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Abstract. The extraction of six standard planes in 3-D cardiac ultrasound plays an important role in clinical
examination to analyze cardiac function. A guideline-based learning method for efficient and accurate standard
plane extraction is proposed. A cardiac ultrasound guideline determines appropriate operation steps for clinical
examinations. The idea of guideline-based learning is incorporating machine learning approaches into each
stage of the guideline. First, Hough forest with hierarchical search is applied for 3-D feature point detection.
Second, initial planes are determined using anatomical regularities according to the guideline. Finally, a regres-
sion forest integrated with constraints of plane regularities is applied for refining each plane. The proposed
method was evaluated on a 3-D cardiac ultrasound dataset and a synthetic dataset. Compared with other
plane extraction methods, it demonstrated an improved accuracy with a significantly faster running time of
0.8 s∕volume. Furthermore, it showed the proposed method was robust for a range abnormalities and
image qualities, which would be seen in clinical practice. © The Authors. Published by SPIE under a Creative Commons
Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including
its DOI. [DOI: 10.1117/1.JMI.5.4.044503]
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1 Introduction
Echocardiography is a necessary tool to evaluate the structure
and function of the heart and associated vessels. It is a fast,
easy, and noninvasive evaluation that uses ultrasound waves
to produce images of the heart.1 Recently, echocardiography
technology has continued evolving, with one of the major devel-
opments being real-time three-dimensional (3-D) echocardiog-
raphy (3DE). 3DE provides a 3-D visualization of the heart,
avoiding problems of 2DE, such as foreshortening, out-of-
plane motion, and the need of geometric assumptions for
volume estimation.

In a routine cardiac examination, clinicians usually use six
standard planes, apical four chamber (A4C), apical two chamber
(A2C), apical three chamber (A3C), parasternal short-axis mitral
valve (PSX MV), parasternal short-axis papillary muscle (PSX
PM), and parasternal short-axis apex (PSX AP), to evaluate the
structure and function of the heart.2,3 However, in a 2-D conven-
tional examination, the standard planes are searched by clini-
cians manually, which causes inefficiency problems, such as
user dependency, complex operational procedures, and time
consumption. With the emergence of 3DE, automatic extraction
of standard planes from cardiac volume becomes possible.
Therefore, developing an efficient and robust method for auto-
matic plane extraction in 3DE is extremely important in improv-
ing the cardiac examination workflow.

Previous works have proposed automatic extraction in 3DE.
Recently, deep learning-based method has become more and
more popular in medical image analysis.4–6 In Ref. 7, a method
based on fully convolutional network and multitask learning is
proposed for detecting canonical reference space in 3-D fetal
brain ultrasound. In another work,8,9 deep convolutional neural
network and recurrent neural network are used to localize

standard plane in fetal ultrasound. Although such methods
could obtain acceptable accuracy, the complex computation
and time-consuming become serious problems, especially
when dealing with 3-D data (usually takes more than 1 min
to acquire one plane from a volume8). However, according to
the opinion of clinical experts, cardiac standard plane extraction
is expected to be processed in less than 1 s. The results are
expected to be appeared in the screen at the same time clinicians
press the automatic button, so that the waste waiting time could
be significantly shortened. Therefore, efficient methods are nec-
essary for this work. Additionally, deep learning-based methods
usually need to be applied on advanced graphics processing unit
(GPU), and installing advanced GPU on echocardiography will
also increase the cost.

On the other hand, methods based on other machine learning
techniques have also been proposed. In Ref. 10, a database-
driven knowledge-based approach is proposed for plane extrac-
tion. The method extracts image features from each standard
plane and creates a probabilistic model.11 During searching, a
series of detectors are applied to estimate plane parameters,
i.e., translation, orientation, and scale. False hypotheses at the
earlier stages are removed, while lateral hypotheses are propa-
gated to the final stage. However, large computational complex-
ity for obtaining all plane parameters is still a problem, and the
correct plane might also be missed at an earlier stage during
search. In Ref. 12, the locations of planes are considered as con-
tinuous parameters, and a regression voting approach is used to
solve it. Regression forest (RF)13,14 incorporated with voxel
class information is used to train classifiers. During testing,
every voxel of the cardiac volume provides votes on the param-
eters of each plane. The votes from all voxels are collected to
produce a probability distribution, and the location of the plane
is determined by the parameter with maximum probability.
However, each plane is extracted independently in this
approach, which means each voxel of the volume should*Address all correspondence to: Peifei Zhu, E-mail: peifei.zhu.ww@hitachi.com

Journal of Medical Imaging 044503-1 Oct–Dec 2018 • Vol. 5(4)

Journal of Medical Imaging 5(4), 044503 (Oct–Dec 2018)

https://doi.org/10.1117/1.JMI.5.4.044503
https://doi.org/10.1117/1.JMI.5.4.044503
https://doi.org/10.1117/1.JMI.5.4.044503
https://doi.org/10.1117/1.JMI.5.4.044503
https://doi.org/10.1117/1.JMI.5.4.044503
https://doi.org/10.1117/1.JMI.5.4.044503
mailto:peifei.zhu.ww@hitachi.com
mailto:peifei.zhu.ww@hitachi.com
mailto:peifei.zhu.ww@hitachi.com
mailto:peifei.zhu.ww@hitachi.com


pass through the classifier repeatedly (six times for six standard
planes). This causes large computational complexity and is time
consuming. In addition, anatomical regularities of standard
planes, i.e., three apical planes should pass through the same
center axis (apical long axis),2 are not considered in Ref. 12.
Such knowledge is important in diagnosis and should also be
incorporated into the process of plane extraction.

