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Yellow roots are of higher nutritional quality and better appearance than white roots
in cassava, a crucial tropical and subtropical root crop. In this work, two varieties
with yellow and white cassava roots were selected to explore the mechanisms of
color formation by using comparative metabolome and transcriptome analyses during
seven developmental stages. Compared with the white-rooted cassava, anthocyanins,
catechin derivatives, coumarin derivatives, and phenolic acids accumulated at higher
levels in yellow-rooted cassava. Anthocyanins were particularly enriched and displayed
different accumulation patterns during tuberous root development. This was confirmed
by metabolic comparisons between five yellow-rooted and five white-rooted cassava
accessions. The integrative metabolomic and transcriptomic analysis further revealed
a coordinate regulation of 16 metabolites and 11 co-expression genes participating in
anthocyanin biosynthesis, suggesting a vital role of anthocyanin biosynthesis in yellow
pigmentation in cassava tuberous roots. In addition, two transcriptional factors, i.e.,
MeMYB5 and MeMYB42, were also identified to co-express with these anthocyanin
biosynthesis genes. These findings expand our knowledge on the role of anthocyanin
biosynthesis in cassava root color formation, and offer useful information for the genetic
breeding of yellow-rooted cassava in the future.

Keywords: cassava tuberous roots, color formation, anthocyanin biosynthesis, metabolome, transcriptome,
coordinate regulation

INTRODUCTION

Cassava (Manihot esculenta) is one of the highly used tropical and subtropical root crops, providing
staple food for more than 800 million people worldwide (1). Cassava tuberous roots are high in
starch but very low in protein, micronutrients, and bioactive compounds such as carotenoids and
anthocyanins (2, 3). Cassava is typically white rooted, although a few yellow landraces have been
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reported in Amazonia, Brazil (4). Compared with white
cassava roots, yellow cassava roots usually have higher levels
of carotenoid contents (2, 5), flavanones, anthocyanins, and
proanthocyanidins (6). In addition to the higher nutritional
values, yellow cassava roots are also gaining popularity among
consumers for their striking color compared to the white cassava
roots (7). To date, the molecular mechanisms of color formation
in cassava tuberous roots remain elusive, which greatly limits its
breeding for higher nutritional contents.

Many studies have been conducted to investigate the color
formation of yellow cassava roots. For instance, Carvalho
et al. (5) characterized carotenoid profiles in 23 landraces of
cassava tuberous roots with white-to-yellow-to-pink color. They
established potential links of low transcript abundance of LCYb
and HYb to the pink and yellow landraces, respectively. Similarly,
Olayide et al. (8) found that carotenoid biosynthesis genes
were expressed in both yellow and white cassava roots. Still,
only lycopene-ε-cyclase (LCYε), phytoene synthase 2 (PSY2),
and β-carotenoid hydroxylase (CHYβ) showed higher expression
in yellow roots. Welsch et al. (2) revealed that a single
nucleotide polymorphism in PSY2 resulted in the accumulation
of provitamin A carotenoids and induced yellow color to the
cassava roots. Beyene et al. (9) enhanced β-carotene contents in
cassava tuberous roots by co-expression of transgenes for deoxy-
D-xylulose-5-phosphate synthase (DXS) and bacterial phytoene
synthase (crtB). This resulted in color change of the cassava
tuberous roots from white to yellow. These studies mainly
focused on the carotenoid pathways; however, the carotenoid
contents were not always higher in yellow cassava roots than
white cassava roots (5), indicating that other pigments may also
influence the coloring of yellow cassava roots.

Anthocyanins are well-known water-soluble phenolic
pigments that color the fruits and flowers of many plants (10,
11). These pigments are present in vacuoles, and their hue and
stability are usually influenced by intravacuolar environments,
including pH, co-pigmentation, and complex formation with
metal ions (11). In addition to the red, blue, and purple color
formation, anthocyanins are reported to participate in color
formation of yellow flowers in Herbaceous peony (12) and
yellow peel in several fruits (13, 14). Similarly, in cassava, the
anthocyanins and proanthocyanidins were more accumulated in
yellow tuberous roots than white tuberous roots. Moreover, the
expression of several anthocyanin biosynthesis genes, including
CHI, F3′5′H, F3H, and DFR, was up-regulated in yellow cassava
roots than white cassava roots (6). These results suggested that
anthocyanins might also participate in the color formation of
yellow cassava roots; however, the underlying key genes and
regulatory networks remain unknown.

