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Abstract: After many decades of intense research in low-coordinate phosphorus chemistry, the advent
of Na[OCP] brought new stimuli to the field of CHOP isomers and derivatives thereof. The present
theoretical study at the CCSD(T)/def2-TZVPP level describes the chemical space of CHOP isomers in
terms of structures and potential energy surfaces, using oxaphosphirene as the starting point, but also
covering substituted derivatives and COP− isomers. Bonding properties of the P–C, P–O, and C–O
bonds in all neutral and anionic isomeric species are discussed on the basis of theoretical calculations
using various bond strengths descriptors such as WBI and MBO, but also the Lagrangian kinetic
energy density per electron as well as relaxed force constants. Ring strain energies of the superstrained
1H-oxaphosphirene and its barely strained oxaphosphirane-3-ylidene isomer were comparatively
evaluated with homodesmotic and hyperhomodesmotic reactions. Furthermore, first time calculation
of the ring strain energy of an anionic ring is described for the case of oxaphosphirenide.

Keywords: main group elements; phosphinidene; phosphaketene; oxaphosphirene; phosphacyanic acid;
phosphafulminic acid; oxaphosphirenide; phosphaethynolate

1. Introduction

The chemistry of low-coordinate phosphorus compounds such as phosphinidenes (I),
phosphaalkenes (II), and phosphaketenes (III) (Scheme 1) have received attention from
experimentalists and theoreticians over many decades due to their particular bonding situation and
reactivity [1–4]. Somewhat similar is the situation for strained ring systems containing phosphorus for
which phosphiranes (IV) and 1H-phosphirenes (V) [5] may serve as good cases in point. An existing
synthetic challenge is represented by oxaphosphiranes (VI) [6,7], only experimentally described
as a ligand in transition metal complexes, being valuable due to a high potential in polymer
chemistry, and oxaphosphirenes (VII) [8,9] (a 3-phosphinyl-1H-oxaphosphirene was computed
as one of the possible CHOP isomers [10]) for which not even a (failed) attempt exists in the
literature; the latter may stem from a (discouraging) degree of antiaromaticity [11]. The first stable
derivative of a phosphaketene, possessing the general formula RP=C=O, was reported by Appel
(R = Mes* = 2,4,6-tri-tert-butylphenyl) [12,13], and which remained the only derivative for a long time.
It was Grützmacher who then described a novel approach to III using sodium phosphaethynolate
Na[OCP] [14]. This new salt, bearing the OCP− (phosphaethynolate) anion [15,16], enabled a
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systematic exploration of its use in the field of P-heterocyclic chemistry [17]. Interestingly, the anion
reacts as an ambident nucleophile, i.e., it could be used to form transient phosphaalkynes that
underwent cyclotrimerization to yield 1,3,5-triphosphinines [18,19] or to obtain new phosphaketene
derivatives [20]. The parent phosphaketene (phosphaisocyanic acid) H–P=C=O has been recently
isolated and spectroscopically characterized [21]. Both H–P=C=O and the PCO radical were prepared
by reaction of CO with P atoms or PH radicals, which in turn were produced from P4 and PH3

discharge or photolysis [22]. Preliminary calculations on the geometry and relative energies of
H–P=C=O [23,24] and its phosphacyanic acid (H–O–C≡P) isomer [25,26] have been reported,
including their interconversion [27,28] and the less stable phosphafulminic acid (H–CPO) (at the
MP2/DZ+P//HF/3-21G* level [28,29]). Worth mentioning is also a more recent study on compliance
constants (reciprocals of the bond relaxed force constants) for the parent phosphaketene III and its
“cyclic isomer H–P(µ-CO)” (1H-oxaphosphirene) VII [30].
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2.1. PES of the Parent Oxaphosphirene (1a) 

The small ring size and the presence of a double bond in the oxaphosphirene ring in 1 is 
expected to entail high strain. Additionally, the availability of an electron pair at O together with the 
electron pair of the double bond could constitute an antiaromatic 4π electron arrangement that 
might be minimized by a geometric distortion. This energetically disfavourable combination should 
facilitate the existence of other (more) stable isomers, most of them being acyclic in nature. With this 
aim, the PES of the parent oxaphosphirene ring system 1a was thoroughly explored and allowed the 
location of ten closed-shell molecular CHOP species, together with a fragmentation pathway 
(Scheme 2). Only significant differences with a previous report computed at the rather similar (see 
the Computational Details) QCISD(T)/6-311++G(3df,2p)//MP2/6-311++G(d,p) level [9] deserve 
comments. Another previous report described the geometry and relative energies of five of the 
closed-shell minima at the more modest B3LYP/6-311G** level [8]. 