This paper proposes a machine learning framework based on
the cardiac ultrasound guideline (presented by the American
Society of Echocardiography2) for standard plane extraction.
The guideline has been established for clinicians to learn appro-
priate operation procedures for high-quality cardiac examina-
tion. The proposed method is completely based on the
guideline. Each stage in the guideline is achieved using an
appropriate machine learning approach that yields guideline-
based machine learning. The framework of the proposed method
is shown in Fig. 1, and the process is as follows.

1. Feature point detection: The guideline indicates
searching the A4C plane using mitral annulus (MA)
and apical features. Three anatomical feature points
are selected correspondingly, and a Hough forest
classifier15,16 with a hierarchical search is applied
for detecting these points.

2. Plane initialization: The guideline indicates the
anatomical regularities between A4C and the other
five planes. Correspondingly, the initial locations of
the other five planes are determined using these
regularities.

3. Plane refinement: Refinement is needed considering
individual differences around the initial location. A
RF method with locations constraints is applied for
plane refinement.

This work makes three main contributions. First, it presents
guideline-based machine learning that incorporates machine
learning approaches into each stage of the guideline. This
idea can also be applied to various measurements in medical
images. Second, it presents a method using a Hough forest
with hierarchical search for efficiently and accurately detecting
3-D feature points. Third, location constraints are integrated into
the RF for plane refinement, further improving the accuracy of
plane extraction.

A preliminary version of this paper appeared in Ref. 17. The
present paper contains a more detailed description of the algo-
rithm and four additional experiments as follows. (1) A synthetic
dataset with a range of abnormalities and severity is used for
evaluation. It aims to show whether the proposed method is
robust to heart failure samples. (2) The synthetic datasets are
added with three different noise levels (0%, 10%, and 20%)
to simulate different image qualities. Therefore, the influence
of image quality to the accuracy of plane extraction could
be evaluated. (3) Manual measurements are provided by two
different observers. Interobserver variability is evaluated and
compared with automatic method using two important measure-
ments (MA diameter and left ventricle length). (4) The evalu-
ation of the long-axis extraction is added. It aims to check
whether the long-axis determined by the feature points has
enough accuracy, and it further relates to the reason why the
plane refinement is applied with a fixed long-axis. With the
additional experiments, this work shows the proposed method
is not only fast and accurate, but also robust for a wide
range of data, which would be seen in clinical practice.

2 Standard Plane Initialization
According to the guideline,2 among six standard planes, the
A4C plane is first extracted by using MA and apical features.
In the proposed method, three anatomical feature points, includ-
ing the apex, septal MA, and lateral MA, are selected corre-
spondingly to localized plane A4C. Feature point detection is
achieved using a Hough forest classifier, which is presented
in Sec. 2.1. Moreover, a hierarchical search, presented in
Sec. 2.2, is applied for improving the accuracy and speed.
Then, as presented in Sec. 2.3, the initial locations of the six
planes can be determined using the detected points and anatomi-
cal regularities all at once.

2.1 Hough Forest

Hough forest is used for detecting feature points. This method
provides a way to map from image patches to anatomical loca-
tions. A set of random trees is learned from the training data and
used to provide probabilistic votes to the target location. In this
work, Hough forest is extended for 3-D point detection using
3-D image features and 3-D Hough voting. The training and
testing process is described in the following subsections.

2.1.1 Training process

Each tree T of Hough forest is constructed based on a set of
patches fPi ¼ ðIi; ci; diÞg, where Ii is the appearance of the
3-D patch, ci is the class label that includes the positive class
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Fig. 1 Framework of guideline-based machine learning for standard
plane extraction.
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and negative class, and di is the offset from the patch center to
the object center. The proportion between object patches and
background patches CL and the list DL ¼ fdig of the offset vec-
tors are stored for each leaf node L. Hough forest classifier is
constructed from the root using the input patches. A key point
of Hough forest is the evaluation of the binary test. The binary
test is defined by a comparison of two feature values at two loca-
tions. To conduct an optimal test, the uncertainties in both the
class labels and the offset vectors should decrease toward the
leaves. A set of patches is defined as A ¼ fPi ¼ ðIi; ci; diÞg,
and class label uncertainty U1ðAÞ and offset uncertainty
U2ðAÞ are defined as follows:

EQ-TARGET;temp:intralink-;e001;63;620U1ðAÞ ¼ −jAj ·
X

pðcjAÞ lnðpðcjAÞÞ; (1)

