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ABSTRACT
The process of tumorigenesis leaves a series of indelible genetic changes in tumor cells, that when 
expressed, have the potential to be tumor-specific immune targets. Neoantigen vaccines that capitalize 
on this potential immunogenicity have shown efficacy in preclinical models and have now entered clinical 
trials. Here we discuss the status of personalized neoantigen vaccines and the current major challenges to 
this nascent field. In particular, we focus on the types of antigens that can be targeted by vaccination and 
on the role that preexisting immunosuppression, and in particular T-cell exhaustion, will play in the 
development of effective cancer vaccines.
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Introduction

The capacity of the immune system to recognize cancer cells 
has been known for over 100 years and is the basis of success-
ful immune checkpoint inhibitor (ICI) immunotherapy. 
Tumors contain multiple sources of antigen that can be 
recognized by T cells and have the potential to be targets of 
novel vaccination strategies. For example, tumors aberrantly 
express, or over-express, proteins that are normally expressed 
developmentally or in a tissue-specific manner. These 
“tumour associated antigens (TAA)” such as MAGE-A1, 
were the subject of early vaccine trials1. However, vaccines 
targeting TAA have been largely ineffective, this is generally 
ascribed to the presence of tolerance mechanisms to these 
aberrantly expressed self-antigens.2

Cancers can also express tumor-specific antigens (TSA) 
which may arise from cancer-specific mutations. Somatic 
mutations become immunogenic, “neo”-antigens when 
they are expressed as proteins that are then displayed as 
peptide fragments to T cells via major histocompatibility 
complex (MHC) class I (MHC-I) or class II (MHC-II) 
molecules. Because each cancer will express a unique 
mutational signature, neoantigens are truly tumor specific. 
This specificity means that neoantigens are not subjected 
to preexisting tolerance mechanisms. Moreover, vaccina-
tion is unlikely to induce off-target autoimmunity. In this 
review we focus on neoantigen vaccination, an emerging 
personalized cancer immunotherapy. We discuss the out-
standing questions and potential barriers to the imple-
mentation of this therapy approach, with specific 
reference to neoantigen targets and the role that prior 
immunity, in particular T-cell exhaustion, may play in 
limiting the efficacy of this approach.

Pre-clinical mouse models set the template for 
neoantigen vaccines

In 2012 Castle and colleagues described the basic schema for the 
production and use of a neoantigen vaccine.3 Using the B16F10 
mouse model of melanoma, the authors sequenced tumor and 
normal tissue and, using bioinformatics approaches, predicted 
50 high confidence neoantigens. Of these predicted neoantigens, 
16 (32%) were immunogenic, with 60% of these being more 
immunogenic than non-mutated wild-type peptides.3 

Prophylactic vaccination with a single neoantigen led to com-
plete protection in 40% of mice and delayed tumor growth in the 
remaining animals.3 Matsushita and colleagues used a similar 
approach to identify neoantigens in a Rag2−/− murine methyl-
cholanthrene (MCA) induced sarcoma model.4 The authors 
were able to demonstrate T-cell mediated immunoediting of 
a defined neoantigen following transplantation into immuno-
competent wild-type mice.4 In an extension of the MCA sar-
coma model, the same investigators identified two neoantigens 
that were the key targets of ICI-mediated tumor rejection.5 

Neoantigen vaccines containing these two antigens were equally 
as effective as ICI in causing regression of established tumors.5 

Together these early murine studies set the template for clinical 
neoantigen vaccine trials, demonstrating immunogenicity, pro-
tection, tolerability, and scalability.

Establishing safety and immunogenicity in human 
clinical trials

The basic schema for the production of a personalized neoan-
tigen vaccine (Figure 1) is little changed from the early mouse 
studies described above, and has been employed in multiple 
clinical trials. The safety and immunogenicity of neoantigen 

CONTACT Alec J. Redwood alec.redwood@uwa.edu.au Institute for Respiratory Health, Level 2, 6 Verdun Street, Nedlands, WA 6009, Australia

ONCOIMMUNOLOGY                                        
2022, VOL. 11, NO. 1, e2038403 (12 pages) 
https://doi.org/10.1080/2162402X.2022.2038403

© 2022 The Author(s). Published with license by Taylor & Francis Group, LLC.  
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits 
unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

http://orcid.org/0000-0001-8601-8292
http://orcid.org/0000-0003-1902-9033
http://orcid.org/0000-0002-9391-9395
http://orcid.org/0000-0002-5281-7923
http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/2162402X.2022.2038403&domain=pdf&date_stamp=2022-02-11


vaccines was demonstrated in three seminal studies in mela-
noma patients.6–8 In the first study, neoantigen peptides with 
confirmed binding to HLA-A*02:01 were used in an autolo-
gous dendritic cell (DC) vaccine. DC vaccination led to the 
boosting of preexisting neoantigen responses and the genera-
tion of de novo responses to additional neoantigens.6 Two 
other studies were subsequently published in the same issue 
of Nature. Ott and colleagues applied a peptide neoantigen 
vaccine approach to assess immunogenicity and safety in six 
melanoma patients. Each patient was vaccinated with up 20 
predicted MHC-I restricted neoantigens. 60% of the neoanti-
gens induced CD4 T-cell responses, 16% induced CD8 T-cell 
responses and 10% induced both CD4 and CD8 T-cell 
responses.7 Four patients had no tumor recurrence at 
25 months post-vaccination while two patients with recur-
rence, experienced complete tumor regression when treated 
with Pembrolizumab (anti-PD1).7 Likewise, Sahin and collea-
gues demonstrated immunogenicity to 60% of mRNA encoded 
candidate neoantigens, and of these, 57% of the epitopes were 

recognized by CD4 T cells, 17% by CD8 T cells and 26% by 
both T-cell types.8 Post vaccination, the rate of metastatic 
events was significantly reduced in this patient cohort.8