First of all, in that report, the parent structure 1a was described as an acyclic isomer having the 
connectivity of a formyl-phosphinidene (HC(O)–P) but featuring double C=P and single C–O bonds, 
as deduced exclusively from their bond distances (1.645 and 1.326 Å, respectively). Such a 

Scheme 1. Low-coordinate (I–III) and strained (IV–VII) phosphorus compounds.

Herein, the potential energy surface (PES) for the parent 1H-oxaphosphirene (1a; hereafter,
just oxaphosphirene) and four other substituted derivatives (1b–e) (Figure 1) were explored,
constituting a representative set that covers electron-donating and -withdrawing groups. The PES
for anionic derivatives of the formula COP−, conjugated base of 1a and its isomers, is also presented.
The ring strain energy for parent cyclic isomers is also estimated.
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2. Results and Discussion

2.1. PES of the Parent Oxaphosphirene (1a)

The small ring size and the presence of a double bond in the oxaphosphirene ring in 1 is expected
to entail high strain. Additionally, the availability of an electron pair at O together with the electron pair
of the double bond could constitute an antiaromatic 4π electron arrangement that might be minimized
by a geometric distortion. This energetically disfavourable combination should facilitate the existence
of other (more) stable isomers, most of them being acyclic in nature. With this aim, the PES of the parent
oxaphosphirene ring system 1a was thoroughly explored and allowed the location of ten closed-shell
molecular CHOP species, together with a fragmentation pathway (Scheme 2). Only significant
differences with a previous report computed at the rather similar (see the Computational Details)
QCISD(T)/6-311++G(3df,2p)//MP2/6-311++G(d,p) level [9] deserve comments. Another previous
report described the geometry and relative energies of five of the closed-shell minima at the more
modest B3LYP/6-311G** level [8].

First of all, in that report, the parent structure 1a was described as an acyclic isomer having
the connectivity of a formyl-phosphinidene (HC(O)–P) but featuring double C=P and single
C–O bonds, as deduced exclusively from their bond distances (1.645 and 1.326 Å, respectively).
Such a formyl-phosphinidene was claimed as minimum at the HF/6-31G** level (P–C 1.801 Å;
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C=O 1.193 Å; P–C–O angle 126.3◦) [26], but never found at the working level of theory (see the
Computational Details): the relatively small P–C–O bond angle of 86.5◦ found in 1a (83.9◦–88.7◦