EQ-TARGET;temp:intralink-;e002;63;585U2ðAÞ ¼
X

i

ðdi − dAÞ2; when ci ¼ 1; (2)

where jAj is the number of patches, pðcjAÞ is the proportion of
patches with label c in set A, and dA is the mean offset vector
over all object patches. Given a training set of patches, a pool of
pixel tests ftkg is generated by randomly choosing one feature
channel and two-pixel locations inside a patch. The randomized
decision is made as to whether the node should minimize the
class-label uncertainty or the offset uncertainty. The process
can be represented as follows:

EQ-TARGET;temp:intralink-;e003;63;459 arg minðU�ðfPijtkðIiÞ ¼ 0gÞ þ U�ðfPijtkðIiÞ ¼ 1gÞÞ;
(3)

where * is either the class label uncertainty or offset uncertainty.

2.1.2 Testing process

Testing can be considered as regression and voting steps. The
regression process is as follows: (1) for each voxel location p, a
patch is extracted and starts regression from the root and
(2) when passing each node, this patch is sorted into the left
or right child node in accordance with the binary test. All pixels
in the image go through the forest until they reach the leaves.
During the voting process, the information stored in leaves is
used to cast the probabilistic Hough votes to the location of
the object center. The leaf information consists of proportion
CL and offset vectors DL, so CL∕DL is defined as a weight
value for a vote. Each pixel in leaves carries a location p, and
it votes to all locations

EQ-TARGET;temp:intralink-;e003;63;241fp − djd ∈ DLg

with a weight value CL∕DL. After all votes from each voxel
have been summed up, the 3-D Hough image can be obtained.
Finally, the feature points are the locations with the maximum
number of votes.

2.2 Hough Forest with Hierarchical Search

In Hough forest, the whole image is used during the testing step
to cast the probabilistic Hough votes to the location of the
object. When dealing with volume data, the regression of a
huge number of 3-D patches through forest will cause massive
computations. In this work, a coarse-to-fine strategy is applied
to accelerate the detection process. Feature points are detected
serially through a multiscale hierarchical search.

In the coarse-to-fine strategy, the whole image is first used
to provide an estimate of the region of interest, which is then
refined by using only local information. The framework is
shown in Fig. 2. A coarse-level classifier and a fine-level clas-
sifier need to be trained before testing. The coarse classifier is
trained using low-resolution images that are downsampled from
original images. Positive patches are chosen from a bounding
box region around ground-truth, and negative patches are
chosen from the whole image except the positive region. The
fine-level classifier is trained on a high-resolution image (origi-
nal image) with a sampling region narrowed down. During the
testing step, first, the input image is down-sampled, and a coarse
position is localized using Hough forest coarse-level classifier.
In coarse-level detection, every pixel in a low-resolution image
provides a vote (Hough voting) to a potential target location.
Second, in the refinement step, only pixels in the neighborhood
of the coarse position are used to predict the existence of the
object. By applying a coarse-to-fine strategy, the searching
region has largely been cut down, so the running time is success-
fully shortened. Moreover, refinement searching that only uses
the region closest to the target can reduce the irrelevant infor-
mation and provide higher accuracy.

2.3 Plane Initialization Using Anatomical Regularity

The initial locations of six standard planes can be determined
using three feature points and the anatomical regularity defined
in Ref. 2, as shown in Fig. 1. First, the A4C plane passes through
three feature points. The long-axis can also be localized by point
A and the center of point B and point C. The A3C and A2C
planes are intersected with the A4C plane at angles of
∼53 deg and 129 deg, respectively. Three short-axis planes
(PSX MV, PM, and AP) are perpendicular to the A4C plane.
According to our statistical analysis of plane location, three
short-axis planes are usually localized by translating along
the long-axis with proportional intervals of 1/6, 3/6, and 5/6,
respectively. Therefore, the locations of six initial planes are
determined.

Coarse level

Coarse-level classifier

Whole volume
(Low resolution)

Coarse-level result

Fine-level classifier

Interesting region
(High resolution)

Fine-level result 
(Final location)

Fine level

Fig. 2 Coarse-to-fine strategy applied for the Hough forest classifier.
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3 Regression Forest for Plane Refinement
The anatomical regularities, including angles and distances in
Ref. 2, are estimated on average. Because the plane location
has individual differences, standard planes need to be refined.
Since information close to the initial planes plays much more
important roles than information that is far away, the plane
refinement will be applied around their initial locations, i.e.,
information of atrial apex will be used to refine the A3C
plane and not be used to refine the PSXAP plane. In this section,
a method that incorporates location constraints into RF is pro-
posed for plane refinement.

The refinement can be categorized into two types according
to the location constraints: (1) three long-axis planes (A4C,
A3C, and A2C) should pass through the long-axis and (2) three
short-axis planes (MV, PM, and AP) should be perpendicular to
the long-axis. Correspondingly, either angle or distance of the
initial plane will be refined, as shown in Fig. 3. The reason the
long-axis can be fixed is that according to the experiment result
in Sec. 4.1, the long-axis direction determined by three feature
points is accurate and reliable. To reduce the inference of irrel-
evant image information, background and object regions are
also set in RF.

