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Malignant tumors contain heterogeneous populations of cells in various states of pro-
liferation and differentiation. The presence of cancer stem or initiating cells is a well-es-
tablished concept wherein quiescent and poorly differentiated cells within a tumor mass 
contribute to drug resistance, and under permissive conditions, are responsible for tumor 
recurrence and metastasis. A number of studies have identified molecular markers that 
are characteristic of tissue-specific cancer stem cells (CSCs). Isolation of CSCs has 
enabled studies on the metabolic status of CSCs. As metabolic plasticity is a hallmark of 
cancer cell adaptation, the intricacies of CSC metabolism and their phenotypic behavior 
are critical areas of research. Unlike normal stem cells, which rely heavily on oxidative 
phosphorylation (OXPHOS) as their primary source of energy, or cancer cells, which are 
primarily glycolytic, CSCs demonstrate a unique metabolic flexibility. CSCs can switch 
between OXPHOS and glycolysis in the presence of oxygen to maintain homeostasis 
and, thereby, promote tumor growth. Here, we review key factors that impact CSC 
metabolic phenotype including heterogeneity of CSCs across different histologic tumor 
types, tissue-specific variations, tumor microenvironment, and CSC niche. Furthermore, 
we discuss how targeting key players of glycolytic and mitochondrial pathways has 
shown promising results in cancer eradication and attenuation of disease recurrence in 
preclinical models. In addition, we highlight studies on other potential therapeutic targets 
including complex interactions within the microenvironment and cellular communications 
in the CSC niche to interfere with CSC growth, resistance, and metastasis.

Keywords: stem cells, metabolism, microenvironment, targets, cancer stem cell markers

inTRODUCTiOn

Despite the advances in modern medicine, some of the major challenges currently confronted in 
treating cancer patients include the development of therapeutic drug resistance and disease recur-
rence. Traditional treatments target cancer cells as a means to eradicate tumors and treat the patients. 
These methods are largely based on the stochastic model—a theory that suggests that cancer cells can 
arise from a cell that undergoes gene mutations resulting in the acquisition of a highly proliferative 
state (1, 2). Each progenitor cell bears the mutation and phenotypic profile of the parent cell and is 
capable of reconstituting a tumor. Several studies have since challenged this theory by demonstrating 
the existence of a subpopulation of cells called cancer stem cells (CSCs) or tumor-initiating cells, 
which are typically quiescent but under certain conditions, capable of proliferating to self-renew 

https://www.frontiersin.org/Oncology/
https://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2018.00203&domain=pdf&date_stamp=2018-06-05
https://www.frontiersin.org/oncology/archive
https://www.frontiersin.org/Oncology/editorialboard
https://www.frontiersin.org/Oncology/editorialboard
https://doi.org/10.3389/fonc.2018.00203
https://www.frontiersin.org/Oncology/
https://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:sthomas7@kumc.edu
mailto:sanant@kumc.edu
https://doi.org/10.3389/fonc.2018.00203
https://www.frontiersin.org/Journal/10.3389/fonc.2018.00203/full
https://www.frontiersin.org/Journal/10.3389/fonc.2018.00203/full
https://loop.frontiersin.org/people/535281
https://loop.frontiersin.org/people/535641
https://loop.frontiersin.org/people/569106
https://loop.frontiersin.org/people/568725
https://loop.frontiersin.org/people/15708


Table 1 | Biomarkers reported to characterize CSCs.