for the full set of compounds 1, except 1b featuring an angle of 99.4◦), far below the typical value
for an open-chain C-sp2-centered bond angle (ca. 120◦), strongly suggests the cyclic nature of 1a,
although with a certainly elongated endocyclic P–O bond (Table 1) for which no bond critical point
(BCP) was found. Moreover, the “acyclic” structure “3” reported by Fu and coworkers [9] turns
out to be erroneously drawn because, according to their data, the P–C–O angle (84.35◦) is even
more acute than the one reported herein for 1a and, therefore, unambiguously corresponds to an
oxaphosphirene species. The P–O bond in 1a is by far the weakest (most flexible) bond according
to its lowest relaxed force constant (k0 = 0.869 mdyn/Å), compared to the P–C (4.527 mdyn/Å) and
C–O (5.510 mdyn/Å) bonds, in agreement with the reported compliance constants computed at the
CCSD(T)(fc)/cc-pVTZ level [22]. The relaxed force constants k0, obtained from the compliance matrix
method [31–33], have received much attention in recent years as a measure of bond strength in a
variety of bonding situations including organophosphorus derivatives [30,34].
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Lewis structural formulae for all closed-shell molecular isomers CHPO found 1a–9a (Scheme 1)
were drawn according to the best electronic description, as deduced from standard bond-strength
descriptors, natural charges (Table 1), and NBO (natural bond orbital) analysis [35,36]. With this aim,
widespread used bond orders quantities, such as the Wiberg bond index (WBI) [37] and the Mayer
bond order (MBO) [38–42], were computed. They provide values approaching 1 for single bonds, 2 for
double bonds, and so forth. Also, properties derived from the topological analysis of the electron
density, in line with Bader’s AIM (atoms-in-molecules) theory [43–45], in particular the electron
density itself (ρ) and the Lagrangian kinetic energy (G) computed at the bond critical point (BCP), were
calculated. The latter was only recently used in characterizing bond strength in phosphorus-containing
three-membered heterocycles [46] and, soon afterwards, the Lagrangian kinetic energy density per
electron (G/ρ) was reported as a remarkable bond-strength property [47] which correlates with ring
strain energies (within a series) when computed at the ring critical points [48].
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Table 1. Endocyclic bond strength parameters and natural charges.

Bond d (Å) WBI MBO ρ (au) G (au) G/ρ (au) Atom qnat (e)