A series of additional phase I clinical trials, summarized in 
Table 1, have built on these early studies showing similar 
immunogenicity and safety profiles across a range of tumor 
types.9–14 A recent clinical trial in 22 patients with different 
types of cancer demonstrated robust T-cell responses and 
tumor T-cell infiltration.14 Expansion of neoantigen-specific 
T cells was also observed in four patients with metastatic 
gastrointestinal cancer following the administration of an 
mRNA concatemer vaccine containing up to 20 
neoantigens.13 Neoantigens were a mix of predicted and 
defined, pre-screened, neoantigens. T-cell responses were 
detected to 16% of neoantigens across 3 of the 4 patients, 
one patient failed to make detectable T-cell responses. Once 
again the majority of antigens, 59%, were recognized by CD4 
T cells.13 Notably there was no evidence that preexisting 
immunity to neoantigens was boosted by vaccination. 

Figure 1. Neoantigen vaccine production. Blood and a sample of the patient’s tumor are removed for DNA extraction and for the tumor, RNA extraction as well. DNA is 
used for WES (or WGS), and for normal DNA, HLA typing. Tumor specific somatic mutations are identified using a combination of variant callers which compare blood 
and tumor WES data. RNAseq analysis is employed to validate mutant allele expression. The patient’s HLA is then used to predict MHC-I or MHC-II binding, using 
algorithms such as NetMHCPan4 and NetMHCIIpan4. Typically, other indicators of immunogenicity, such as the potential to engage with a TCR, location of the mutation 
to an anchor residue or DAI may also be employed to rank potential neoantigens. A series of potential neoantigens, typically 10–20, are then formulated for injection. 
Commonly peptide plus adjuvant approaches have been employed, because of the ease of manufacture, however other approaches such as mRNA vaccines, DC 
preparations and viral vectors have been, and are being developed. Abbreviations, DAI, differential agretopicity index; DC, dendritic cell; MHC, major histocompatibility 
complex; TCR, T-cell receptor; WES, whole exome sequencing: WGS, whole genome sequencing. Figure created with BioRender.com.
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Finally, a combined neoantigen vaccine plus anti-PD1 phase 
1b clinical trial in melanoma, NSCLC and bladder cancer 
patients demonstrated the induction of durable T-cell 
responses to candidate neoantigens at rates consistent with 
other studies; 52% of neoantigens in melanoma, 47% in 
NSCLC and 52% in bladder cancer.9 Importantly, this study 
also noted epitope spreading to high-value neoantigens not 
included in the vaccine. The authors suggested that this was 
due to increased tumor cell death and the resultant antigen 
presentation.9

A key requirement for the broad applicability of neoantigen 
vaccines is that they can be used in all patient cohorts, irre-
spective of tumor mutational burden (TMB) and therefore 
neoantigen load. Tumors with a low TMB are also often 
“immunologically cold”. These cold tumors are characterized 
by poor T-cell recruitment and resistance to immunotherapy. 

The efficacy of neoantigen vaccines in these tumors is therefore 
of considerable interest. To address this question, Hilf and 
colleagues trialed neoantigen vaccines in immunologically 
cold glioblastomas. Patients were first vaccinated from 
a library of shared TAAs, and then vaccinated with persona-
lized neoantigen vaccines. The TAA vaccine elicited sustained 
CD8 T-cell responses, whilst the subsequent neoantigen vac-
cine generated predominantly CD4 T-cell responses.10 In 
a second glioblastoma vaccine trial, patients were treated with 
neoantigen vaccines following surgical resection and radio-
therapy. In this study neoantigen vaccination generated robust 
CD4 and CD8 T-cell responses and increased T-cell tumor 
infiltration.11 Likewise, T-cell responses were identified to 
defined neoantigens in a single glioblastoma patient treated 
with an autologous DCs plus tumor cell lysate vaccine plus 
peptide neoantigen vaccine.12 These early trials provide 

Table 1. Neoantigen types and use in clinical trials.