Marker Cancers identified Metabolic phenotype Reference

ABCG2 HNSCC, retinoblastoma, lung cancer, liver cancer, pancreatic cancer, melanoma Hypoxia induced (10)

Aldehyde 
dehydrogenase  
1-A1/ALDH1A1

Liver, kidney, red blood cells, skeletal muscle, lung, breast, lens, stomach,  
brain, pancreas, testis, prostate, ovary

Converts acetaldehyde to acetate, 
maintains low ROS

(11)

Alpha-methylacyl-CoA  
racemase/AMACR

Prostate cancer, gastric cancer, nasopharyngeal cancer, CRC Facilitates metabolic switch to fatty acid 
β-oxidation

(12)

CD24 Gastric cancer CD24 is a hypoxia-inducible factor (13)

CD27 Lymphoma, multiple myeloma, B-cell chronic lymphocytic leukemia, renal cell  
carcinoma, glioblastoma, mesothelioma, HCC, cancers of the pancreas, breast  
and ovary, CRC, melanoma, neuro-endocrine carcinoma

Not specified (14)

CD44 Most epithelial cancers, leukemia Promotes glycolysis via PKM2 
suppression

(15)

CD47 AML, ALL, breast cancer, esophageal cancer Regulates glycolytic metabolic pathways (16)

CD133 Brain, breast, CRC, HNSCC, kidney, liver, lung, ovary, pancreas, prostate, stomach,  
bone/soft tissue, eye, skin

Decreased hexokinase II expression, 
promoted by hypoxia

(17, 18)

Connexin 43/GJA1 Prostate cancer, nasopharyngeal cancer, glioblastoma, HCC Increased glucose uptake (19)

c-Met HNSCC, breast cancer, thyroid cancer, HCC Prevents excessive ROS (20, 21)

ErbB2/Her2 Breast cancer, endometrial cancer, gastric cancer Promotes aerobic glycolysis (22, 23)

GLI-1 Leukemia, breast cancer, glioma Hypoxia induced (24)

GLI-2 Leukemia, breast cancer, glioma, osteosarcoma, HCC, pancreatic cancer Hypoxia induced (25)

HIF-2 alpha/EPAS1 HCC, lung cancer, renal cancer, CRC, melanoma, glioblastoma, gastric cancer Hypoxia induced (26)

IL-3 R alpha/CD123 AML, pancreatic cancer, non-small cell lung cancer, breast cancer, ovarian cancer Promotes glycolytic enzyme activity (27, 28)

IL-6 R alpha Most epithelial cancers Promotes glycogenolysis (29, 30)

Integrin alpha 6/CD49f Prostate cancer, breast cancer, glioblastoma Not specified (31, 32)

Lgr5/GPR49 HNSCC, HCC, CRC, ovarian cancer, basal cell carcinoma Promotes mitochondrial OXPHOS (33, 34)

AML, acute myeloid leukemia; ALL, acute lymphocytic leukemia; CRC, colorectal carcinoma; HNSCC, head and neck squamous cell carcinoma; HCC, hepatocellular carcinoma; 
OXPHOS, oxidative phosphorylation; ROS, reactive oxygen species; CSCs, cancer stem cells: PKM2, pyruvate kinase M2.
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the CSC population and generate progenitor tumor cells (3, 4). 
CSCs are resistant to therapies that target rapidly proliferating 
tumor cells and are primarily responsible for tumor relapse. In 
the 1990s, the theory of a hierarchical organization within tumors 
was introduced in acute myeloid leukemia (AML), identifying 
leukemia-initiating cells via their expression of a CD34++CD38− 
phenotype. This hierarchical model postulates that individual 
tumor cells have distinct mutational profiles and epigenetic 
modifications contributing to cellular heterogeneity. In the years 
to follow, researchers have used molecular markers to identify 
and isolate CSCs of various solid tumors (5–7).

Currently, there are more than 40 established CSC markers 
(Table  1); however, much controversy surrounds the scientific 
techniques employed to identify surface markers. Moreover, 
majority of the markers established for the identification of 
CSCs were previously described in human embryonic stem cells 
and/or adult stem cells of normal tissue cells (5, 8). This shared 
feature may suggest two possibilities: CSCs could originate from 
genetic alterations in normal stem cells or could be the result 
of dedifferentiation of mutated cancer cells into stem-like cells. 
Despite the shared properties, CSCs differ from normal stem 
cells in that unlike CSCs, cell proliferation is rigidly controlled 
in normal stem cells (9). Glycosylation of glycoprotein markers 

has also been suggested to impact the biological behavior of CSCs 
(8). It is important to focus future investigation on the mutations, 
metabolic phenotype, and other aspects of the microenvironment 
that distinguish CSCs from normal stem cells.