3.1 Training Process

Some important planes and parameters are first defined. The
center of the 3-D volume is set as an original point O, and x,
y, z coordinates are defined with the center of point O. The origi-
nal plane is the xz plane, and the ground-truth plane is annotated
by clinicians. In addition, the sampling plane is defined as the
plane passing through the center of a sampling patch. For the
long-axis planes, the sampling plane also passes through the
long-axis, shown as the blue planes in Fig. 3(a), while for
the short-axis planes, the sampling plane is perpendicular to
the long-axis, shown as the blue planes in Fig. 3(b). An offset
parameter Φðθ; γÞ is then defined, where θ is the angle between
the sampling plane and the ground-truth plane, and γ is the dis-
tance between the sampling plane and the ground-truth plane.

The training dataset comprises a set of patches
fPi ¼ ðIi; ci;Φðθ; γÞÞg sampled from background and objective
regions, where Ii is the appearance of the patch and ci is the
class label. The center of the positive patch is collected from
a range with an angle less than θτ deg and a distance less
than γτ around the ground-truth plane, as shown in Fig. 4. In
practice, θτ and γτ are determined as 10 deg and 5 mm,
which is the maximum permissible error according to the opin-
ion of the clinicians. The center of the negative patch is collected
from a range with an angle between θτ ∼ 2θτ deg and a distance
γτ ∼ 2γτ between around the ground-truth plane. These ranges

are determined by the error of the initial plane. More than 90%
of the planes have an angle error of less than 2θτ and a distance
error of less than 2γτ.

Each tree of the RF is constructed recursively using the input
patches. Binary test is defined at each nonleaf node. During each
binary test, the uncertainties in the class labels V1ðAÞ and the
offset angle V2ðAÞ are defined as follows:

EQ-TARGET;temp:intralink-;e004;326;520V1ðAÞ ¼ −jAj ·
X

pðcjAÞ lnðpðcjAÞÞ; (4)

EQ-TARGET;temp:intralink-;e005;326;484V2ðAÞ ¼
X

i

ðΦi −ΦAÞ2; when ci ¼ 1; (5)

whereΦA is the mean offset parameter over all sampled patches.
For obtaining an optimal test, the node should minimize whether
the class-label uncertainty or the offset parameter uncertainty,
which can be represented as follows:

EQ-TARGET;temp:intralink-;e006;326;403 arg minðV�ðfPijtkðIiÞ ¼ 0gÞ þ V�ðfPijtkðIiÞ ¼ 1gÞÞ; (6)

where * is either class label uncertainty or offset uncertainty.
Finally, for each leaf node, the proportion of the object patches
and the background patches CL, and the list fΦig of the offset
angle are stored. Note that the offset vectors of the negative
patches are not stored in the leaf.

3.2 Testing Process

The refinement regions are first defined. For the long-axis
planes, the refinement region is set as an angle of ð−2θτ; 2θτÞ
around the initial planes. For the short-axis planes, the refine-
ment region is set as a distance of ð−2γτ; 2γτÞ centered at the
initial planes. Given a unseen volume, all voxels of the refine-
ment regions are pushed through each tree of forest until they
reach leaf nodes. Leaf information consists of the proportion CL
and the offset parameter fΦig. The proportion can be used for
determining a threshold τ to control the minimum presence of
the class label at each leaf and for use as a probability for the
votes this leaf generates.

The voxel then votes for the location of the target plane
Φtðθt; γtÞ using the proportion CL and the offset parameter
fΦig stored in the leaf. The process is as follows. First, the
plane passing through the sampling voxel and the long-axis
is calculated. Φpðθp; γpÞ is marked as the angle and distance
difference between this plane and the original plane (xz
plane). Therefore, a vote on the location of the target planeΦt ¼
Φp −Φi is generated, as shown in Fig. 5. For the long-axis
planes, angle component θ is used and distance component γ

Long axisLong axis

x

y

z

x

y

z

O O

γ

θ

(a) (b)

Fig. 3 Examples of standard plane refinement: (a) Long-axis plane
and (b) short-axis plane.
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τθ2
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region

Ground-truth 
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Negative 
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(a) (b)

Fig. 4 Positive region and negative region for extracting patches in
training: (a) long-axis plane and (b) short-axis plane.
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is equal to 0, while for the short-axis planes, distance component
γ is used and angle component θ is equal to 0. All votes
generated by the voxels can be summed up, and the final
angle of the plane can be determined by the mean value
Φt ¼

P
L∈FΦt · CL∕N, where L ∈ F means all leaves in the

forest, and N is the total number of votes. Finally, the target
plane can determine the original plane and the voted parameter
Φt.

4 Experiments
The proposed method is evaluated on a 3-D cardiac ultrasound
dataset that is available in Ref. 18 and a synthetic dataset that is
available in Refs. 19 and 20.