Due to the advantage of multi-omics in explaining
complex biological problems, the integrated metabolomic
and transcriptomic analyses have been widely applied to
identify crucial genes and pathways controlling pigment
accumulation in plants. For example, combined metabolome
and transcriptome analyses were performed in pepper and
asparagus cultivars, respectively, to demonstrate the roles
of carotenoid and anthocyanin biosynthesis genes in color
formation (15, 16). Similarly, the mechanisms underlying peel

and pulp color formation were unveiled in pitaya fruit by an
integrated transcriptome and metabolome approach, providing
several candidate genes and metabolites for further functional
characterization (13). In addition, network analysis of the
metabolomic and transcriptomic profiles has been demonstrated
as a powerful approach to uncover novel genes and regulatory
pathways in potato pigmentation (17). However, no multi-omics
studies have been conducted to determine the color formation
in cassava tuberous roots, although there have been reports on
drought response, root development, and nutritional properties
(6, 18, 19).

In this work, comparative transcriptome and metabolome
analyses were performed in seven developmental stages of
SC205 (white-rooted cassava) and SC9 (yellow-rooted cassava),
respectively, to explore the mechanisms of color formation in
cassava tuberous roots. The findings will provide novel insights of
anthocyanin biosynthesis on color formation in cassava tuberous
roots and offer useful information for the genetic breeding of
yellow-rooted cassava.

MATERIALS AND METHODS

Plant Materials and Sample Collection
Two cassava varieties, i.e., SC9 and SC205, which have yellow
and white tuberous roots, respectively, were used in this
study. Cassava stems were sectioned with a length of about
15 cm each and planted in the Chinese Academy of Tropical
Agricultural Sciences experimental farm under normal field
conditions at Danzhou, China. As described previously (18),
seven experimental blocks were designed. Each block consisted of
four rows, and each row was planted with seven individual plants,
which were regarded as different biological replicates. The typical
roots of five plants cultivated in the middle of each row were
sampled at∼9 am, respectively, at a total of seven developmental
stages (S1-S7) including 100, 140, 180, 220, 260, 300, and 340 days
after planting. These time points roughly represented three
critical stages of early (S1-S3), middle (S4), and late (S5-S7)
during cassava production (20). Only one main root was collected
for each plant. Each root was dissected into pieces of∼3 mm thick
from the middle, and then 5–6 pieces were immediately frozen in
liquid nitrogen and stored at−80◦C until analyzed.

Metabolome Analysis
The untargeted metabolic experiments were performed at the
Wuhan Metware Biotechnology Co., Ltd., as previously described
(18, 21). Briefly, 100 mg powder was weighed and added to
1.2 ml 70% aqueous methanol for overnight extraction at 4◦C.
After centrifugation for 10 min at 10,000 g, the extracted solution
was absorbed and filtrated. The quality control samples were
prepared by mixing equal volumes of sample extracts and
analyzed every 10 samples to monitor the repeatability. An ultra-
performance liquid chromatography (UPLC) system (Shim-pack
UFLC SHIMADZU CBM30A) and an MS/MS system (Applied
Biosystems 6500 Q TRAP) were used to analyze the sample
extracts under following conditions: UPLC column, Waters
ACQUITY UPLC HSS T3 C18 (1.8 µm, 0.21 cm × 10 cm).
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The mobile phase consisted of pure water with 0.04% acetic acid
as eluent A and acetonitrile with 0.04% acetic acid as eluent
B. Sample measurement was executed with a gradient program
employing the initial conditions of 95% A and 5% B. A linear
gradient to 5% A and 95% B was programmed within 10 min, and
the composition of 5% A and 95% B was maintained for 1 min.
Subsequently, a composition of 95% A and 5% B was adjusted
within 0.1 min and maintained for 2.9 min. The injection volume
was fixed to 2 µL, and the column temperature was controlled at
40◦C. The effluents were alternatively connected to electrospray
ionization (ESI)-triple quadrupole-linear ion trap (Q TRAP)-MS.

The acquisitions of linear ion trap (LIT) and triple quadrupole
(QQQ) scans were executed on a triple quadrupole-linear ion
trap MS API 6500 Q TRAP LC/MS/MS system, equipped with
a Turbo Ion-Spray interface (operating in positive ion mode and
negative ion mode) and controlled by Analyst 1.6.3 software (AB
Sciex). The ESI source operation parameters were following: ion
source, turbo spray; source temperature, 550◦C; ion spray voltage,
5,500 V for positive ion mode and −4,500 V for negative ion
mode; ion source gas I, gas II, and curtain gas were set at 50, 60,
and 30 psi, respectively; the collision gas was high. Instrument
tuning and mass calibration were analyzed in QQQ and LIT
modes using 10 and 100 µmol/L polypropylene glycol solutions,
respectively. The acquisition of QQQ scan was executed during
MRM experiment with collision gas (nitrogen) at 5 psi.

