintaining
GBS vaginal colonization by avoiding host immune responses
(Patras et al., 2013). Apart from regulation through TCS,
GBS genomic adaptations seem to take place during GBS
transition from commensal to pathogen. Comparing the whole
genomes of GBS pairs from infected newborns and their
mothers genomic mutations were found with critical phenotypic
impacts, including CovR mutations (Almeida et al., 2015).
Genomic adaptations may also impact dynamics of maternal
GBS colonization before and after delivery. Alterations in STs
and serotypes can be observed in 18.3% of pregnant women
who were positive colonizers before and after delivery (Manning
et al., 2008). Definite STs appear to be related with GBS
clearance and persistence. Not surprisingly capsule expression
is linked to invasion capabilities of GBS. A significantly higher
proportion of non-typeable strains are present among colonizing
isolates in comparison to invasive isolates (Teatero et al.,
2017). This may indicate that persistent colonizers undergo
several lateral DNA exchanges leading to the abolishment
of capsule expression since encapsulation is less important
during carriage. Capsule loss has previously been suggested
to favor GBS colonization and diminish virulence (Rubens
et al., 1987) and capsule production is also regulated through
CovRS. Thus the results of multiple independent investigations
strengthen the role of CovRS as a central GBS regulator
controlling the switch from mucosal colonization to invasive
infection.
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IMMUNOPROPHYLAXIS

The ability of GBS to cause neonatal invasive infections is
dependent on the maternal antibody titer. Early work done
by Rebecca Lancefield in the 1930s (Lancefield, 1938) reported
protection against GBS infection in mice by CPS-specific
antiserum in rabbits. Baker and Kasper (1976) demonstrated
an inverse association between the levels of maternal serotype-
specific capsular antibodies and the increased susceptibility
to invasive GBS disease in newborns. This association was
confirmed in later investigations (Lin et al., 2001, 2004;
Baker et al., 2014). Vaccination seems, therefore, to be a
good alternative to peripartal antibiotic prophylaxis in order
to prevent neonatal GBS infections. However, no licensed
vaccines are available (Verani et al., 2010; Madhi and Dangor,
2017). The sialylated CPS has been the main target for GBS
vaccine in most clinical trials. Phases I and II clinical trials
demonstrated the safety and immunogenicity of monovalent
CPS-conjugate vaccines among healthy women (Paoletti and
Kasper, 2003). However, monovalent formulations with serotype-
specific immune responses are not sufficient to provide
protection against the different GBS serotypes found in invasive
infections. Besides, possible capsular switching forced by the
selective pressure exerted due to GBS monovalent vaccines can
be expected. Multivalent formulations would provide broader
vaccine coverage and overcome problems of serotype switching
(Johri et al., 2006; Brueggemann et al., 2007; Nuccitelli et al.,
2011; Heath et al., 2017). The Safety and immunogenicity of
a trivalent GBS conjugate vaccine based on serotypes Ia, Ib,
and III have has been evaluated in Phases I and II trials and
there are considerations for a Phase III trial (Madhi et al., 2013;
Donders et al., 2016; Heyderman et al., 2016; Kobayashi et al.,
2016a,b; Leroux-Roels et al., 2016; Madhi et al., 2016). Pre-
clinical studies of a pentavalent vaccine, based on serotypes Ia,
Ib, II, III, V are currently under investigation (Kobayashi et al.,
2016a). In addition to serotype-specificity, the development of
a GBS vaccine with global relevance is a real challenge due to
geographic serotype diversity and variations over time. Hence,
new vaccine candidates based on conserved surface proteins
have been investigated and these included ScpB, Lmb, surface
immunogenic protein Sip, leucine rich repeat protein LrrG,
Rib and tandem-repeat containing α and β components of the
C protein (Wilkinson and Eagon, 1971; Russell-Jones et al.,
1984; Michel et al., 1991; Madoff et al., 1992; Stålhammar-
Carlemalm et al., 1993; Spellerberg et al., 1999; Cheng et al.,
2001; Heath and Feldman, 2005; Seepersaud et al., 2005).
A Phase I clinical trial revealed the immunogenicity of Rib and
α-C surface proteins against invasive GBS disease (Madhi and
Dangor, 2017). Based on reverse vaccinology utilizing genomics,
proteomics, transcriptomics and in silico technologies, a panel
of potential vaccine targets could be discovered (Johri et al.,
2006). A similar approach also lead to the identification of

GBS pili (Lauer et al., 2005). However, the development of
a pilus-based vaccine has been hampered due to antigenic
variations of pili in GBS (Margarit et al., 2009; Nuccitelli et al.,
2011), but structural vaccinology may overcome this problem.
Crystallographic structure of the BP-2a pilus subunit showed four
IgG-like domains D1, D2, D3, and D4. Since the D3 domain
elicited similar protection as the whole BP-2a component, a
promising hybrid vaccine candidate consisting of 6xD3 of the D3
domains from six variant BP-2a pilus subunits was constructed. It
is expected to confer protection against all six pilus variants found
in GBS strains (Nuccitelli et al., 2011). Other promising vaccine
targets that have been identified by reverse vaccinology include
the Sip and BibA proteins (Maione et al., 2005; Santi et al., 2007,
2009b). It has been recently shown that a reduced likelihood of
maternal GBS acquisition during pregnancy is directly associated
with Sip and BibA induced antibodies (Dzanibe et al., 2017).
The successful development and introduction of a GBS vaccine
may, therefore, result in converting GBS into a predominantly
harmless commensal of the mucosa.

CONCLUSION

Group B streptococcus adherence and colonization is a
complex multifactorial process which determines the success
of a pathobiont in the human ecosystems. GBS possess strict
regulatory systems which are responsible for fine-tuning the
expression of adhesins in order to optimize GBS fitness under
the prevailing environmental conditions. Long-term colonization
and persistence is largely dependent on the ability of GBS to
avoid the host immune response. Over the last two decades,
a detailed knowledge about molecular adhesion mechanisms
was accumulated for GBS, which considerably enhances our
understanding of disease development. These GBS adhesion
determinants may represent novel targets for the development
of innovative treatment and prophylaxis strategies aiming at
control and prevention of invasive GBS disease in neonates as
well as adult patients. To date, the sialic acid-containing CPS
that underlies the serotyping system of GBS has been the main
focus of most vaccine developments. GBS colonizers represent
the silent reservoirs responsible for serotype diversity and
evolutionary changes in virulence determinants. Investigation of
GBS population structure is essential to monitor the circulating
serotypes and identify changes in strains causing GBS disease.
An aspect, which is especially important in view of a possible
serotype-dependent vaccination in the near future.
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