Normal stem cells are unique in their ability to self-renew, 
proliferate, and differentiate into various tissue types, as well as 
reproduce progeny essential to maintain and repair the organ 
system in which they are found (35, 36). Embryonic stem cells, 
hematopoietic stem cells, and mesenchymal stem cells have a low 
mitochondrial DNA copy number, as well as poorly developed 
mitochondrial morphology and reduced oxidative capacity. On 
the other hand, glycolytic pathways are highly active in these 
stem cells. Hypoxia-induced glycolysis in pluripotent stem cells 
and inhibition of mitochondrial respiration promote stemness, 
whereas inhibition of glycolysis disrupts proliferation and pro-
motes cell death (37).

Although CSCs share many of the characteristics of normal 
stem cells, the differ in that, they contribute to tumor progression, 
drug resistance, and recurrence (38). In addition, several reports 
suggest that CSCs preferentially use glycolysis. However, other 
reports suggest a propensity for mitochondrial oxidative phos-
phorylation (OXPHOS) suggesting a possible metabolic plastic-
ity. The aim of this review is to summarize and emphasize some of 
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the key aspects currently known about CSC metabolism and the 
potential therapeutic targets contributing to cancer progression.

CellUlaR anD CanCeR MeTabOliSM

All cells require energy for growth, division, and survival, which 
they acquire through the absorption of nutrients including 
glucose that are broken down in a series of metabolic reactions 
involving glycolysis and cellular respiration through OXPHOS. 
Under normal physiological conditions, cells rely on both gly-
colysis and OXPHOS for efficient energy production (39). The 
process of glycolysis involves the breakdown of glucose through 
a series of reactions to produce pyruvate, two molecules of 
adenosine 5′-triphosphate (ATP), and nicotinamide adenine 
dinucleotide (NADH). Under normoxic conditions (oxygen is 
readily available), pyruvate is transported to the mitochondria 
where it is converted into acetyl coenzyme A. Acetyl CoA enters 
the tricarboxylic acid cycle to produce high amounts of energy 
in the form of NADH and flavin adenine dinucleotide (FADH2) 
molecules. The hydrogen ions from NADH trigger the electron 
transport chain and generation of up to 32 molecules of ATP 
through OXPHOS (40, 41).

Since OXPHOS generates more ATP molecules than glycolysis, 
normal cells rely primarily on OXPHOS as an efficient source of 
energy. This process, however, is impaired in hypoxic conditions 
due a dearth in oxygen.

Rapidly proliferating cancer cells outpace angiogenesis 
resulting in areas of low oxygen. However, increasing evidence 
suggests that cancer cells engage in glycolysis even in the presence 
of oxygen (42). As a result, tumor cells demonstrate enhanced 
glycolytic production of ATP (43). Otto Warburg first described 
this phenomenon now known as the Warburg effect of aerobic 
glycolysis (41, 44, 45). The increased glycolysis was attributed to 
mitochondrial damage in cancer cells. Subsequent studies found 
that most cancer cells do not demonstrate mitochondrial dam-
age, but rather suggest that aerobic glycolysis can occur simul-
taneously to enhance energy production for the maintenance of 
cancer cell homeostasis (43). In fact, several studies demonstrate 
that acceleration of glycolysis provides a source of metabolites 
and other essential factors required for rapidly dividing cells  
(41, 43, 46, 47).

MeTabOliC PHenOTYPe OF CSCs

Due to the highly proliferative, tumorigenic, and drug-resistant 
properties of CSCs, in-depth investigation of CSC metabolic 
phenotype has comprised the cornerstone of numerous recent 
studies. Although metabolic adaptation or plasticity is one of the 
hallmarks of cancer, the majority of reports suggest that CSCs 
are primarily glycolytic (48–55). However, examination of CSCs 
isolated from patient tumors suggests that OXPHOS is the main 
source of energy (56, 57). We describe other multifactorial causes 
contributing to the apparent differences in CSC metabolism 
across tumor types in the following sections. Emerging evidence 
suggests the existence of specific metabolic phenotypes of CSCs 
based on their location, such as those in actively growing regions 
of the tumor that have adequate levels of oxygen, hypoxic areas 

of the tumor, or those in a distant metastatic site summarized in 
Figure 1.