The 3-D cardiac ultrasound dataset is a public clinical data-
set, which includes 209 cardiac volumes from 15 volunteers.
The data are acquired using an iE33 3-D echocardiography
system (Philips Healthcare, Best, The Netherlands) with a
3-D X3-1 matrix array transducer. Full-volume acquisition
mode is used in which several smaller imaging sectors are com-
bined to form a large composite volume.18 All volumes are uni-
fied to a resolution of 0.5 mm3. Volume dimensions are around
320 × 347 × 241. Two sets of manual measurements (ground-
truth) including three feature points and plane locations are pro-
vided by two observers for evaluating interobserver variation.

On the other hand, the synthetic dataset is generated by
University of Leuven. It appears similar to real ultrasound
recordings, yet, the myocardial motion is controlled by an E/
M model in Ref. 21. By varying the parameters of the E/M
model, eight sequences are generated corresponding to different
pathophysiological conditions, namely: one healthy sequence;
four ischemic cases, corresponding to occlusion of the proximal
or distal parts of the left anterior descending coronary artery
(LADprox and LADdist), of the left circumflex coronary artery
(LCX) and of the right coronary artery (RCA); three simulations
of dilated cardiomyopathy, of which one with a synchronous
activation pattern (sync) and two dys-synchronous due to left
branch bundle block (LBBBsmall and LBBBlarge). The size
and the resolution of volumes are 224 × 176 × 208 voxels
and 0.7 × 0.9 × 0.6 mm3. For each sequence, 34 volumes are
included (272 volumes in total). Since a set of ground-truth
of meshes is also provided, the ground-truth of the feature points
and the standard planes could be easily calculated.

For improving the accuracy and evaluating the robustness of
the algorithm, the following processes are also applied.

Data augmentation: To increase the variability of training
data, a data augmentation scheme with artificially rotating
and scaling of the original volume is applied for two datasets.
A basic rotation around x-, y- and z-axis and a scaling along x-,
y- and z-axis are applied, respectively. The angle (orientation)

and size range of LV in the dataset are analyzed first. Cardiac LV
tends to be inside the angle range of −20 deg to 20 deg around
each axis and scale range of 0.8 to 1.2 times along each axis.
Based on this analysis, five artificial patterns are generated with
a randomly chosen angle between −20 deg to 20 deg and a ran-
domly chosen scale between 0.8 and 1.2 times for each original
volume. All generated patterns and original volumes are used in
training detectors.

Cross-validation: A fivefold cross-validation scheme is
applied for evaluating the clinical dataset, and an eightfold
cross-validation scheme is applied for evaluating the synthetic
dataset.

Generate image with different noise levels: To test the robust-
ness of the algorithm for a range of image qualities, the synthetic
data is added with three different noise levels: 0% (original
image), 10%, and 20% in relative amplitude. Gaussian white
noise of zero mean with 0.01 variance is used for generating
noise images.

4.1 Evaluation of Feature Point Detection and
Long-Axis Extraction

The performance of the feature point detection is first evaluated
on the clinical dataset. Two methods are evaluated: (1) Hough
forest and (2) Hough forest with hierarchical search (proposed
method). The parameters are set as: maximum tree depth
D ¼ 15, number of trees T ¼ 10, and the threshold for separat-
ing the objective leaf and background leaf τ ¼ 0.95. In addition,
the image features used in this work include voxel intensity,
difference of two voxel intensities, and gradient features,
which are extracted by 3-D Sobel filter.22

Distance error is used as a metric for the evaluation. In a
clinical dataset, manual points are annotated by two observers
independently, and the average of the two manual measurements
is used. The distance error is the Euclidean distance between the
manual and the detected points. The comparison results of two
methods are shown in Table 1. The distance error of each of the
feature points and the mean distance error of all three points are
calculated, and they are shown in mean� standard deviation
format. The comparison results demonstrate that the proposed
method reduces the mean distance error of the three points
by about 26.1% and also improves the speed by about 10 times.

Examples of detected feature points are shown in Fig. 6
(average-case) and Fig. 7 (worst case). The images are the
A4C plane which is localized by three ground-truth feature
points. Three detected feature points are projected to the
ground-truth A4C plane. In the average-case, the apex has a
larger error than the septal MA and the lateral MA because
the contour above the apex is usually blurred. In the worst
case, the septal MA and the lateral MA have the largest error
among all samples because parts of the MA are not included

Long axis

Initial plane

x

y

z

Voted plane

p
i

Long axis Initial planez

Voted plane

x

y p

i

(a) (b)

Fig. 5 Voting the target plane using patches around the initial planes:
(a) long-axis plane and (b) short-axis plane.

Table 1 Comparison of point detection between Hough forest and
proposed method.

Distance error (mm) Run time (s)

Apex Septal MA Lateral MA Mean —

Hough forest 9.8� 3.4 5.4� 2.9 5.6� 2.7 6.9� 3.1 4.5

Proposed method 7.3� 3.2 3.9� 2.6 4.2� 2.5 5.1� 2.8 0.45
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in the image. However, in both cases, the proposed method
shows improved accuracy for all feature points.