1a
P–C
P–O
C–O

1.671
2.046
1.288

1.571
0.779
1.338

1.694
0.785
1.339

0.183
1

0.353

0.234
1

0.463

1.279
1

1.311

P
C
O

0.469
−0.137
−0.525

2a
P–C
P–O
C–O

1.956
1.870
1.229

0.997
0.626
1.582

0.991
0.735
1.555

0.116
0.101
0.393

0.044
0.105
0.700

0.376
1.041
1.780

P
C
O

0.359
0.236
−0.537

3asp P–C
P–O

1.677
1.649

2.107
0.818

1.984
1.036

0.202
0.162

0.254
0.246

1.253
1.521

P
C
O

0.736
−0.318
−0.909

3aap P–C
P–O

1.664
1.644

2.238
0.819

2.101
1.030

0.204
0.165

0.251
0.251

1.235
1.523

P
C
O

0.726
−0.311
−0.912

4a
P–C
P–O
C–O

1.672
1.773
1.873

2.005
0.642
0.520

1.917
0.794
0.472

0.198
0.126

1

0.251
0.164

1

1.265
1.306

1

P
C
O

0.589
−0.302
−0.775

5a P–C
P–O

1.562
1.475

2.421
1.401

2.341
1.903

0.206
0.233

0.322
0.518

1.561
2.225

P
C
O

1.540
−0.867
−0.917

6a P–C
C–O

1.683
1.152

1.674
2.022

1.719
2.212

0.163
0.477

0.248
1.014

1.522
2.128

P
C
O

0.049
0.346
−0.424

7a P–C
C–O

1.547
1.299

2.696
1.115

2.833
1.184

0.202
0.333

0.380
0.450

1.878
1.350

P
C
O

0.327
−0.184
−0.641

8a P–O
C–O

1.591
1.249

0.928
1.309

1.197
1.359

0.152
0.328

0.323
0.737

2.125
2.249

P
C
O

0.421
0.084
−0.639

9a P–O
C–O

1.919
1.145

0.410
1.908

0.550
2.079

0.074
0.463

0.077
1.059

1.039
2.289

P
C
O

0.081
0.538
−0.558

syn-6at P–C
C–O

1.941
1.169

0.851
1.978

0.965
2.202

0.130
1.113

0.043
0.506

0.332
0.454

P
C
O

0.298
0.223
−0.454

6at P–C
C–O

1.963
1.167

0.815
1.991

0.950
2.199

0.125
0.458

0.038
0.952

0.308
2.077

P
C
O

0.297
0.225
−0.460

12at P–C
C–O

1.846
1.212

1.016
1.821

1.142
1.994

0.161
0.418

0.103
0.736

0.640
1.759

P
C
O

0.339
0.014
−0.473

14
P–C
P–O
C–O

1.820
1.967
1.278

1.471
0.728
1.370

1.572
0.735
1.270

0.146
1

0.351

0.086
1

0.537

0.589
1

1.530

P
C
O

−0.249
−0.123
−0.628

15 P–C
C–O

1.618
1.199

2.241
1.638

2.581
1.876

0.178
0.426

0.307
0.768

1.718
1.802

P
C
O

−0.436
0.088
−0.652

16 P–C
P–O

1.597
1.519

2.847
1.156

2.727
1.571

0.185
0.211

0.261
0.430

1.414
2.036

P
C
O

1.146
−1.078
−1.068

17 P–O
C–O

1.756
1.179

0.647
1.662

0.782
1.784

0.100
0.408

0.168
0.955

1.685
2.338

P
C
O

−0.528
0.110
−0.583

15t P–C
C–O

1.792
1.216

1.377
1.639

1.544
1.859

0.152
0.405

0.142
0.735

0.933
1.815

P
C
O

−0.350
−0.037
−0.613

1 No BCP found.
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The rather weak P–O bond in 1a can be attributed to two factors. On one hand, the rather
ineffective single bond formed with π-symmetry between a p orbital at P and π*(C–O), as shown in
the HOMO-1 (Figure 2a); the NBO analysis indicates the formation of the P–O single bond between
two almost pure p orbitals at both P (98.31% p character) and O (98.15% p character). On the other hand,
the antibonding π*(P–O) and σ*(P–O) character of the HOMO and LUMO (Figure 2b,c), respectively,
the latter with a remarkable population (0.027 electrons) according to the NBO analysis.
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The cyclic carbene, oxaphosphirane-3-ylidene 2a, also displays a rather weak P–O bond (Table 1)
but with higher stiffness (k0 = 1.358 mdyn/Å) compared to 1a. In this case the C–O bond also varies in
the same sense (k0 = 7.181 mdyn/Å), whereas the P–C bond becomes comparatively weaker and more
elastic (k0 = 1.412 mdyn/Å).

The large and moderately weak C–O bond (no BCP found) in 4a (Table 1), suggests a dative
bonding from an electron pair at O to a vacant orbital at the carbenic C atom (4a′), which is equivalent
to the all-covalent bond Lewis formula 4a” or its resonant structure 4a

′′′
(Scheme 3).
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The cyclic character of 4a is supported by NBO analysis that shows a formal C–O single bond
between two almost pure p orbitals at both C and O (96.63 and 93.74 % p character, respectively),
the same holding for the single P–O bond (91.38 and 83.97% p character for P and O, respectively).
This is compatible with a p-donor π-acceptor complex 4a

′′′′
between a hydroxide and a [C≡P]+ cation,

according to the Dewar-Chatt-Duncanson model [49]. The MO drawings also support this view as
far as HOMO-3 and LUMO constitute the bonding and antibonding interactions between an in-plane
π(C=P) orbital with a p-type atomic orbital at O, whereas HOMO and LUMO+1 are essentially the
π(C=P) and π*(C=P) combinations in the orthogonal plane (Figure 3).
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It is worth mentioning that isomer 9a, resulting from P–C bond cleavage in oxaphosphirene 1a
(Scheme 2), might be considered as a van der Waals complex between carbon monoxide (11) and
singlet phosphinidene (10a) (C≡O→P–H), as deduced from the rather elongated and weak P–O
linkage (Table 1). This bond might easily cleave, although the corresponding TS could not be located
at the working level of theory and, hence, more information is not available.

All closed-shell minima are the same as in Fu’s report, with the only exception of isomer 3aap

that was described with a linear POC moiety but, at the current level of theory, has a zig-zag
geometry. Indeed, we have confirmed the linear arrangement upon geometry optimization at the
SCS-MP2/def2-TZVP level. Species 3aap can only be formed from its most stable conformer 3asp

through the cyclic isomer 4a. The TS (transition state) for converting 3asp into 4a is the only one not
reported in Fu’s work. All ground states and TSs have similar energies at both computational levels
(rmsd = 1.77 kcal/mol). A full energy diagram with all CHPO isomers and the interconversion paths
is collected in Figure 4. The TS for the dissociation of 9a into singlet phosphinidene (10a) and CO (11)
could not be located.
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The overall PES points to cyclic systems 1a and 2a as thermodynamically disfavoured compared
to the most stable acyclic phosphaketene 6a (and phosphacyanic acid 7a) and displaying little kinetic
stability, as deduced by the little barriers for their conversion into 6a. The other cyclic isomer 4a is
rather unstable both thermodynamically and kinetically.