Metabolites were identified and relative quantified by
searching the self-built MetWare database1 constructed based
on the standard materials and purified compounds and the
public databases (including MassBank, KNApSAcK, HMDB,
MoTo DB, and METLIN), based on the accurate precursor
ion (Q1) and production (Q3) values, m/z and MSMS spectra,
retention time, and fragmentation pattern. The peak area of
each chromatographic peak represented the relative content of
the corresponding metabolite. All identified metabolites were
used to conduct principle component analysis and orthogonal
partial least squares discriminate analysis, and differentially
accumulated metabolites (DAMs) were identified by setting the
variable importance in projection (VIP) ≥ 1 and | log2(fold-
change)| ≥ 1. Each sample was performed with three
biological replications.

Transcriptome Analysis
Library construction and RNA-seq sequencing were executed at
the Annoroad Gene Technology Corporation (Beijing, China).
In brief, total RNA was isolated from each sample to construct
transcriptome libraries using Illumina TruSeq RNA sample
prep Kit (Illumina, San Diego), according to the manufacturer’s
instructions. RNA-seq libraries were sequenced on an Illumina
Hiseq 4000 platform to generate 150 bp pair-end reads. Each
sample was performed with three biological replicates.

As previously described (22, 23), sequence quality was checked
by FastQC software2. Sequencing adaptors and low-quality bases
were filtered by FASTX-toolkit3. Clean reads were mapped to

1http://www.metware.cn/
2http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
3http://hannonlab.cshl.edu/fastx_toolkit/index.html

the cassava reference genome (version 6.1) by HISAT2 v2.1.0
(24) with default parameters and then assembled by Stringtie
v1.3.4 (24) with reference genome-based strategy. Differentially
expressed genes (DEGs) were identified by DESeq2 (25) setting
false discovery rate < 0.05 and log2 | fold-change| > 1. Gene
expression was measured in fragments per kilobase per million
mapped reads (FPKM).

Metabolomic and Transcriptomic
Integrative Analysis
The levels of metabolites and genes were log2-transformed
for metabolomic and transcriptomic integrative analysis. The
abundance patterns of metabolites and genes were determined
by the standard procedure of WGCNA (26) based on the
Pearson correlation coefficient and then visualized by R
package “pheatmap.” Cassava genes were classified into distinct
hierarchical categories using the MapMan annotation system
(27) for their biological function interpretation. The significantly
enriched categories were identified by Fisher’s exact test as
previously reported (22, 23). WGCNA was also applied to identify
the association between genes and metabolites, while Cytoscape
software (28) was used for network visualization.

qRT-PCR Analysis
The qRT-PCR experiments were executed as previously described
(19) to verify the expression of RNA-seq. Total RNA was
isolated using RNAiso reagent (OMEGA), and then reversely
transcribed to obtain cDNA using PrimeScript RT reagent Kit
with gDNA Eraser (Takara, Dalian, China). Eleven genes related
to anthocyanin biosynthesis were selected and analyzed by qRT-
PCR. The primers were listed in Supplementary Table 1.

The qRT-PCR was executed on a Stratagene Mx3000P
machine (Stratagene, CA, United States) using SYBR Premix Ex
Taq (Takara, Dalian, China) with the following processes: 30 s at
95◦C, then 40 cycles of 10 s at 95◦C and 30 s at 60◦C. A thermal
denaturing step was executed to produce the melt curves for
verification of amplification specificity. The cassava actin gene
was used as an internal control (19). Each sample was measured
in triplicates, and the relative gene expression was calculated by
the 2−11Ct method (23).

RESULTS

Metabolomic Profiling of Cassava
Tuberous Roots With Different Colors
Across the Developmental Stages
In total, 488 metabolic compounds were identified and quantified
in tuberous roots of SC9 and SC205 across seven developmental
stages (S1-S7, Figure 1A). These metabolites were divided into
fifteen categories with the three most abundant were flavones
(108), amino acid derivatives (60), and lipids (56). Principle
component analysis revealed that tuberous root samples of
SC9 and SC205 were separated while different replicates were
closely grouped (Figure 1B), indicating high reliability of our
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FIGURE 1 | Overview of tuberous roots of SC9 and SC205. (A) Phenotypes of SC9 and SC205 tuberous roots collected at seven developmental stages from
100–340 days after planting: S1, 100; S2, 140; S3, 180; S4, 220; S5, 260; S6, 300; and S7, 340. The scale bar equals 2 cm. (B,C) Clustering of tuberous root
samples based on the metabolite levels and gene expression profiles, respectively. The symbols with the same color represent different replicates of a sample.

metabolomic data and a significant impact of metabolites on the
color of tuberous roots.

