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ABSTRACT

Background: At the therapeutic doses, diclofenac sodium (DFS) has few toxic side effects on 
mammals. On the other hand, DFS exhibits potent toxicity against birds and the mechanisms 
remain ambiguous.
Objectives: This paper was designed to probe the toxicity of DFS exposure on the hepatic 
proteome of broiler chickens.
Methods: Twenty 30-day-old broiler chickens were randomized evenly into two groups (n = 10). 
DFS was administered orally at 10 mg/kg body weight in group A, while the chickens in group 
B were perfused with saline as a control. Histopathological observations, serum biochemical 
examinations, and quantitative real-time polymerase chain reaction were performed to assess 
the liver injury induced by DFS. Proteomics analysis of the liver samples was conducted using 
isobaric tags for relative and absolute quantification (iTRAQ) technology.
Results: Ultimately, 201 differentially expressed proteins (DEPs) were obtained, of which 47 
were up regulated, and 154 were down regulated. The Gene Ontology classification and Kyoto 
Encyclopedia of Genes and Genomes pathway analysis were conducted to screen target DEPs 
associated with DFS hepatotoxicity. The regulatory relationships between DEPs and signaling 
pathways were embodied via a protein-protein interaction network. The results showed that 
the DEPs enriched in multiple pathways, which might be related to the hepatotoxicity of DFS, 
were “protein processing in endoplasmic reticulum,” “retinol metabolism,” and “glycine, 
serine, and threonine metabolism.”
Conclusions: The hepatotoxicity of DFS on broiler chickens might be achieved by inducing 
the apoptosis of hepatocytes and affecting the metabolism of retinol and purine. The present 
study could provide molecular insights into the hepatotoxicity of DFS on broiler chickens.
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INTRODUCTION

Diclofenac sodium (DFS) is considered one of the most widely used non-steroidal anti-
inflammatory drugs (NSAIDs) owing to its preeminent analgesic, anti-inflammatory, and 
antipyretic activities [1]. Clinically, DFS is used extensively for rheumatoid arthritis (RA), 
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ankylosing spondylitis (AS), osteoarthritis (OA), postoperative pain, and fever of various 
origins [2]. DFS is a non-selective inhibitor of the cyclooxygenase (COX, type 1 and 2), 
which can prevent the conversion of arachidonic acid to prostaglandins (PGs) by inhibiting 
the activity of cyclooxygenase [3]. In contrast to conventional NSAIDs, DFS has the 
characteristics of rapid onset, strong efficacy, and low side effects rate [4].

DFS has few severe toxic side effects on mammals at therapeutic doses, but DFS is lethal 
to birds. The oral median lethal dose (LD50) of DFS was higher than 200 mg/kg in rats but 
only 0.1–0.2 mg/kg in vultures [5,6]. Reports on the drastic reduction of vulture populations 
caused by DFS residues in the Indian subcontinent have attracted attention [7,8]. Hence, 
to preserve the vultures, DFS has been banned in veterinary medicine within this region 
and replaced with other alternative NSAIDs, such as meloxicam [9,10]. Subsequent studies 
have reported that DFS could cause significant toxicity in various birds with primary 
manifestations of severe liver and kidney injury and widespread deposition of urate crystals 
[11]. Currently, most studies on the toxic mechanism of DFS on bird species were in terms of 
its nephrotoxicity. Some studies suggested that the primary cause of the toxic effects of DFS 
in birds is kidney damage, which in turn blocks the excretion of uric acid [12,13]. A previous 
study on the nephrotoxicity of DFS on broiler chickens used isobaric tags for relative and 
absolute quantification (iTRAQ)-based proteomics [14]. The present study examined the 
hepatotoxic mechanism.

Proteomics could explore the mechanism of different drugs and the pathogenesis of diseases 
from the protein perspective [15]. iTRAQ is a multiplex labeling technology for quantifying 
proteins based on tandem mass spectrometry [16]. iTRAQ technology is an effective tool 
to compare the proteome alterations between the different biological samples by labeling 
proteins with isobaric tags. All the proteins in the samples could be analyzed qualitatively and 
quantitatively, and the differentially expressed proteins (DEPs) were identified.

This study examined the toxicity of DFS exposure on the hepatic proteome of broiler chicken. 
The proteins in the liver samples were characterized and quantified via iTRAQ technology 
after the oral administration of DFS (10 mg/kg body weight). Gene Ontology (GO) function 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of the identified 
DEPs were performed. The biological networks that may be affected by these DEPs were then 
exhibited through a protein-protein interaction (PPI) network. This study has set the stage for 
further research to explain the hepatotoxic mechanism of DFS on broiler chickens.