Although a formyl-phosphinidene was not located at the closed-shell PES of 1a, excitation
of 1a to its first triplet state is accomplished with structural reorganization leading to the triplet
formyl-phosphinidene 12at (Scheme 2, Figure 4), as previously recognized [8]. The same excitation
in oxaphosphirane-3-ylidene 2a leads to syn-6at that isomerizes to the anti conformer 6at. The latter
species can isomerize to the aforementioned species 12at or split into the “stable” species triplet
phosphinidene (10at) and carbon monoxide (11).

2.2. Isomers of Substituted Oxaphosphirenes

In case of the other differently substituted oxaphosphirenes 1a–e, the energies of the same set
of isomers was computed. In almost all cases the most stable closed-shell species follow the same
order as for the parent compounds, starting by the most stable phosphaketene (phosphaisocyanate)
R–P=C=O: 6 > 7 > 1 > 5 ≥ 2 > 9 (Figure 5). On the contrary, in case of the fluoro-substituted
species, 7b is strongly destabilized (also both conformers 3b as well as 5b to a lesser extent), whereas
2b and 9b (also 10b) are comparatively stabilized. This results in a different order of stability
6b > 2b > 9b > 1b > 5b > 7b (Figure 4). Triplet electronic states display similar stability than (singlet)
oxaphosphirenes 1, with two general exceptions: 1) splitting into triplet phosphinidene (10t) and
carbon monoxide (11) are usually favored and 2) the fluorinated substituent comparatively favors all
triplet state species (syn-6bt, 6bt and 12bt), especially the pair 10bt + 11 (obtained after dissociation).
Compound syn-6et is not stable and spontaneously splits into 10et + 11.
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energies for all isomers of oxaphosphirenes 1a–e. Energies are referred to the oxaphosphirene species (1).

Therefore, the overall picture for the thermodynamic instability of cyclic isomers and the
preference for phosphaketenes does not change significantly with the type of substitution (Figure 5),
compared to the parent compounds (Figure 4), except a small relative stabilization of the
oxaphosphirane-3-ylidene 2b, and the remarkable destabilization of fluoro-phosphacyanate 7b, in case
of the fluoro-substitution.

2.3. Anionic COP− Isomers

Formal substitution of H in the parent compounds by a lone pair affords the set of anionic species
of general formula CPO−, for which only four closed-shell minima were found: the oxaphosphirenide
14 and the products resulting from endocyclic P–O (15), C–O (16), and P–C (17) bond cleavage
(Scheme 4). For only the two latter ring cleavage processes, the corresponding TSs were characterized.
With a small barrier, the C–O bond cleavage of 14 affords exergonically CPO− 16, whereas cleavage
of the P–C bond occurs through a moderately higher barrier and giving rise to the less stable isomer
POC− 17 (Figure 6). On the contrary, cleavage of the P–O bond under the restricted (closed-shell)
formalism leads to splitting into CO and a P- anion, but excitation of 14 to the first triplet electronic
state leads to a spontaneously cleavage of the P–O bond, affording the bent triplet species 15t which,
on falling to the electronic ground (singlet) state, enables the access to the most stable isomer, the linear
phosphaethynolate anion PCO− 15.Molecules 2018, 23, x 9 of 16 
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profile for the interconversion of COP− isomers.