GlYCOlYTiC PaTHwaY

A number of studies performed in various tumor types, such as 
glioblastoma, lung cancer, osteosarcoma, breast cancer, ovarian 
cancer, and colon cancer, suggest that CSCs more strongly favor 
the glycolytic pathway than other differentiated cancer cells 
in vitro and in vivo (58–62). Rationale for investigating the role of 
glycolytic metabolism in CSCs is due to its proposed phenotypic 
similarity to normal stem cells with self-renewal characteristics. 
Earlier studies paved the way by illustrating the low activity of 
mitochondrial respiration in brain tumor CSCs, as well as higher 
rates of glycolysis in CSCs than other tumor cells (63, 64). Further 
investigations revealed that upregulation of glycolytic enzymes 
(GLUT1, HK-1, and PDK-1) and stimulation of glycolysis are 
necessary for cell immortalization and is sufficient to increase 
cellular lifespan (65). Comparing glucose utilization by CSCs and 
non-CSCs has revealed differentially elevated glucose consump-
tion, lactate synthesis, and ATP content in CSCs, thus suggesting 
distinct metabolic profiles of CSCs in comparison to non-CSCs 
(66–68). Glycolysis has also been identified as the preferred 
metabolic pathway of CSCs in nasopharyngeal carcinoma and 
of tumor-initiating stem-like cells in hepatocellular carcinoma 
(69, 70). In addition, cellular metabolism is thought to control 
stemness characteristics; in particular, the glycolytic switch has a 
causal relation in induced pluripotent stem cell reprogramming 
and acquisition of pluripotent markers (71). Reprogramming 
the metabolic switch from OXPHOS to glycolysis was shown to 
enhance stemness and CSC properties in CD44+CD24lowEPCAM+ 
cells of basal-like breast cancer by reducing reactive oxygen species 
(ROS) levels (48). Glycolysis-driven induction of pluripotency is 
consistent with the finding that hypoxia maintains the stem cell 
state and a hypoxic environment promotes the reprogramming 
process (72).

OXPHOS PaTHwaY

Growing evidence suggests mitochondrial oxidative metabolism 
as the preferred form of energy production in CSCs. Several 
studies in numerous tumor types, such as CD133+ cells of 
glioblastoma and pancreatic ductal adenocarcinoma, ROSlow 
quiescent leukemia stem cells, lung cancer side population cells, 
and breast cancer, strongly support an OXPHOS phenotype and 
less glycolytic profile (49, 50, 54, 73). In contrast to the non-CSC 
cancer cells, which mainly utilize glycolysis for energy produc-
tion, CSCs have an enhanced mitochondrial ROS, higher rates 
of oxygen consumption, and overall increased mitochondrial 
function, as evidenced by increased mitochondrial mass and 
membrane potential (50, 52, 53, 73–76). Moreover, this increased 
mitochondrial bulk in a subpopulation of breast cancer cells 
induces stem-like characteristics and confers metastatic poten-
tial and resistance to DNA damage (77). In addition, CSCs may 
depend on mitochondrial fatty acid oxidation (FAO) for the 
generation of ATP and NADH. A population of isolated ovarian 
CSCs revealed upregulated expression of genes associated with 

https://www.frontiersin.org/Oncology/
https://www.frontiersin.org
https://www.frontiersin.org/oncology/archive