Neoantigen 
class Nature of the antigen Most relevant tumors Clinical trials

SNV, In-frame 
Indel

Single AA change or AA 
insertion/deletion, 
respectively

Most tumor types, lower 
prevalence in some tumors 
such as RCC

● Tumor, melanoma; Vaccine, peptide pulsed DC; Immunogenic, yes SNV6

● Tumor, melanoma, Vaccine, peptide plus adjuvant; Immunogenic, yes SNV and 
indel neoORF7

● Tumor, melanoma; Vaccine, mRNA; Immunogenic, yes SNV8

● Tumor, melanoma, NSCLC and bladder cancer; Vaccine, peptide plus adjuvant; 
Immunogenic, yes SNV and fusion neoORF9

● Tumor, glioblastoma; Vaccine, peptide plus adjuvant; Immunogenic, yes, TAA 
and SNV10

● Tumor, glioblastoma; Vaccine, peptide plus adjuvant; Immunogenic, yes SNV 
(non-dexamethasone treated patients)11

● Tumor, glioblastoma; Vaccine, DC tumor lysate followed by peptide plus adju-
vant; Immunogenic, yes SNV12

● Tumor, gastrointestinal cancer; Vaccine, mRNA, Immunogenic, yes SNV and 
indel neoORF13

● Tumor, multiple; Vaccine, peptide plus GM-CSF adjuvant, Immunogenic, yes, 
class of neoantigen unclear, SNV, In-frame indel and Indel neoORF tested in 
pools14

Indel – 
frameshift 
(neoORF)

Expression of novel 
sequence

MSI-H tumors and RCC ● Tumor, melanoma, Vaccine, peptide plus adjuvant; Immunogenic, yes SNV and 
indel neoORF7

● Tumor, glioblastoma; Vaccine, peptide plus adjuvant; Immunogenic, no all 
patients that received neoORFs neoantigens also received dexamethasone, 
these patients also failed to make responses to SNV11

● Tumor, gastrointestinal cancer; Vaccine, mRNA; Immunogenic, yes SNV and 
indel neoORF13

● Tumor, multiple; Vaccine, peptide plus GM-CSF adjuvant, Immunogenic, yes, 
class of neoantigen unclear, SNV, In-frame indel and Indel neoORF tested in 
pools14

Fusion– In- 
frame

Expression of novel 
sequence at fusion site

AML, ALL, CML and sarcomas ● Tumor, synovial sarcoma, peptide plus adjuvant with IFN-α; Immunogenic, yes 
fusion peptides15

● Tumor, Ewing’s sarcoma or alveolar rhabdomyosarcoma, Vaccine, peptide 
pulsed DC, other therapies include autologous T cells and IL-2. Immunogenic, 
yes fusion peptides16

Fusion– 
frameshift 
(neoORF)

Expression of novel 
sequence

AML, ALL, CML and sarcomas ● Tumor, Melanoma, NSCLC and Bladder Cancer; vaccine, peptide plus adjuvant; 
immunogenic, yes SNV and fusion neoORF7

● Also see
● Clinical trial number, NCT01885702, active, not recruiting. Colorectal cancer, DC 

vaccination with gene fusion frameshift-derived neoantigens
● Clinical trial number, NCT04998474, not yet recruiting. NSCLC, peptide vaccina-

tion with gene fusion frameshift neoantigens
Endogenous  

retroelement
Expression of novel 

sequence
RCC, low-grade glioma, 

testicular cancer
Not specifically described at Clinical.trials.gov

mRNA splice 
variants

Expression of novel 
sequence

AML, CMML, CLL, 
myelodysplastic syndrome

Not specifically described at Clinical.trials.gov

Post- 
translational 
splice variant

Expression of novel 
sequence

Identified in melanoma RCC, 
colon carcinoma and breast 
cancer

Not specifically described at Clinical.trials.gov

Abbreviations. AA, amino acid; ALL, acute lymphocytic leukemia; AML, acute myeloid leukemia; IFN-α, interferon-alpha; GM-CSF, granulocyte macrophage colony 
stimulating factor; RCC, renal-cell carcinoma; CLL, chronic lymphocytic leukemia; CML, chronic myeloid leukemia; CMML, chronic myelomonocytic leukemia; INDEL, 
insertion or deletion; MSI-H, microsatellite instability-high; Neo-ORF, neo (novel) open reading frame; NSCLC, non-small cell lung cancer; SNV, single-nucleotide 
variant; TAA, tumor associated antigen.
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support for the use of neoantigen vaccines, alone or in combi-
nation with ICI, across tumor types, including those with 
a low TMB.

Taken together, pre-clinical studies and early clinical trials 
have demonstrated safety and convincing T-cell responses to 
neoantigen vaccines. Some clinical trials have shown evidence 
of T-cell infiltration of tumors as well as killing of tumor cells. 
However, these single-arm trials were not powered to assess 
efficacy and larger phase II/III clinical trials are warranted. 
Here we now discuss some of the outstanding questions that 
remain to be addressed, with particular reference to the source 
and choice of neoantigen.

What is the potential neoantigen pool?

Neoantigens can arise from several different mutational events 
within the cancer genome or can arise from non-templated 
events that occur post translation (Figure 2). Here we discuss 
what is known about each type of mutation and the potential 
utility of these antigens as vaccine targets.

Single nucleotide variants (SNVs) and indel derived 
neoantigens

The bedrock of most clinical6,7,8 and preclinical studies5,17,18 

are small somatic variations such as single nucleotide variants 
(SNVs) that lead to missense mutations, and small insertions 
or deletions (indels). SNVs and indels are the primary focus of 
most studies because they are readily detectable by whole- 
exome sequencing (WES). SNV induce immunogenic changes 
when they result in a mutation that changes an amino acid 
residue at an MHC anchor point, allowing an otherwise silent 
antigen to be presented, and/or when the amino acid substitu-
tion changes the topography of the MHC/peptide complex 
allowing novel T-cell recognition. Either mutation is capable 
of generating novel T-cell responses, however, there is no 
consensus on which if either of these events is the most immu-
nogenic or protective when employed in a vaccine.