The oxaphosphirenide 14 can be formally considered as the direct deprotonation product from
either 1a (C-deprotonation) or 2a (P-deprotonation). Although most of the negative (natural) charge
can be ascribed to the O atom due to its higher electronegativity (Table 1), the largest negative variation
in electric charge corresponds to the P atom (∆qnat = −0.718 or −0.608 e in 1a or 2a, respectively) and,
therefore, 14 could be safely represented with a formal negative charge on phosphorus. This is also
supported by the HOMO (Figure 7) being mainly located at P. The stiffness of all three bonds keep the
same order found for 1a and 2a: C–O > P–C > P–O (k0 = 4.322, 1.846 and 1.099 mdyn/Å, respectively).
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2.4. Ring Strain Energy

Ring strain is one of the most characteristic features in small rings, providing the driving force
for their transformations into open-chain (or ring-enlarged) products [50]. The ring strain energy
(RSE) for the parent saturated oxaphosphirane ring was reported to be 23.5 kcal/mol (computed
at the CCSD(T)/def2-TZVPP level) [51]. As double bonds normally entail enlarged bond angles,
their incorporation into small cyclic systems should be expected to result in an increase in the RSE,
as occurs, for instance, in moving from cyclopropane to cyclopropene (RSE = 29.0 and 54.5 kcal/mol,
respectively [52]). In the case of the parent oxaphosphirene ring system 1a, the RSE was computed by
evaluating the energetics of appropriate homodesmotic reactions (Scheme 5), similar to those used
for other three- [46,48,51,53–57] or four-membered [47] saturated phosphorus heterocycles. In such
reactions, for the cleavage of every endocyclic X–Y (or X=Y) bond, a HnX–YHm (or HnX=YHm) reagent
is used, the valences of X and Y being completed with H atoms. In reactants and products, the number
of every type of bonds (single/double) between X and Y, with the same hybridization states in X and Y,
must be conserved, as well as the number of sp3, sp2, and sp-hybridized (and non-hybridized, in case)
atoms of every element with 0, 1, 2, or 3 H atoms attached. By averaging the opposites of the zero
point-corrected energies for the three homodesmotic endocyclic bond cleavage reactions of 1a, a rather
high value of RSE (Table 2) was obtained (see Computational Details).
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Table 2. Computed (CCSD(T)/def2-TZVPP//B3LYP-D3/def2-TZVP) RSE (kcal/mol) using
homodesmotic (RC4) or hyperhomodesmotic (RC5) reaction schemes.

RSERC4 RSERC5

1a 49.90 49.08
2a 7.53 4.59
14 36.83 41.99

According to a recent classification and redefinition of reaction types used in thermochemistry [58],
homodesmotic reactions (reaction class 4, or “RC4”) is the second to last type in a hierarchy of
increasingly more accurate processes, due to conservation of larger fragments. In this hierarchy,
hyperhomodesmotic reactions (reaction class 5, or “RC5”) constitute the top quality, most accurate
type of processes. They are defined so as to conserve in reactants and products the same number
of HnX–YHm bonds (X, Y are the two bonded atoms; n and m are the number of H atoms attached
to them), for every type of single, double, or triple bond, as well as the same number of sp3, sp2,
and sp-hybridized (and non-hybridized, in case) atoms of every element with 0, 1, 2, or 3 H atoms
attached. The small difference obtained in the RSE (Table 2) when using the RC4 and RC5 sets of
reactions (ca. 0.8 kcal/mol) justifies the widespread use of homodesmotic reactions for the estimation
of RSE without significant loss of accuracy. Moreover, the use of lower levels of theory resulted in
an overestimation of RSE (RC4/RC5) for 1a that increases from PWPB95-D3 (50.88/50.15 kcal/mol),
B3LYP-D3 (52.05/51.19 kcal/mol) and SCS-MP2 (52.15/51.45 kcal/mol).