FiGURe 1 | The schematic represents the metabolic status of cancer stem cells (CSCs) in three broad categories based on the location. CSCs in a normoxic tumor: 
stemness has been associated with upregulation of glycolytic enzymes in those CSCs that rely on glucose pathway, as well as with dependence on mitochondrial 
pathway as evidenced by increased mitochondrial mass, membrane potential in CSCs and mitochondrial fatty acid oxidation (FAO) for generation of adenosine 
5′-triphosphate and nicotinamide adenine dinucleotide. CSCs in tumor under hypoxia: hypoxia-inducible factor-1α (HIF-1α) promotes upregulation and potentiated 
activity of several glycolytic proteins, such as transporters (GLUT1, GLUT3) and various isoforms of glycolytic enzymes. CSCs in the metastatic niche: CSCs induced 
by epithelial-to-mesenchymal transition, have augmented utilization of extracellular catabolites, such as pyruvate, lactate, glutamine, glutamate, alanine, or ketone 
bodies. In nutrient poor states, quiescent disseminated tumor cells rely on alternative energy sources such as autophagy. The CSC stem cell model of treatment 
proposes the prevention of recurrence if all CSCs are eliminated.
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FAO and OXPHOS (52). FAO is instrumental in self-renewal 
processes of hematopoietic stem cells and leukemia-initiating 
cells, as in the survival of ablation-resistant pancreatic CSCs and 
survival of epithelial cancer cells subsequent to matrix detach-
ment (78–80). An oxidative phenotype confers resistance to 
treatment modalities and evasion of apoptosis as evidenced by 
the vastly tumorigenic and chemoresistant metabolism found in 
hepatocellular CSCs, upon NANOG-induced expression of FAO 
genes (70). The powerful antioxidant defense mechanism of CSCs 
contributes to therapy resistance, by maintaining a significantly 
lower ROS levels and preserving stemness and tumorigenic 
properties of CSCs (52, 81, 82).

FaCTORS aFFeCTinG THe MeTabOliC 
STaTUS OF CSCs

The reported differences in the metabolic profile of CSCs from 
various tumor types are due to multifactorial causes. One such 

explanation is the suggested plasticity of these cells and the 
potential harvest of them at various stages of differentiation/
dedifferentiation during experiments (2). Another cause may 
be the lack of uniformity and precision in definition of CSCs 
and varying techniques utilized to isolate CSCs, such as specific 
markers, Hoechst staining-based sorting, chemoresistance-based 
isolation, and reoxygenation sorting post-hypoxic exposure 
(83–87). This is due to a vast heterogeneity of CSCs across vari-
ous histologic tumor types. Another potential contributing factor 
that may explain the contradictory results is the contribution of 
the microenvironment. We broadly distinguish the metabolic 
status of CSCs in three locations, namely, regions with normoxic 
tumor, hypoxic tumor, and at metastatic sites (Figure 1).

As mentioned in the preceding sections, under normoxic 
conditions, CSCs can engage in glycolysis and/or OXPHOS. 
Furthermore, the metabolic status of CSCs can be affected by cross-
talk between CSCs and cancer-associated stroma in the micro-
environment. For example, cancer-associated fibroblast-secreted 
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metabolites including lactate and ketone bodies drive OXPHOS 
in cancer cells (88). The role of cancer-associated stroma in regu-
lating CSC metabolism is unknown.

Similar to embryonic stem cell maintenance, tumor hypoxia 
promotes the persistence of an undifferentiated, stem cell 
phenotype (89). Ductal breast carcinoma cells revert to a stem 
cell-like phenotype through dedifferentiation under hypoxic 
conditions (90). Other studies showed that hypoxic exposure 
altered gene expression in human neuroblastoma cells toward a 
neural crest-like, immature profile and caused upregulation of the 
stem cell surface marker CD-133 in medulloblastoma (90, 91). 
Under hypoxic conditions, overexpression of hypoxia-inducible 
factor-1α (HIF-1α) promotes upregulation and potentiated activ-
ity of several glycolytic proteins, such as transporters (GLUT1 
and GLUT3) and various isoforms of glycolytic enzymes (92). 
In addition, HIF-1α regulates pyruvate dehydrogenase kinase 1 
levels which facilitate glycolysis in breast CSCs under hypoxic 
conditions (93).