The protocols for selecting SNV derived neoantigens, whilst 
still evolving, are well understood, with most groups opting to 
prioritize well-expressed neoantigens with a predicted binding 
affinity of less than 500 nM. Others opt to include additional 
criteria and a recent report from the tumor neoantigen selec-
tion alliance (TESLA) recommended a selection process based 
on peptide “presentation” and “immunogenicity”.19 

Presentation was defined as MHC-I binding affinity less than 
34 nM (using the algorithm NetMHCPan4.020), peptide MHC- 
I stability greater than 1.4 hours (using the algorithm 
NetMHCStabPan21) and antigen encoding RNA expression 
levels greater than 33 transcripts per kilobase million (TMP). 
Immunogenicity was defined as differential agretopicity index 
(DAI)22,23 less than 0.1 and high foreignness,24 greater than 
10−16. This approach allows the many thousands of potential 
mutations in tumors with high TMB to be pruned to 
a manageable number, whilst maximizing the probability of 
selecting immunogenic, potentially protective, neoantigens. 
For cancers with a low TMB, this approach is likely to be too 
prescriptive, leading to the exclusion of most, if not all the 
potential neoantigens.

For some cancers, for example, clear-cell renal-cell carcinoma 
(ccRCC), the number of SNV mutations is low and SNV burden 
is not linked to successful ICI.25 Vaccines targeting SNV neoan-
tigen are unlikely to be useful in this patient cohort. However, 
ccRCC’s, as well as DNA mismatch repair deficient, microsatel-
lite instability-high (MSI-H) tumors, are rich in indel-induced 
frameshift mutations.26 Frameshift mutations generate an 
entirely novel amino acid sequence. Neoantigens derived from 
frameshift mutations appear to be highly immunogenic because 
indel burden is associated with elevated and activated TILs26–31 

and because MSI-H tumors have high response rates to ICI 
immunotherapy.32,33 Frameshift derived neoantigens are there-
fore likely to be highly effective vaccine targets.

Several neoantigen vaccine trials have sought to include 
indel-induced frameshift (neoORFs) mutations.7,11,13,14 In the 
study by Keskin and colleagues, five patients were tested for 
T-cell responses post vaccination.11 Of these three were nega-
tive which was attributed to the use dexamethasone during 
vaccination. The two remaining patients were vaccinated with 
SNV derived neoantigens only.11 Cafri and colleagues detected 
responses to 6/18 SNV and 2/2 frameshift derived neoantigens 
from a single patient with gastrointestinal cancer.13 Other 
patients in this study either did not receive neoORF antigens 
(2/4), or failed to make detectable responses to the vaccine (1/ 
4).13 In the third study, Ott and colleagues were able to demon-
strate T-cell responses to neoORFs, some with high avidity, in 4 
of 6 vaccinated melanoma patients.7 Responses to neoORFs 
derived antigens were present within the CD4 and the CD8 
T-cell compartment.7 In the final study, Fang and colleagues 
tested response to neoantigens in pools and failed to record the 
immunogenicity of neoORF derived neoantigens.14 These clin-
ical trials were not designed to determine the relative immu-
nogenicity of neoORF derived neoantigens, however they do 
suggest that neoORFs are worthy of consideration in future 
clinical trials.

Neoantigens derived from structural variants

Large-scale chromosomal alterations such as insertions, dele-
tions, inversions, duplications and translocations can generate 
frameshifted and in-frame fusion-derived neoantigens.34,35 

The number of structural variants per genome is typically 
lower than SNV and indels,34,35 however these more complex 
genomic events are attractive vaccine candidates for several 
reasons. Neoantigens derived from these gene fusions events 
are likely to be entirely distinct from self and are predicted to 
be more immunogenic than SNVs.35 Each mutation, especially 
frameshift mutations, will generate more potential neoantigens 
per event than an individual SNV.35 In-frame gene fusion- 
derived neoantigens can be shared across patients.35,36 

Finally, because these genetic events often contribute to carci-
nogenesis, the mutations are common in driver genes35,37,38 

meaning that they are more likely to be clonally expressed and 
required for tumorigenesis. Both these latter features mean that 
vaccine-induced immunoediting may be reduced.

Thus, far there is little data on the use of neoantigens 
derived from structural variants in clinical trials and no 
consensus on the best methods for calling and validating 
these mutations. Whilst ICI therapy success broadly 
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correlates with predicted SNV/indel burden, predicted 
fusion neoantigen load may not be a good indicator of 
successful ICI therapy.35 Moreover, early vaccine trials tar-
geting shared fusion neoantigens have been 
disappointing.15,16 However, shared fusion neoantigens 
may be less immunogenic than private fusion 
neoantigens35 which may explain the poor efficacy of 
these earlier trials. At least one study has demonstrated 
that fusion-derived neoantigens can be extraordinarily 
strong T-cell targets.34 Ott and colleagues prioritized the 
selection of frameshifted, gene fusion derived, neoantigens 
in an anti-PD-1 plus neoantigen vaccine trial, and demon-
strated responses to this class of neoantigens in at least one 
patient.9 However, these authors did not report the number 
of fusion-derived neoantigens used, nor their relative 
immunogenicity compared to SNVs.9 Therefore, it remains 
to be determined how valuable this class of neoantigen will 
be to vaccination regimes. However, the advent of 
improved neoantigen prediction methods35,37,39–43 should 
facilitate any such study. As for SNV/indel neoantigens, 
the number of fusion neoantigens varies with tumor 
type35 and therefore the utility of these targets is likely to 
be tumor dependent (Table 1).