The evaluation result of the long-axis extraction is shown in
Table 2. This experiment aims to show whether the long-axis
determined by the feature points has a good accuracy. It further
relates to the reason why the plane refinement is applied with a
fixed long-axis. As described in Sec. 2.3, the long-axis can be
localized by the apex and the center of septal MA and lateral
MA. The error between the ground-truth long-axis and the
extracted long-axis is calculated and is shown in Table 2.
Since the ground-truth long-axis and the extracted long-axis
are intersected with each other in all samples, the distance
error is equal to 0. As for the angle error, the proposed method
achieves a relatively small error (2.7 deg). Even though the apex
is difficult to be detected, the error of the apex mainly appears in
the vertical direction, which had little influence on the long-axis
extraction. The horizontal location of the apex could be accu-
rately detected since the left and right contours are usually

clearly shown in the image (only one example is blurred,
shown in Fig. 6). Based on this result, the long-axis is deter-
mined to be fixed during the plane refinement.

In conclusion, the improvement in the accuracy and speed is
attributed to a coarse-to-fine strategy. The searching region is
largely reduced, enabling a significantly shorter running time.
Moreover, only regions that are close to the target are used.
This reduces the irrelevant information and provides higher
accuracy.

4.2 Evaluation of MA Diameter

The diameter of the MA is important in helping the clinicians to
define the etiology and mechanism of atrioventricular valve
regurgitation. This item is calculated by the locations of the sep-
tal MA and lateral MA. This experiment is used in evaluating
interobserver variability. Figure 8 shows the Bland–Altman
plots of the MA diameter measurements. The Bland–Altman
plot23,24 is widely used for analyzing agreement and bias
between two measurements. Figure 8(a) compares the auto-
mated measurements with manual measurements on 209 cardiac
volumes. Horizontal axis is the average of two manual measure-
ments annotated by two different observers, and vertical axis is
the distance error of automatic and manual measurements. This
figure shows the mean difference is centered close to zero
(bias ¼ −0.27), which suggests that the automated measure-
ment is almost unbiased to the average of two manual measure-
ments. Additionally, there is also no bias over the hearts of

Error=8.1 mm

Error=5.2 mmError=4.5 mm

Error=6.7 mm

Error=5.1 mmError=2.9 mm

Ground-truth
Proposed

Ground-truth
Hough forest

(a) (b)

Fig. 6 Examples of feature point detection (average-case): (a) Hough forest versus ground-truth and
(b) proposed method versus ground-truth.

Error=7.3 mm

Error=8.9 mmError=8.2 mm

Ground-truth
Proposed

Error=8.7 mm

Error=10.5 mmError=8.8 mm

Ground-truth
Hough forest

(a) (b)

Fig. 7 Examples of feature point detection (worst-case): (a) Hough forest versus ground-truth and (b) pro-
posed method versus ground-truth.

Table 2 Comparison of long-axis extraction between Hough forest
and proposed method.

Angle error (deg)

Hough forest6 3.4� 1.4

Proposed method 2.7� 1.2
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different MA sizes. On the other hand, the bias between
two difference observers in Fig. 8(b) is 0.79, much larger
than that in (a). This indicates that individual observers
may have a different opinion about the ground-truth location
and be biased. As the automated method is trained with
annotations from multiple observers, it naturally learns a con-
sensus estimation across all the observers and thus less sensitive
to bias.

4.3 Evaluation of LV Length

LV length is another important factor to help clinicians diagnose
cardiac diseases. This item is calculated by the location of the
apex and the center of septal MA and lateral MA. Figure 9
shows the Bland–Altman plots of the LV length measurements.
Figure 9(a) shows when comparing the automatic results with
the manual measurements, the mean difference (bias)
�1.96 SD is −1.3� 4.7 mm. LV length has a relatively larger
error than MA diameter because the apex is much more difficult
to detect. As described in Sec. 4.2, the vertical location of the
apex is especially difficult to be determined, which has a large
influence on LV length measurement. On the other hand,
Fig. 9(b) shows the result of comparing two manual measure-
ments. The mean difference (bias) �1.96 SD is 1.5� 3.2 mm.
The distance error also becomes larger when comparing to MA
diameter. This fact shows that the apex location is usually dif-
ficult to be determined even for the clinical experts. In addition,
this experiment shows that the bias of the automatic measure-
ments is still slightly larger than the bias of two manual
measurements.