A total of 335 differentially accumulated metabolites
(DAMs) were identified by metabolomic comparisons between
SC9 and SC205 at seven developmental stages, respectively
(Supplementary Table 2). Most metabolites were higher
accumulated in SC9 compared with SC205 from S1 to S6, while
this trend was reversed at S7 (Figure 2A). On average, the
categories with most DAMs were flavones (22.84%) and lipids
(12.27%), followed by amino acid derivatives (8.69%), organic
acids (8.10%), hydroxycinnamoyl derivatives (7.2%), phenolic
acids (6.32%), nucleotide and its derivatives (5.23%), catechin

derivatives (4.79%), coumarin and its derivatives (3.60%), and
anthocyanins (3.57%). However, their frequencies varied slightly
across different developmental stages (Figure 2B).

The metabolomic changes in each category were also
observed. Notably, anthocyanin-related DAMs were increased in
SC9 than SC205 across all the developmental stages (Figure 2C).
Likely, most DAMs related to catechin derivatives, coumarin and
its derivatives, phenolic acids, and hydroxycinnamoyl derivatives
were higher accumulated in SC9 than SC205 at different stages
(Figures 2D–G). In addition, most flavone-related DAMs were
also increased in SC9 compared with SC205 from stage S1 to
S3; however, this trend was not apparent during the remaining
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FIGURE 2 | Differentially accumulated metabolites between SC9 and SC205 during tuberous root development. (A) Number of all abundance-increased and
abundance-decreased DAMs, which showed higher and lower metabolite levels in SC9 than SC205, respectively. (B) Category frequency of all DAMs. (C–H)
Number of abundance-increased and abundance-decreased DAMs relevant to anthocyanins, catechin derivatives, coumarin derivatives, phenolic acids,
hydroxycinnamoyl derivatives, and flavones, respectively.

developmental stages (Figure 2H). Together, these results
revealed a comprehensive change of metabolites between yellow
and white cassava roots across different developmental stages.

Developmental Effects on Metabolites in
Cassava Tuberous Roots With Different
Colors
A total of five groups (M1-M5) of metabolites were
identified according to their profiles in SC205 and SC9
across seven different development stages (Figure 3A and
Supplementary Table 2).

Metabolites from M1 were gradually accumulated from
S1 to S4 and then declined until S7 in SC205, while
these metabolites displayed a time-shift pattern in SC9 as
they were accumulated from S1 to S6 and decreased at S7
(Figure 3A). These metabolites were significantly enriched in
lipids (Figure 3B). As expected, 68% (21/31) metabolites from
this group belonged to diverse forms of lysophosphatidylcholine
(LPC) and lysophosphatidylethanolamine (LPE).

Metabolites from M2 were highly accumulated at late stages
(S3-S6) than early stages (S1-S2) in both SC205 and SC9,
while there was a sharp decrease at S7 in SC9 (Figure 3A).
These metabolites were significantly enriched in amino acid
derivatives (Figure 3B). A total of ten amino acids, including
phenylalanine, homocysteine, methionine, tyrosine, asparagines,
tryptophan, isoleucine, leucine, citrulline, and arginine, were
included in this group.

Metabolites from M3 and M5 exhibited very similar patterns
between SC205 and SC9 during tuberous root development,
although they were highly accumulated at S4-S7 and S1-S3,
respectively (Figure 3A). The metabolites from M3 were
significantly enriched in anthocyanins, and anthocyanin-related
metabolites such as pelargonin, procyanidin B2, and procyanidin
B3 were found in this group (Figure 3C). The enriched categories
of M5 were lipids and flavones (Figure 3B). A large number
of metabolites relevant to monoacylglycerol (MAG, 18:1, 18:2,
18:3, and 18:4), digalactosylmonoacylglycerol (DGMG, 18:1 and
18:2), and monogalactosylmonoglyceride (MGMG, 18:2) were
included in this group. In addition, flavones such as naringenin,
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FIGURE 3 | Metabolite profiles of cassava tuberous roots with different colors during seven developmental stages. (A) Metabolite profiles of SC205 and SC9 during
tuberous root development. A total of five groups (M1-M5) were determined. (B) Metabolite enrichment analysis of the groups presented in panel (A). (C) Changes of
metabolites relevant to anthocyanins and catechin derivatives during tuberous root development. (D) DAMs identified between five white-rooted and five
yellow-rooted cassava accessions at the developmental stage S7 with at least two biological replicates. The values represent the mean ± SD, and ∗∗ and ∗

represent significant differences at P < 0.01 and P < 0.05, respectively, based on the Student’s t-test.

dihydroquercetin, quercetin 3-O-glucoside, quercetin 3-
O-rutinoside, kaempferol 3-O-galactoside, and kaempferol
3-O-rutinoside were also included (Supplementary Table 2).