Alternative neoantigen sources

Neoantigens derived from mutational events are not the only 
tumor-specific antigen (TSA). TSA can arise from errors in the 
transcription of microsatellites, the mis-splicing of exons, from 
aberrant transcription of tumor-specific open reading frames 
or of endogenous retro-elements (EREs), including 

endogenous retroviruses. These alternative sources of neoanti-
gens have been extensively and expertly reviewed by Smith and 
colleagues.44

TSA can also be derived from non-templated events including; 
post-translational modification,45 such as phosphorylation,46 or 
post-translational cis-splicing and trans-splicing of normal or 
mutated proteins.47–50 The production of spliced peptides occurs 
through highly specific and reproducible processing within the 
proteosome.51 MHC-I presented spliced peptides were first iden-
tified on the surface of tumor cells49 and are expressed at sufficient 
levels and consistency to induce CTL responses.49,52,53 

Consequently, these non-templated neoantigens may be highly 
effective vaccine candidates, especially as they comprise 
a significant fraction of MHC-I presented peptides.47,50 The role 
of these non-templated neoantigens has yet to be fully explored 
(Table 1) but it could be expected that these cancer antigens would 
be very different to self and therefore highly effective vaccine 
targets.

Theoretically the combination of sequencing and proteo-
mics should be the gold standard for neoantigen identification, 
allowing validation of genomics approaches as well as the 
identification of non-templated neoantigens. Several groups 
have employed proteomics approaches to refine the search 
for neoantigens first identified by sequence analysis. Yadav 
and colleagues54 combined WES with proteomics for neoanti-
gen identification in CM-38 and TRAM-C1 mouse tumor 
models. In the TRAMP-1 model only 6 neoantigens were 
predicted by genomics approaches, none of which were con-
firmed by proteomics. In the CM-38 model, 170 SNV were 
predicted by sequence and bioinformatics approaches. Of 
these, only 7 of were also confirmed to bind to MHC-I by 

Figure 2. Potential tumor specific neoantigens. Neoantigens can arise from multiple sources within the tumor cells. Shown here from left to right are normal self- 
antigens and then, SNV that arise from non-synonymous, single nucleotide changes, to the tumor genome. Fusion neoantigens which arise from structural events 
within the genome such as translocations and inversions. Alternative mRNA splicing can also generate novel tumor specific neoantigens via events such as mutations at 
mRNA splice sites, intron retention or disruptions to the spliceosome. EREs are mobile genetic elements that may be aberrantly expressed in tumor cells and can serve as 
tumor specific neoantigens. Proteins from these DNA templated neoantigens are processed into linear peptides of between approximately 8–13 amino acids in the 
proteosome for presentation on the cell surface by MHC class I or MHC class II molecules. Spliced peptide neoantigens (far right) are non-templated and arise from the 
splicing of independent protein sequences within the proteosome which are then also presented by MHC molecules. Abbreviations, ERE, endogenous retroelement; 
MHC, major histocompatibility complex; SNV, single nucleotide variants. Figure created with BioRender.com
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mass spectrometry. Of these 7 neoantigens, 3 were immuno-
genic and protective when included in prophylactic or thera-
peutic vaccines.54 Hilf and colleagues used proteomics to 
validate predicted neoantigens for inclusion into a neoantigen 
glioblastoma vaccine.10 However, none of the 643 mutations, 
across 15 patients, could be identified on HLA class I or class II 
peptidomes meaning that predictions alone were used for 
vaccine production.10 Therefore, the role of proteomics in 
vaccine design is yet unclear and may be most effective in the 
detection of non-templated antigens

The impact of tumor heterogeneity on antigen selection

The mutational landscape of a tumor is not homogenous55 

meaning that genomic or proteomic neoantigen identification 
from a single biopsy is likely to be subject to sampling bias. This 
represents a potential barrier for successful neoantigen vaccina-
tion because vaccines that target poorly represented, sub-clonal, 
neoantigens could drive tumor escape through the process of 
immunoediting.56 Therefore, neoantigen vaccines would ideally 
consist of clonal neoantigens, i.e., those that arose early in the 
tumorigenesis and are expressed by the majority of cells. 
Sampling bias will affect the identification of clonal antigens 
meaning that multiple samples may need to be taken from 
each patient.57,58 This places significant logistical limits on 
neoantigen prediction and others have sought to use computa-
tional approaches for the identification of clonal neoantigens.59

Some classes of neoantigen, for instance gene fusions are 
more likely to be clonal because they often occur in driver 
genes.35,37,38 Other neoantigens, for instance, spliced peptides 
may be less likely to be clonal. In an ideal world only clonal 
neoantigens would be included in a vaccine, however these 
antigens may be rare or difficult to identify. That clinical 
trials9 and animal models60 have shown vaccine mediated 
epitope spreading to non-vaccine targets implies that vaccina-
tion with sub-clonal antigens may be sufficient to cause spread-
ing of the immune response to other targets, including clonal 
neoantigens. Clinical and pre-clinical studies will be required 
to determine the relative importance of targeting only the 
clonal neoantigens.