4.4 Evaluation of Plane Extraction

Two evaluation standards are introduced, angle error and dis-
tance error, to measure the difference between the ground-
truth plane and the extracted plane.2 The angle error between
two planes is defined as the angle between the normal vector
of the ground-truth plane and the normal vector of the extracted
plane. The distance error between two planes is measured as the
distance from an anchor on one plane to the other plane, where
the anchor is the LV center. The ground-truth planes are all also
annotated by two observers independently, and the average loca-
tion of two measurements is used in this experiment. During the
manual annotation, the standard planes are determined by image
features and anatomical regularities. For example, the PSX MV
plane is at the base cardiac left ventricle, and a common feature
of this plane is the so-called “goldfish mouth” look of the mitral
valve leaflets. In addition, a clinical criterion that determines
angle error of 10 deg and distance error of 5 mm as the
maximum permissible error is also used to calculate a success
rate.

4.4.1 Effect of plane refinement

Comparison results between applying the refinement before and
after are shown in Table 3. Six standard planes are categorized
into two types. The long-axis planes include A4C, A3C, and
A2C, and the short-axis planes include PSX MV, PSX PM,
and PSX AP. The results show that improved accuracy is
achieved after refinement. The mean angle error of the long-
axis planes and mean distance error of short-axis planes are
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Fig. 8 Bland–Altman plots of MA diameter measurements: (a) compare auto with manual measurements
and (b) compare two manual measurements.
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Fig. 9 Bland–Altman plots of LV length measurements: (a) compare auto with manual measurements
and (b) compare two manual measurements.
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reduced by 16.8% and 48.9%. In addition, the number of sam-
ples satisfied the clinical criteria (angle error less than 10 deg
and distance error less than 5 mm) is increased from 127/209
(60.8%) to 168/209 (80.4%). The results demonstrate the effec-
tiveness of the angle and distance refinement using the proposed
method. Examples of standard plane extraction are shown in
Fig. 10 (average-case) and Fig. 11 (worst-case). Using the
refinement obviously improved detailed information such as
the region near the aortic valve on the A3C plane (average-
case). The worst-case is exactly the same sample as the one
appeared in feature point detection. Because the detected MA
have a large error, three short-axis planes have a large distance
error correspondingly. The reason for this large error is that parts
of the MA are not included in the image.

4.4.2 Comparison with other plane-extraction methods

The performance of the proposed method is compared to that of
other plane extraction methods. The results are shown in
Table 4. The average angle and the distance error of all six
planes are calculated. The running time is all measured as
the total extracting time of six planes, and all the experiments
are run on an Intel core i7 3.6 GHz computer with 16 GB of
RAM. The proposed method is compared with marginal
space learning (MSL)10 and class-specific RF.12 As shown in
Table 4, the angle and distance error of the proposed method
is reduced by about 30% compared with those of MSL,
while the running time of the proposed method is significantly
shorter than that of the class-specific RF. In addition, the success
rate is also calculated according to the clinical criteria (angle
error less than 10 deg and distance error less than 5 mm).
The proposed method achieves a success rate of 168/209
(80.4%), while MSL only has 102/209 (48.8%) and class-
specific RF only has 122/209 (58.4%).

4.4.3 Evaluation on synthetic dataset with a range of
abnormalities

The performance of the proposed method is evaluated on the
synthetic dataset (eight sequences, 272 volumes, eightfold
cross-validation). This dataset includes one healthy case and
seven ischemic cases. The evaluation result is shown in
Table 5. There is no large difference between the healthy
case and the ischemic cases. The average angle error and

Before refinement

Dis=2.4 mm
Angle=4.3°°

Dis=2.5 mm
Angle=6.7°

Dis=2.4 mm
Angle=9.1°

Dis=3.1 mm
Angle=4.8°

Dis=1.9 mm
Angle=4.8°

Dis=2.5 mm
Angle=4.8°

After refinement

Ground-truth

Dis=2.7 mm
Angle=5.7°

Dis=2.5 mm
Angle=9.0°

Dis=2.5 mm
Angle=10.1°

Dis=4.2 mm
Angle=5.3°

Dis=3.9 mm
Angle=5.3°

Dis=5.2 mm
Angle=5.3°

A4C A3C A2C PSX AP PSX PM PSX MV

(a)

(b)

(c)

Fig. 10 Examples of standard plane extraction (average-case). (a) Before refinement, (b) after refine-
ment, and (c) ground-truth.

Table 3 Comparison of plane extraction between applying the refine-
ment before and after.

Three long-axis planes Three short-axis planes

Angle
(deg)

Distance
(mm)

Angle
(deg)

Distance
(mm)

Before
refinement

10.7� 5.5 2.6� 2.3 6.2� 3.7 4.7� 3.0

After refinement 8.9� 5.0 2.6� 2.2 6.2� 3.5 2.4� 2.1
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distance error is all smaller than the clinical maximum permis-
sible error. An example of standard plane extraction (the A4C
plane) is shown in Fig. 12. All planes including abnormal cases
are correctly extracted, which suggests the proposed method is
robust for a range of abnormalities.