Although no obvious trends were observed for the metabolites
from M4, their levels were overall higher in SC9 than SC205. The
metabolites of this group were enriched in anthocyanins, catechin
derivatives, and flavones (Figure 3B). Cyanin, procyanidin A1,
and procyanidin A3 relevant to anthocyanins, and gallocatechin,
epigallocatechin, catechin, and epicatechin related to catechin
derivatives, were found in this group (Figure 3C). Collectively,
these results revealed a dynamic change of metabolites in
yellow and white cassava tuberous roots during different
developmental stages.

We also found that anthocyanin-related metabolites were
significantly higher in SC9 than SC205 (Figure 3C). Moreover,
the higher levels of anthocyanins in yellow-rooted cassava
were further confirmed by metabolic comparisons between

five yellow-rooted and five white-rooted cassava accessions
(Figure 3D). These results suggested a significant role of
anthocyanin-related metabolites in the yellow pigment formation
of cassava tuberous roots.

Transcriptomic Profiling of Cassava
Tuberous Roots With Different Colors
Across the Developmental Stages
The samples used for metabolic assay were subjected to RNA-
seq analysis, to investigate the transcriptomic mechanisms
underlying color formation of cassava tuberous roots. Principle
component analysis showed that transcriptomic samples of SC9
and SC205 tuberous roots were well separated, whereas three
replicates of the same sample were clustered (Figure 1C). In
total, ∼1,086 million clean reads were obtained after removing
the adaptors and low-quality reads, and 78.1% on average
were mapped to the cassava reference genome. Low-expressed
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genes with FPKM < 1 across samples were discarded for
further analysis.

Differentially expressed genes (DEGs) were identified
between SC9 and SC205 at each developmental stage, and
functional category enrichment was subsequently analyzed
for the up-regulated and down-regulated genes, respectively
(Figures 4A,B). A total of 13,537 DEGs were identified
(Supplementary Table 3). Overall, the number of DEGs was
higher at S4-S7 than S1-S3, indicating that more genes were
required to maintain the differentiation of tuberous roots
between SC9 and SC205 at late developmental stages. In
addition, the number of up-regulated DEGs was higher than
those down-regulated at each stage, in accord with the changes
of metabolites (Figures 2A, 4A). Functional enrichment found
that secondary metabolism pathways (including flavonoids,
phenylpropanoids, and simple phenols) were commonly
enriched in the up-regulated DEGs at S1-S2 and S4-S6, which
provided a strong hint to further investigate the expression
of genes involved in phenylpropanoid-flavonoid (anthocyanin
biosynthesis) pathways.

In total, 41 genes from fourteen key enzymes participating
in anthocyanin biosynthesis were found in the cassava genome
(Figure 4C and Supplementary Table 4). Fifteen of them were
excluded from further analysis since they were not or low
expressed during the whole developmental stages. Although
similar expression patterns were observed for most of the
remaining genes between SC9 and SC205, their expression
levels were higher in SC9 than SC205 (especially from S3 to
S6), suggesting the involvement of anthocyanin biosynthesis
pathways in color formation of cassava tuberous roots.

To verify the expression levels of RNA-seq data, eleven genes
involved in anthocyanin biosynthesis were examined by the
qRT-PCR method in SC205. The correlation coefficients ranged
from 0.86 to 0.99 between these two independent methods
(Supplementary Table 1), indicating the high reliability of gene
expression profiles detected by RNA-seq.

Integrative Metabolomic and
Transcriptomic Analysis for Anthocyanin
Biosynthesis Pathways
In total, 16 metabolites involved in anthocyanin biosynthesis
were identified (Figure 5A), including three flavones (naringenin,
dihydroquercetin, and afzelechin), six anthocyanins (cyanin,
pelargonin, procyanidin A1, procyanidin A3, procyanidin B2,
and procyanidin B3), five catechin derivatives (gallocatechin,
epigallocatechin, catechin, epicatechin, and epiafzelechin),
one amino acid (phenylalanine), and one hydroxycinnamoyl
metabolite (4-coumarate). These metabolites accumulated
at higher levels in SC9 than SC205 during tuberous root
development. Correspondingly, eleven co-expressed DEGs
(namely MePAL1, MeC4H1, Me4CL1, MeCHS1, MeCHS2,
MeCHI, MeF3H, MeF3’5’H, MeDFR1, MeANS, and MeANR)
covering the whole anthocyanin biosynthesis pathways were
also identified and showed higher expression levels in SC9 than
SC205 during the developmental stages (Figures 5B,C and
Supplementary Table 5).