In summary there are many potential sources of neoanti-
gens (Figure 2) and there is supportive evidence to presuppose 
that some of these antigens will be more protective than others. 
However, to date there have been no comprehensive studies 
that have sought to determine the most effective “class” of 
neoantigen, and it remains the case that most neoantigen trials 
have focused on small somatic variants, SNV and indels. In 
addition, the type of neoantigen available for vaccination will 
be dictated by the mutational landscape of the tumor (Table 1). 
Therefore, detailed studies assessing the relative immunogeni-
city of the different types of neoantigen will be critical to ensure 
an agile approach to vaccine design and ensure adaptability 
across patients and cancer types.

Overcoming T-cell exhaustion

There are several potential impediments to successful neoanti-
gen vaccination, in particular T cells specific for expressed 
neoantigens are likely to be under the influence of strong and 

ongoing immunosuppression. This suppression may be 
mediated by a number of nonspecific and specific factors, 
such as myeloid-derived suppressor cells61 or regulatory 
T (Treg) cells,62 respectively. Alternatively, this immunosup-
pression may be intrinsic to the neoantigen-specific T cells and 
manifested as T-cell exhaustion. Repeated T cell receptor 
(TCR) stimulation from chronic antigen exposure leads to 
T-cell exhaustion and is a feature of cancer and certain chronic 
viral infections. The exhausted T-cell (Tex) phenotype is char-
acterized by the expression of inhibitory receptors (e.g., PD1, 
LAG3, 2B4, TIM3, CTLA4), impaired cytokine production 
(TNFα, IFNγ, and IL-2) and reduced proliferation.5,63–65 

T-cell exhaustion may therefore be one of the major barriers 
to neoantigen vaccination and so the plasticity of the Tex 
phenotype is of considerable importance.

Can exhausted cells be re-invigorated?

A number of studies have linked the expression of ICI mole-
cules within the TME to treatment efficacy, leading to the 
general view that ICI immunotherapy “re-invigorates” T-cell 
immunity by reversing the exhaustion of tumor resident 
T cells.66–72 However, an increasing body of evidence suggests 
that T cells responding to ICI are not derived from the 
exhausted tumor-infiltrating lymphocyte (TIL) population. 
For example, T-cell proliferation and activation was seen in 
the blood and lymph nodes following ICI,73 PD-1 blockade in 
the tumor draining lymph node (TDLN) has similar efficacy to 
that seen with systemic treatment73,74 and PD-1/PD-1 L inter-
actions in the TDLN, but not the tumor, correlates with prog-
nosis in melanoma patients.74 In addition, clonally expanded 
T cells detected in the tumor are predominantly derived from 
cells not present prior to αPD-1 therapy, whilst existing TILs 
did not expand and did not adopt a non-exhausted 
phenotype.75 Taken together these data suggest that, at least 
for ICI therapy, treatment does not necessarily reverse the 
phenotype of exhausted T cells.

T-cell exhaustion is a continuum, and early on the pathway 
Tex cells can proliferate, produce chemokines and retain 
cytotoxicity.66,76 These “early” exhausted cells have been var-
iously called Texprog or Texint cells,77 stem-like T cells78 or 
precursor exhausted T cells.79 Whilst the nomenclature varies, 
these stem-like T cells are commonly defined by expression of 
the transcriptional regulator, T-cell factor 1 (TCF1). 
Increasingly it is becoming clear that TCF1+ Tex cells are the 
major targets of ICI.67,69,80 Therefore, ICI therapy most likely 
acts on stem-like T cells within the tumor and as discussed 
above, at other sites such as the TDLN.

Whilst data from ICI studies suggest that early Tex cells can 
be reinvigorated, it is not clear how therapeutic neoantigen 
vaccines will perform in the face of existing T-cell exhaustion. 
In particular, whether vaccination can reverse established 
T-cell exhaustion and if so, how? Also, if vaccination recruits 
T cells from the naïve pool, is this impacted by ongoing 
immunosuppression? No direct study has determined that 
exhausted T cells can be reinvigorated by vaccination. 
However, circumstantial evidence does suggest this is possible. 
In a mouse MC-38 tumor model, therapeutic vaccine efficacy 
can be demonstrated despite neoantigen-specific T cells 
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expressing markers of T-cell exhaustion before vaccination.54 

In a mesothelioma clinical trial, improved response rates, in 
a DC plus allogeneic tumor lysate vaccine, were associated with 
a preexisting TCR repertoire and the expansion of the 
PD1+CD8+ population.81 In addition DC-based neoantigen 
vaccines in melanoma patients recruit preexisting T cells and 
naïve T cells as determined by TCR sequencing.6 It is not 
possible to determine from these studies if vaccination reversed 
the phenotype of individual Tex cells. However, they do sug-
gest that vaccination is able to augment T-cell immunity even 
in the presence of an established tumor.