4.4.4 Influence of image quality

To evaluate whether the proposed method is robust for a wide
range of image qualities, the synthetic data is added with three
different noise levels: 0% (original image), 10%, and 20% in
relative amplitude. The original data and the generated noise
data are put together to train a new classifier. The evaluation
result is shown in Table 6. The angle error and distance error
slightly increase with increasing noise levels, however, the aver-
age error is still under the clinical maximum permissible error.
Examples of standard plane extraction under 10% and 20% are

shown in Figs. 13 and 14. There is no large difference between
the plane extracted from original data and 10% noise. On the
other hand, even though the error slightly increases when the
noise reaches to 20%, this noise level is likely unrealistically
high and would normally not be encountered in clinical record-
ings. Therefore, this evaluation results suggest that the proposed
method is able to deal with a range of image qualities that would
be seen in clinical practice.

Table 4 Comparison results of standard plane extraction between
proposed method and other plane extraction methods.

Angle
(deg)

Distance
(mm)

Clinical
success rate

Run
time (s)

MSL10 11.1� 7.8 3.5� 2.1 102/209 (48.8%) 2

Class-specific RF12 6.8� 4.2 4.1� 3.7 122/209 (58.4%) 30

Proposed method 7.6� 4.3 2.5� 2.2 168/209 (80.4%) 0.8

Table 5 Evaluation result on synthetic dataset with a range of
abnormalities.

Three long-axis planes Three short-axis planes

Patient Angle (deg) Distance (mm) Angle (deg) Distance (mm)

Healthy 7.5� 1.9 2.2� 0.8 5.4� 1.3 2.5� 1.3

LADprox 9.8� 2.3 2.4� 0.9 5.1� 1.2 2.7� 1.4

LADdist 8.1� 2.0 1.9� 0.9 4.8� 1.1 2.5� 1.2

LCX 9.1� 2.2 2.3� 1.0 5.3� 1.2 2.7� 1.2

RCA 8.2� 2.1 2.0� 0.9 5.1� 1.0 2.4� 1.1

Sync 7.2� 1.9 1.8� 0.8 4.7� 1.0 2.5� 1.2

LBBBsmall 8.6� 2.2 2.1� 1.0 5.0� 1.1 2.6� 1.1

LBBBlarge 8.3� 2.2 2.1� 0.8 5.1� 1.0 2.6� 1.0

Ground-truth

After refinement

Before refinement

Dis=3.4 mm
Angle=14.2°°

Dis=3.5 mm
Angle=17.3°

Dis=3.4 mm
Angle=19.1°

Dis=3.4 mm
Angle=12.9°

Dis=5.5 mm
Angle=9.6°

Dis=5.3 mm
Angle=9.6°

Dis=6.8 mm
Angle=9.6°

Dis=3.4 mm
Angle=15.2°

Dis=3.4 mm
Angle=7.8°

Dis=4.2 mm
Angle=9.6 °

Dis=5.3 mm
Angle=9.6°

Dis=6.2 mm
Angle=9.6°

A4C A3C A2C PSX AP PSX PM PSX MV

(a)

(b)

(c)

Fig. 11 Examples of standard plane extraction (worst-case). (a) Before refinement, (b) after refinement,
and (c) ground-truth.
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4.5 Discussion

The following factors can be attributed to the improved perfor-
mance: (1) the proposed method is based on the guideline,
where the anatomical regularities are incorporated into

determining the initial plane locations. The search regions of
each plane were largely cut down. (2) In feature point detection,
a coarse-to-fine strategy is proposed for Hough forest classifier,
and it also reduces the search region and cuts down noises.
(3) The refinement around the initial location using RF further
improves the extraction accuracy. The proposed method can be
further accelerated by using parallel processing on both Hough
forest and RF. Moreover, since the automated method is trained
with annotations from multiple observers, it naturally learns a
consensus estimation across all the observers and thus less sen-
sitive to bias than manual results.

5 Conclusions
This paper proposed a machine learning framework based on the
cardiac ultrasound guideline for standard-plane extraction. Each
stage in the guideline is achieved using an appropriate machine
learning approach. Hough forest with hierarchical search was
proposed for detecting efficient and robust feature points.
After six planes are extracted by anatomical regularity, a

Table 6 Evaluation result on synthetic dataset with a range of image
qualities.

Three long-axis planes Three short-axis planes

Noise
Angle
(deg)

Distance
(mm)

Angle
(deg)

Distance
(mm)

Original
image

8.4� 2.2 2.1� 0.9 5.1� 1.2 2.6� 1.2

Noise 10% 9.2� 2.8 2.4� 1.2 5.9� 1.5 2.8� 1.3

Noise 20% 11.1� 3.3 2.8� 1.5 6.6� 2.0 3.1� 1.5

Fig. 13 An example of standard plane extraction (synthetic dataset, noise 10%). (a) Extraction result
and (b) ground truth.

Fig. 12 An example of standard plane extraction (synthetic dataset, original data). (a) Extraction result
and (b) ground truth.
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refinement step using RF is applied to improve the accuracy
further. Experimental results demonstrate the proposed method
is not only fast and accurate, but also robust for a wide range of
data, which would be seen in clinical practice.
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Fig. 14 An example of standard plane extraction (synthetic dataset, noise 20%). (a) Extraction result and
(b) ground truth.
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