Metastatic cancer cells undergo epithelial-to-mesenchymal 
transition (EMT) upregulating a number of factors associated with 
a stem-like phenotype. EMT-associated factors including HIF-1α, 
Wnt, and Snail regulate cellular metabolism (94). Furthermore, 
EMT-associated metabolites—glutamine, glutamate, and ala-
nine—as well as high lactate concentrations are associated with 
poor survival and higher metastatic potential in breast cancers (95, 
96). CSCs have augmented utilization of extracellular catabolites, 
such as pyruvate, lactate, glutamine, glutamate, alanine, or ketone 
bodies to support OXPHOS (97–99). In nutrient poor states, 
quiescent disseminated tumor cells rely on alternative energy 
sources such as autophagy, yet metabolic plasticity demonstrated 
by their ability to produce energy through various pathways is 
instrumental for metastatic growth and proliferation (100–102). 
Finally, a recent study of metabolic dependencies of non-small 
cell lung cancers highlighted the significant contribution of the 
microenvironment as a determinant of the metabolic phenotype 
of cancer cells, as evidenced by varying profiles in vitro and in vivo 
settings. KRAS-driven lung cancer cells in mice models showed 
preferential glutamine utilization in vitro, but did not depend on 
glutamine metabolism in vivo (103).

TaRGeTinG CellUlaR MeTabOliSM

A strong association between tumors with high CSC fractions 
and recurrence, poorer overall survival, and higher incidence of 
metastasis, underscores the significant prognostic and therapeu-
tic implications of CSCs (104, 105). Defining characteristics of 
CSCs such as surface markers, metabolic phenotypes, resistance 
to chemoradiotherapy, and regulatory factors in microenviron-
ment compile the bulk of therapeutic targets. For instance, 
CD44, a receptor for hyaluronic acid-mediated motility, is 
shown to induce CSC attachment to extracellular matrix and cell 
migration, promoting metastasis and invasion (106). Treatment 
of breast, colon, esophageal, gastric, lung, and ovarian cancers 
overexpressing CD44, with ONCOFIDTM-S which is a conjugate 
of hyaluron and chemotherapeutic agent SN38 (7-ethyl-
10-hydroxycamptothecin, active metabolite of CPT-11) revealed 
a strong in vitro anti-proliferative activity (107, 108). In addition, 

use of anti-CD44 antibodies H90 and A3D8 inhibited prolifera-
tion and induced apoptosis, by promoting the differentiation of 
AML blasts (108–111). Finally, CD44 interacts with pyruvate 
kinase M2 (PKM2), enhancing the glycolytic profile of cancer 
cells deficient in p53 or exposed to hypoxia. Subsequent ablation 
of CD44 led to inhibition of glycolysis, increase in ROS and 
enhancement of chemotherapeutic drug effect in these cancer 
cells (110). Therefore, preferentially targeting of identified CSC 
markers, such as CD44, can be utilized for an effective cytotoxic 
drug delivery. In addition, inhibition of glycolysis can be achieved 
by targeting various glycolytic enzymes, transporters, and other 
complex regulators, such as GLUT 1–4, hexokinase, PKM2, and 
lactate dehydrogenase A (111–113).