In addition, five flavanols (including kaempferol 3-
O-glucoside, kaempferol 3-O-rutinoside, kaempferol
3-O-galactoside, quercetin 3-O-glucoside, and quercetin 3-O-
rutinoside) were identified. However, they accumulated at lower
levels in SC9 than SC205 during tuberous root development.
Flavonol synthase (FLS) is a key enzyme involved in the
conversion of dihydroflavonols (e.g., dihydrokaempferol and
dihydroquercetin) to the corresponding flavonols (kaempferol
and quercetin). Interestingly, in accord with the metabolic
changes of the above five flavanols, we found a flavonol
synthase gene (MeFLS2) exhibiting lower expression levels
in SC9 than SC205 (Supplementary Table 4). These results
suggested that MeFLS2 was a crucial gene controlling the
metabolic flows of dihydroflavonols (such as dihydrokaempferol
and dihydroquercetin) toward anthocyanin biosynthesis in
cassava tuberous roots.

Together, these results revealed a coordinate regulation
of anthocyanin biosynthesis at the metabolomic and
transcriptomic levels.

Identification of Transcriptional Factors
Modulating the Expression of
Anthocyanin Biosynthesis Genes
The expression levels of genes in a co-expression network are
usually regulated by the same transcriptional factors (TFs).
Therefore, the eleven co-expressed anthocyanin biosynthesis
genes were used as queries to perform a co-expression
network analysis, to identify the crucial TFs participating in
anthocyanin biosynthesis.

Two MYB members (MeMYB5 and MeMYB42), whose
homologs (such as VvMYB5 and AtMYB42) were previously
reported to be involved in anthocyanin biosynthesis regulation
(29, 30), were identified to highly co-express with eight and
nine anthocyanin biosynthesis genes, respectively (Figure 5D).
Moreover, MYB cis-element was found in the 2-kb promoter
region of these anthocyanin biosynthesis genes (except MeC4H1,
Supplementary Table 5). MeMYB5 and MeMYB42 were also co-
expressed with 4-coumarate, naringenin, and dihydroquercetin,
located on the anthocyanin biosynthesis pathways (Figure 5D).
These results suggested that MeMYB5 and MeMYB42 were
the key TFs participating in the regulation of anthocyanin
biosynthesis in cassava tuberous roots.

DISCUSSION

Discovery of Candidate Genes and
Pathways for the Coloring of Cassava
Roots
It is well established that the yellow cassava roots have higher
nutritional values and are more popular with consumers than
white cassava roots (5, 7). Thus, the primary goal of our
study is to explore key genes and pathways responsible for the
color formation in yellow cassava roots. This is a crucial and
fundamental step for the molecular breeding of cassava varieties
with improved nutrition.
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FIGURE 4 | Differentially expressed genes between SC9 and SC205 during tuberous root development. (A) Number of up-regulated and down-regulated DEGs,
which showed higher and lower expression levels in SC9 than SC205, respectively. (B) Functional category enrichment of the up-regulated (suffixed with “up”) and
down-regulated (suffixed with “dn”) DEGs presented in panel (A). (C) Expression profiles of anthocyanin biosynthesis genes during tuberous root development.

In the past decades, many progresses have been achieved
concerning the mechanisms of yellow cassava roots. Carotenoid
pathways were found as a major factor for yellow pigmentation,
and several related genes were identified and functionally
characterized (2, 9). However, the carotenoid contents were not
always higher in yellow cassava roots than white cassava roots (5),
indicating that other genes and pathways might be involved in the
yellow pigment formation of cassava roots.

With the availability of cassava genome, the members
derived from a gene family or involved in a biological pathway
are identified (31). However, it is still hard to systematically
determine the key players without an assistance of other omics
approaches (e.g., transcriptome and metabolome), which define
a biosystem at distinct molecular layers (32). Multi-omics studies
have been performed to identify candidate genes and pathways
controlling pigment accumulation in many plants (13, 15, 16).
Similar studies were also performed in cassava in response to
drought, cold, root development, and nutritional properties
(6, 18, 19, 33). In this study, 355 DAMs and 13,537 DEGs
were reported by comparative transcriptomic and metabolomic
analyses during cassava tuberous root development between
SC9 and SC205 (Supplementary Tables 2, 3). Integrated
transcriptome and metabolome analyses helped in the