Overcoming T-cell exhaustion may require a combination 
of neoantigen vaccination plus ICI therapy. In a Lewis lung 
carcinoma (LLC) model, Li and colleagues demonstrated that 
dual ICI therapy (anti-PD1 plus anti-CTLA4) led to an expan-
sion of neoantigen-specific T cells within the TME, and that 
these cells attained more stem-like features and gained effector 
functions.82 Surprisingly, however, prophylactic vaccination 
followed by dual ICI therapy did not improve the efficacy of 
ICI therapy, nor limit the transition of neoantigen-specific 
T cells to exhausted phenotype.82 In contrast however, 
Knuschke and colleagues, in a chronic retroviral mouse 
model, demonstrated that combined vaccination and anti-PD- 
L1 therapy led to recruitment of activated cells from the naïve 
T-cell pool, and enhanced the effector function of exhausted 
T cells.83 Vaccination alone did not alter the phenotype of 
exhausted cells, resulting only in the expansion of effector 
T cells.83 The scheduling of combination therapy may be cri-
tical to success. In the chronic retroviral model, ICI therapy 
and vaccination only synergized when given concurrently, not 
when staggered.83 Likewise, in mouse cancer models (TC-1 or 
B16) Verma and colleagues demonstrated concurrent vaccina-
tion plus ICI therapy, but not staggered treatment, protected 
mice from tumor challenge.84 Indeed, staggered therapy, where 
anti-PD1 was given prior to vaccination, lead to the expansion 
of a population of dysfunctional PD1+CD38hi CD8 T cells and 
anti-PD-1 resistance. The authors concluded that the anti-PD 
-1 resistance was due to suboptimal priming in a tumor 
environment.84 Notably, in the study by Li and colleagues,82 

PD-1 therapy was given after prophylactic vaccination.
While neoantigen vaccination can enhance both existing 

and preexisting immunity in clinical trials,6 it is possible that 
exhaustion applies a limiting brake on the efficacy of this 
response, with some trials failing to demonstrate the boosting 
of existing responses.13 More work is required to understand 
what types of Tex cells can be reinvigorated and if adjunct 
therapies such as ICI will be required for maximal efficacy. In 
particular, the scheduling of each treatment may be a key 
determining factor. These will be critical studies as most 
patients, given the time taken to make a neoantigen vaccine, 
will likely be treated with ICI therapy prior to vaccination.

Can choice of antigen bypass T-cell exhaustion?

T-cell exhaustion need not be an impediment to neoantigen 
vaccination. The target antigens most impacted by T-cell 
exhaustion will be those that generate preexisting immunity, 
and these typically represent only 2–5% of the predicted 
neoantigens.54,85,86 In contrast, as many as 40–60% of 

predicted neoantigens can stimulate de novo T-cell responses 
after vaccination.7,8,10,11,60,87 These latter, novel, antigens 
should not have been subjected to preexisting immunosup-
pression. However, most clinical trials have not pre-screened 
for existing neoantigen responses for a number of reasons, not 
least of which is the low precursor frequency of cancer-specific 
T cells.54,85,86 Pre-screening therefore places major costs, time 
and economic burden, on vaccine production whilst simulta-
neously targeting a T-cell population already under strong 
tumor mediated suppression. In contrast inducing de novo 
responses does not require pre-screening, should recruit 
novel specificities, and is not subjected to preexisting exhaus-
tion. The relative merits of vaccinating against existing or novel 
T cell targets are summarized in Figure 3.

Until mechanistic studies have been performed showing 
conclusively that vaccination can reverse the phenotype of 
exhausted T cells or that targeting existing responses is more 
effective, the added burden of pre-screening could be avoided. 
Indeed, this strategy could improve vaccine efficacy via the 
inclusion of sub-dominant antigens that can augment vaccina-
tion when combined with ICI.88 However, not all of these novel 
antigens will be naturally presented by the tumor, meaning that 
these vaccines are likely to need multiple targets to be 
effective.6 Animal models and well controlled clinical trials 
will be essential to disentangle these questions to determine 
what neoantigen to target and how many candidate antigens 
are too many or too few.

Is CD4 T-cell help required for vaccine efficacy?

To date neoantigen vaccines have focused predominantly on 
MHC-I restricted targets. This is largely because CD8 T cells 
are considered the main effector cell capable of killing tumor 
cells, but also because the prediction algorithms for MHC-I 
binding have in the past been considered superior to the MHC- 
II prediction algorithms. Despite this, and as discussed above, 
responses to predicted MHC-I restricted epitopes are fre-
quently skewed to the CD4 T-cell compartment. Peptide vac-
cines typically employ long peptides (20–30 amino acids) 
variously called synthetic long peptides (SLP) or immunizing 
long peptides as these are more effective at inducing immune 
responses than shorter peptides encoding only the predicted 
minimal MHC-I epitope. The increased efficacy of SLP is 
believed to be due to the requirement for antigen processing 
and presentation. However, given the skewing of response to 
CD4 T-cells in neoantigen clinical trials, it is likely that the 
enhanced efficacy of SLP is due, at least in part, to the induction 
of CD4 T cells and their potential role as helper cells for CD8 
T-cell activation.