The RSE for oxaphosphirane-3-ylidene 2a was computed similarly by using the appropriate set of
homodesmotic and hyperhomodesmotic reactions (Scheme 6). The results point to a very significant
decrease in the RSE (more than 40 kcal/mol) compared to 1a, most likely paralleling the decrease in
bond order for the P–C linkage. This drop in RSE does not entail an overall stabilization of 2a with
respect to 1a in the same magnitude, owing to the presence of very reactive (unstable) centers in 2a,
such as the carbene moiety.
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dianionic in nature. As the latter should display an extra Coulombic destabilization, not present
in the (isolated) reagents, a compensation of the resulting repulsion energy was needed. This was
estimated via the Coulomb law formalism. With this aim, the two non-consecutive atoms contributing
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Despite these limitations mentioned beforehand, a rough estimation of RSE in the range
36–42 kcal/mol for oxaphosphirenide 14 (Table 2) is enough to conclude that a small decrease in
the bond order of the P–C bond (after formal C-deprotonation 1a→14, Table 1) parallels a decrease in
the RSE.

3. Materials and Methods

Computational Details

DFT calculations were performed with the ORCA program (version 3.0.3,
Mülheim/Ruhr, Germany) [59]. All geometry optimizations were run in redundant internal coordinates
in the gas phase, with tight convergence criteria, and using the B3LYP functional [60,61] together
with the def2-TZVP basis set [62] and the speeding up algorithm RIJCOSX [63]. The latest Grimme’s
semiempirical atom-pair-wise London dispersion correction (DFT-D3) was included in all calculations [64].
Harmonic frequency calculations verified the nature of ground states or transition states (TS) having all
real (positive) frequencies or only one imaginary (negative) frequency, respectively. Relaxed force constants
were computed at the optimization level and obtained by inversion of the Hessian matrix and appropriate
unit conversion of the reciprocal of the resulting diagonal elements. From these optimized geometries
all reported data were obtained by means of single-point (SP) calculations using the more polarized
def2-TZVPP [65] basis set. Basis sets may be obtained from the Basis Set Exchange (BSE) software and the
EMSL Basis Set Library [66,67] Reported energies were corrected for the zero-point vibrational term at the
optimization level and obtained by means of the recently developed near linear scaling domain-based
local pair natural orbital (DLPNO) method [68] to achieve coupled cluster theory with single-double and
perturbative triple excitations (CCSD(T)) [69]. For comparative purposes, local correlation schemes of
type LPNO (Local Pair Natural Orbital) for high level single reference methods, such as CEPA (Coupled
Electron-Pair Approximation) [70,71], here the slightly modified NCEPA/1 version [72] implemented
in ORCA, was used, as well as the spin-component scaled second-order Möller–Plesset perturbation
theory (SCS-MP2) level [73,74] and the double-hybrid-meta-GGA functional PWPB95 [75,76], together
with the D3 correction (PWPB95-D3) (see the SI). Due to the unavailability of unrestricted formalism for
DLPNO/CCSD(T) calculations in the working version of ORCA, the corresponding values in the case
of triplet electronic states were taken from the LPNO/NCEPA1 level, making use of the reported small
differences between the results in these two levels for closed-shell systems [77]. Figures 2, 3 and 7 were
drawn with VMD [78].

4. Conclusions

In total, a full picture of the potential energy surfaces (PES) for oxaphosphirene and
oxaphosphirenide anion has been presented, including remarkable isomers in the triplet electronic state
for the first time. Furthermore, ground state structures of fluorinated derivatives are detailed. The PES
of the neutral CHOP system includes important derivatives, such as phosphaketene (phosphaisocyanic
acid, H-PCO), linear isomers such as phosphacyanic (H-OCP), and phosphafulminic (H-CPO) acids,
as well as two other cyclic isomers and fragmentation products. In the case of the anionic derivatives,
the phosphaethynolate anion is the most stable. The electronic structures of the most representative
isomers were described using MO theory, NBO analysis, and bond strength descriptors. Using both
homodesmotic and hyperhomodesmotic reactions, ring strain energies were estimated for the parent
1H-oxaphosphirene, oxaphosphirane-3-ylidene, and the oxaphosphirenide anion, the latter requiring
an additional electrostatic energy-correction term.

Supplementary Materials: The following are available online, Tables S1 and S2: Computed zero-point corrected
relative energies (kcal/mol) at various computational levels, Computed geometries (Cartesian coordinates, in Å),
energies (in hartree) and imaginary frequencies (for TS, in cm−1) for all computed species.
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