exploration of anthocyanin metabolic pathways, since many
genes and metabolites referred to the anthocyanin biosynthesis
showed a coordinated change between yellow cassava roots
and white cassava roots (Figure 5A). In addition, MeFLS2 was
determined as a vital gene controlling the metabolic flows of
dihydroflavonols to the direction of anthocyanin biosynthesis
in cassava roots (Figure 5A), in accordance with the roles
of MlFLS in competition between anthocyanin and flavonol
biosynthesis (34). By co-expression network analysis, MeMYB5
and MeMYB42 were identified as the key TFs to transcriptionally
regulate anthocyanin biosynthesis genes in cassava (Figure 5D).
These results expand our knowledge on yellow pigmentation
formation in cassava tuberous roots and also suggest that multi-
omics integrative analysis is a promising tool for discovering
candidate genes and pathways especially with the availability of
genome sequences.

Roles of Carotenoid Synthesis Genes in
the Coloring of Cassava Tuberous Roots
Carotenoid synthesis genes have been demonstrated to involve in
the color formation of cassava roots (2, 5, 8). However, the full
members referred to carotenoid synthesis pathways have not yet
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FIGURE 5 | Abundance changes of metabolites and genes relevant to anthocyanin biosynthesis during tuberous root development. (A) Summary of anthocyanin
biosynthesis pathways. Heatmaps are shown where the metabolite levels changed significantly between SC9 and SC205 during tuberous root development.
Co-expressed anthocyanin biosynthesis genes are indicated in blue. (B) Expression fold-change of co-expressed anthocyanin biosynthesis genes between SC9 and
SC205 during tuberous root development. (C) Expression correlation of anthocyanin biosynthesis genes shown in panel (B). (D) The network of co-expressed genes
and metabolites relevant to anthocyanin biosynthesis. The edges were shown by setting the threshold = 0.65. Node size represents its connectivity to other
genes/metabolites. Metabolites are colored by purple, while anthocyanin biosynthesis genes and transcription factors are colored by red and green, respectively.

been systematically identified and their roles in color formation
remain largely unknown.

In this work, 23 genes were found from eleven gene families
located on the carotenoid synthesis pathways in the cassava
genome (Figure 6A and Supplementary Table 6). Three genes,
including MePSY3, MeZDS2, and MeZEP2, were extremely low
expressed (FPKM < 0.1) during seven stages of tuberous root
development in SC205 and SC9, indicating a minimal role of
these genes in cassava tuberous roots. According to their different
expression patterns, the remaining 20 genes were grouped into
three clusters (C1-C3, Figure 6B). The genes from cluster C1
expressed higher in SC205 than SC9, especially during S4 to S7
stages. It seems that the genes in this cluster were not relevant
to the yellow formation of cassava tuberous roots; however, a
previously suggested candidate gene MeLCYE was included in
this group (8). The genes from cluster C2 exhibited similar
expression patterns between SC205 and SC9, i.e., the expression
levels were higher at stages S1 and S2 but lower at S3 to S7.
Notably, MeLCYB1 from this group expressed lower in SC205
than SC9 in most of the developmental stages, supporting a

possible role of this gene in the color formation of cassava
roots (5).

A total of six genes, including MePSY2, MeCRTISO2,
MeLCYB2, MeCHYB3, MeZEP1, and MeNXS, were included in
cluster C3. These genes covered most enzymes responsible for the
carotenoid biosynthesis and expressed lower in SC205 than SC9
during cassava tuberous root development, with MeLCYB2 and
MeNXS being the most significantly changed genes (Figure 6C).
These two genes exhibited significantly higher expression levels
in yellow cassava roots than white cassava roots (5). In addition,
their homologs have also been characterized in color formation in
watermelon and Chinese kale (35, 36), indicating a similar role of
these two genes in cassava roots. A key gene MePSY2, which was
responsible for cassava roots with yellow color by provitamin A
accumulation (2), was included in this group. Another carotenoid
synthesis gene MeCRTISO2, which expressed higher in yellow
cassava roots than white cassava roots (5), was also included.
Moreover, positive correlations were observed between the total
carotenoid content and the expression of MeLCYB2 and MePSY2,
respectively (5, 8). Together, these results strongly suggested that
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FIGURE 6 | Expression changes of carotenoid biosynthesis genes during tuberous root development. (A) Summary of carotenoid biosynthesis pathways, in which
the genes are highlighted in blue. (B) Expression profiles of carotenoid biosynthesis genes between SC9 and SC205 during tuberous root development.
(C) Expression fold-change of carotenoid biosynthesis genes between SC9 and SC205 during tuberous root development. The genes suffixed with a star (∗) are
up-regulated in SC9 than SC205 during most developmental stages and may participate in the yellow formation of cassava tuberous roots.

the six genes in cluster C3 might participate in the yellow pigment
formation of cassava tuberous roots via carotenoid synthesis.