Previously discussed evidence for OXPHOS dependence of 
CSCs in numerous cancer lines proposes mitochondrial metabo-
lism to be a potential target for an effective elimination of CSCs. 
Inhibition of the OXPHOS pathway reduces sphere formation and 
tumor formation potential demonstrating vulnerability of CSC to 
mitochondria-targeted therapies (54, 114, 115). Pharmacological 
agents targeting CSCs through inhibition of mitochondrial 
biogenesis and OXPHOS are currently under investigation for 
cancer treatment. Several FDA-approved compounds known to 
inhibit mitochondrial function have been reported to achieve a 
more effective eradication of CSCs. Salinomycin, erythromycins, 
tetracyclines, and glycylcyclines are some of the approved agents 
to have already demonstrated efficacy in eradicating CSCs via 
reduction of stemness properties (115–118). Metformin, an 
inhibitor of OXPHOS complex I, has demonstrated anti-tumoral 
activity by reducing mammosphere formation, delaying in vivo 
tumor growth, and inducing apoptosis in pancreatic CSCs unable 
to switch to glycolysis (54, 119, 120). However, emergence of a 
small subset of resistant CSCs with an intermediate glycolytic/
OXPHOS phenotype could be prevented/reversed by utilizing 
a mitochondrial ROS inducer such as menadione (54). Dual 
mechanism of menadione inhibition of Complex I and induc-
tion of mitochondrial ROS points out the superior efficacy of 
multi-modal targeted therapy. Studies have shown that inhibi-
tion of mitochondrial respiration not only induces apoptosis in 
pancreatic CSCs with OXPHOS phenotype but also effectively 
eliminates primarily glycolytic breast and nasopharyngeal CSCs 
(53, 54, 121). These data highlight the extended role of mito-
chondria beyond energy production in CSCs, such as acquiring 
metabolites from glutamine via reductive carboxylation to sup-
port growth in tumor cells with defective mitochondria (122).  
A novel compound 3,5-bis(2,4-difluorobenzylidene)-4-piperi-
done (DiFiD) has been shown to inhibit pancreatic cancer growth 
by targeting a CSC marker, doublecortin and CaM kinase-like-1 
(DCLK-1) (59, 66, 123). However, the role of DCLK-1 and the 
impact of DiFiD on CSC metabolism have not been studied.

Evident from the data reviewed, the CSC phenotype varies 
between cancer subtypes and among populations of the same 
subtypes. Preferred energy-producing metabolic pathways 
depend on various factors, including metastatic site highlighting 
vast metabolic variability and patterns (124). In addition to stud-
ies supporting metabolic plasticity, simultaneous enhancement 
of glycolysis and OXPHOS pathways was observed in highly 
metastatic breast cancer cell lines relative to non-metastatic 
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cell lines (49, 124). Consequently, dual inhibition of glycolytic 
and mitochondrial energy pathways has proven to be effective 
against tumor growth in a number of preclinical cancer models 
(125). One such study elegantly demonstrated sarcoma cells to 
be twofold to fivefold more sensitive than normal cells to dual 
inhibition of glycolysis with 2-deoxyglucose and OXPHOS with 
oligomycin or metformin (126). Therefore, dual inhibition of 
metabolic pathways may be a superior approach to eradicating 
heterogeneous CSCs rather than singularly targeting glycolysis 
or OXPHOS pathways. Finally, other factors directly affecting 
metabolic status of CSCs may represent potential targets for 
pharmacological treatments. These developments may include 
promoting CSC differentiation, targeting complex interactions 
within the microenvironment, and disrupting cellular communi-
cations in the CSC niche to interfere with CSC growth, resistance, 
and metastasis (97, 127–130).

COnClUSiOn

Substantial evidence suggests that the CSCs are pluripotent, self-
renewing, “original cells” of a tumor capable of differentiation 
into more specialized cancer cell types. CSCs are responsible 
for tumor formation, differentiation, maintenance, spread, and 
recurrence, making them an attractive therapeutic target for a 
potential permanent cure or long-term disease-free survival 
(127, 131). Regardless of the controversy about the metabolic 
phenotype of CSCs, metabolism is not only a key player but also 
a regulatory instigator of stemness.

Metabolic singularities that distinguish CSCs need to be 
further investigated, as they offer a great potential for developing 
improved treatments to eradicate them. In particular, streamlining 

and standardization of CSC identification methods is important. 
Development of CSC marker combinations would contribute to 
better delineation of CSCs from non-CSC cancer cells and normal 
stem cells. Interactions between CSCs and their microenviron-
ment also provide a fertile ground for advance investigations. 
Chronicity and causality of these complex interactions needs to 
be established. Moving forward, CSC metabolic pathways and 
principal players of metabolism comprise potential therapeutic 
targets with a great promise for improved cancer treatments.
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