A number of preclinical mouse studies have demonstrated 
the importance of CD4 T cells in tumor control.60,89–93 Indeed 
in some models CD8 T cells alone are insufficient for vaccine 
mediated tumor rejection, with CD4 T-cell help required to 
augment CD8 T-cell priming and maturation.94 Vaccines con-
taining only MHC-II restricted neoantigens induced tumor 
protection and epitope spreading to unrelated MHC-I restricted 
epitopes.60 Protection and epitope spreading was mediated via 
cross-priming, as anti-CD40 or anti-CD8 treatment abrogated 
vaccine efficacy.60 Likewise adoptive transfer of neoantigen- 
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specific CD4 cells have shown efficacy in a patient with meta-
static cholangiocarcinoma.92 During the priming of antitumour 
responses, CD4 cells induce a transcriptional pathway in anti- 
tumor CD8 T cells that promotes the downregulation of inhi-
bitory receptors including PD-1 and increases CD8 T-cell 
migration into the TME.95 Enhanced CD8 responsiveness 
appears to be primarily mediated via DC-expressed CD70 and 
CD8 T-cell-expressed CD2795. When MHC-II peptides have 
been specifically linked with class I peptides, improved efficacy 
has been demonstrated in vaccine studies.96 Finally, CD4 help 
may reverse or prevent CD8 T-cell exhaustion.97

With a few exceptions,8,14 most neoantigen trials have not 
sought to specifically include MHC-II restricted neoantigens, 
however the data presented above suggest that targeting CD4 
T cells may be critical for successful vaccinations. Optimal 
vaccination may even require that encoded MHC-I and MHC- 
II restricted antigens are contained within the same sequence. 
A number of improved MHC-II prediction algorithms have 
been developed in the past few years that have been trained 
using MHC-II peptide elution data98–100 which is expected to 
improve neoantigen identification for these approaches.

Does neoantigen presentation affect vaccine 
efficacy? – The role of specific HLA alleles

Neoantigens can be presented by any of the six HLA class 
I (HLA-A, HLA-B and HLA-C) molecules expressed by each 
patient. However, many trials focus on one or two common 
HLA alleles, either because the prediction algorithms are better 
trained for these molecules or because reagents for T-cell 

tracking, such as MHC-I tetramers, are readily available. For 
instance, the Rosenberg group has focused on HLA-A alleles101 

because these genes may be more highly expressed in 
melanoma.102 Hilf and colleagues focused on HLA-A*02:01 
and HLA-A*24:029. Several other studies have focused on 
HLA-A and HLA-B alleles.7,9 HLA-C alleles are typically 
expressed at lower levels than either HLA-A or HLA-B alleles 
and whilst not the overt target of neoantigen vaccines, neoanti-
gens restricted by HLA-C alleles have been used in neoantigen- 
specific T-cell therapy.103 The rationale for limiting the choice 
of antigens to specific HLA molecules and alleles in early clinical 
trials is understood; however, there are several reasons that 
choosing multiple MHC-1 molecules may improve efficacy. 
Targeting multiple alleles should limit individual allele silencing 
and limit peptide competition for the same restriction element, 
although different alleles may also compete for peptide.104,105 

Finally, higher HLA class I heterozygosity, as well as divergence 
at the peptide binding domain, correlates with increased survi-
val post ICI therapy106,107 suggesting that targeting multiple 
alleles will result in improved vaccine efficacy.

Concluding remarks

Neoantigen vaccines hold great promise, particularly as an 
adjunct to other forms of immuno- or conventional-therapy. 
However, many outstanding questions remain to be addressed. 
Most pressing of these questions is the type and number of 
antigens to include in a vaccine, and how these will be identified 
and prioritized. Also important will be the role that ongoing 
immunosuppression places on vaccine efficacy, specifically if 

Figure 3. Neoantigen T-cell targets. Vaccine candidates can be derived from existing T-cell targets or from novel T-cell targets. In the former instance, T cells specific to 
these antigens have undergone clonal expansion and are prevalent in the TDLN (1) and the TME (2). Consequently, vaccination may rapidly recruit T cells into the tumor 
from the TDLN or reactivate extant TILs. However, targeting these rare antigens requires extensive pre-screening and existing T-cell exhaustion, if present, may be 
difficult to reverse. In contrast novel T cell targets are readily identifiable by epitope prediction algorithms and have the capacity to broaden the anti-tumor T-cell 
repertoire, as well as bypass existing T-cell exhaustion. However, T cells specific for novel targets have a low precursor frequency (3) and require priming and expansion 
prior to migration to the TME, meaning that therapeutic efficacy may be delayed. In addition, not all novel neoantigens will be expressed by the tumor. The relative 
value of targeting these two types of neoantigen is currently unknown. TDLN, tumor draining lymph node; TILs, tumor infiltrated lymphocytes; TME, tumor 
microenvironment. Figure created with BioRender.com.
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T-cell exhaustion be reversed, minimized or circumvented. This is 
a critical, and unique, challenge to neoantigen vaccination that is 
not faced by conventional vaccines that target infectious agents. 
Much is to be learned in this space and it is likely that neoantigen 
vaccines will be most effective as an adjunct to other forms of 
therapy, in particular those that modulate preexisting 
immunosuppression.
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