Roles of Anthocyanin Biosynthesis
Genes in Color Formation of Cassava
Tuberous Roots
Anthocyanins are water-soluble pigments responsible for
coloring plant flowers and fruits (10, 11). To date, anthocyanin
biosynthesis genes and pathways have been demonstrated to play
an important role in color formation in pepper (16), cucumber
(14), asparaguses (15), jujube fruit (37, 38), cowpea (39), potato
(40, 41), tea (42), longan (43), and pitaya (13). In cassava,
Xiao et al. (6) found that anthocyanins and proanthocyanidins
were significantly lower in white cassava roots than yellow
cassava roots. Although several anthocyanin biosynthesis genes
were uncovered in response to stresses and leaf and root
development in cassava (18, 19, 22), the changes of anthocyanins
and proanthocyanidins during cassava root development as
well as the related key genes and regulatory networks remain
largely unknown.

In this work, six metabolites referred to anthocyanins and
proanthocyanidins were higher accumulated in yellow cassava
roots than white cassava roots (Figures 3C,D). Furthermore,
these metabolites exhibited distinct accumulation patterns in
white and yellow cassava roots during tuberous root development
(Figure 3C). To demonstrate their possible roles in color
formation of cassava roots, a total of 41 anthocyanin biosynthesis
genes derived from fourteen enzyme families were systematically
identified throughout the cassava genome (Supplementary
Table 4). Excluding fifteen low- or non-expressed genes, the
majority of the remaining genes were expressed higher in
SC9 than SC205. Notably, eleven DEGs covering the whole

anthocyanin biosynthesis pathways were co-expressed during
cassava root development (Figure 5D). MePAL1 and MeANS
catalyzed the first and the last steps of anthocyanin biosynthesis,
respectively (44). Together with MeF3H, MeCHS1, and MeCHS2,
these two genes ranked as the top hub genes in the co-expression
network (Figure 5D), supporting that they were vital members
in anthocyanin biosynthesis in cassava (45). These results also
suggested that anthocyanin biosynthesis genes play a crucial
role in the color formation of cassava roots via a coordinated
expression regulation.

Anthocyanin biosynthesis genes are transcriptionally
coordinated by the “MYB-bHLH-WDR (MBW)” complex that
regulates their expression levels through specific cis-element
binding in the promoter regions (46). Our co-expression
network analysis revealed that MeMYB5 and MeMYB42
were closely related to many anthocyanin biosynthesis genes
(including MePAL1, MeANS, and MeF3H). Moreover, MYB cis-
element was present in the promoter region of these genes. These
results suggested that MeMYB5 and MeMYB42 might regulate
the expression of anthocyanin biosynthesis genes via binding
to the MYB cis-element in cassava, in accordance with previous
reporters in other species (29, 30). However, this conclusion has
not been verified and deserves further investigations.

The ratio of anthocyanins and carotenoids was a major
factor determining the fruit color (47). Although several crucial
anthocyanin biosynthesis genes were identified to participate
in color formation of cassava tuberous roots in this work, the
relationships between anthocyanin and carotenoid biosynthesis
genes were still not explored. Therefore, one feasible strategy
for yellow-rooted cassava breeding is to examine the effect of
candidate genes (especially for the TFs) individually by transgenic
methods, and then to introduce multiple anthocyanin and
carotenoid biosynthesis genes into a commercial cassava cultivar.
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CONCLUSION

In summary, the mechanisms of color formation in cassava
tuberous roots were investigated by metabolomic and
transcriptomic approaches during seven developmental stages.
Compared with white-rooted cassava (SC205), anthocyanins,
catechin derivatives, coumarin derivatives, and phenolic acids
were higher accumulated in yellow-rooted cassava (SC9).
Anthocyanins were particularly enriched and displayed different
accumulation patterns during tuberous root development.
Further analysis found that 16 metabolites participating in
anthocyanin biosynthesis, as well as 11 co-expression genes
covering the whole anthocyanin biosynthesis pathways, showed
higher accumulation levels in SC9 than SC205 at most
developmental stages, suggesting a major role of anthocyanin
biosynthesis in yellow pigmentation formation of cassava
tuberous roots via coordinate regulation. These findings expand
our knowledge of anthocyanin biosynthesis on color formation
in cassava tuberous roots and offer useful candidate genes for
genetic breeding of yellow-rooted cassava in the future.
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