MATERIALS AND METHODS

Animal grouping and dosing regimen
Twenty broiler chickens (30 days old) were purchased from a commercial hatchery (China). 
The chickens were reared in the isolator with access to food and water ad libitum. After 
acclimatization for two weeks, the chickens were randomized into two groups (n = 10) and 
fasted for one night before the experiment with free access to water. DFS was administered 
at 10 mg/kg body weight through a gavage in group A [11,17,18], while the chickens in group 
B were perfused with saline as a control. The chickens were observed after administration, 
and they were euthanized after 48 h except for the toxic deaths. All animal procedures were 
approved by the Institutional Animal Care and Use Committee of the Shandong Academy of 
Agricultural Sciences (SAAS-2019-032).
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Serum biochemical examination
Blood was obtained from the wing vein before and at four and 10 h after DFS administration, 
and the serum was isolated. The alanine aminotransferase (ALT) and aspartate 
aminotransferase (AST) activities were included as the biochemical indicators of hepatic 
damage, and the uric acid content in serum was also measured simultaneously. All the 
detection kits were supplied by Jiancheng Bioengineering Institute (Nanjing, China).

Histopathology
The liver samples were collected separately and immersed immediately in a fixative (4% 
paraformaldehyde). After fixation, the tissues were then embedded in paraffin and sliced. 
Afterward, sections were stained with hematoxylin-eosin (H&E) for the histopathological 
examinations.

Expression of apoptosis-related genes
The expression of three apoptosis-related genes (Bax, Bcl-2, and caspase 3) was evaluated 
using a quantitative real-time polymerase chain reaction (qRT-PCR) to reveal the liver injury. 
Liver tissue homogenates were prepared under cryogenic conditions, and the total RNA was 
isolated via RNAios Plus (TaKaRa, Japan). The purity and quantity of RNA were calculated 
with a NanoDrop 2000 spectrophotometer (Thermo Fisher Scientific, USA). Evo M-MLV 
RT Kit (Accurate Biotechnology, China) was utilized to generate cDNA. After the reverse 
transcription, qRT-PCR was performed with PerfectStartTM Green qPCR SuperMix (TransGen 
Biotech, China). Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was defined as the 
housekeeping gene, and the comparative Ct (2-ΔΔCt) method was used to calculate the relative 
transcript level of target genes. Table 1 lists the primer sequences.
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Table 1. qRT-PCR primer sequences
Gene name Primer sequence Product length (bp)
GAPDH Forward 5′-TGAAAGTCGGAGTCAACGGAT-3′ 191

Reverse 5′-ACGCTCCTGGAAGATAGTGAT-3′
Bcl-2 Forward 5′-CTCTTCCGTGATGGGGTCAA-3′ 188

Reverse 5′-ACAAAGGCATCCCATCCTCC-3′
Bax Forward 5′-AACCCCAGCATTATCCCCAC-3′ 200

Reverse 5′-ACGTACAGATTGGCCGTGAA-3′
Caspase 3 Forward 5′-TGCTCCAGGCTACTACTCCT-3′ 90

Reverse 5′-TTCCTGGCGTGTTCCTTCAG-3′
CYP3A5 Forward 5′-GGAATACCTCGACATGGCCG-3′ 70

Reverse 5′-GGTTCTCTCAAGCCGTCCTC-3′
HSPA5 Forward 5′-GGTGTTGCTTGATGTGTGTCC-3′ 190

Reverse 5′-ATGATTGTCCTTGGTGAGGGG-3′
CALR Forward 5′-TCCGCTGCAAGGATGATGAG-3′ 103

Reverse 5′-CTCCCCGATTCCACTTTGCT-3′
STUB1 Forward 5′-GCGGATCAACCAAGAGAACG-3′ 189

Reverse 5′-AAGAGTTCATCCATGTCTGCCA-3′
CYP3A4 Forward 5′-CCCCGTCCTCATCAAAACCA-3′ 79

Reverse 5′-CCCACTCAGACCAAAGACCC-3′
TDH Forward 5′-CGGACACACGCCTTCCTATG-3′ 124

Reverse 5′-GGAGTGAAGCTCATGGCACT-3′
LOC101747660 Forward 5′-GAGGACCCCACGGTCAATG-3′ 80

Reverse 5′-GCTGTGGGTACAAAAAGGGC-3′
GATM Forward 5′-CCTGACTACCGAGTGCATGT-3′ 127

Reverse 5′-CCCACTCAGACCAAAGACCC-3′
CYP2C45 Forward 5′-TTTGTGTTGCTTGCCTGCTC-3′ 181

Reverse 5′-AGTTGCACTGAGAAGACGGG-3′
qRT-PCR, quantitative real-time polymerase chain reaction; GAPDH, glyceraldehyde-3-phosphate dehydrogenase.
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Proteomics studies
Preparation of protein samples
The livers used for proteomic analysis were harvested after sampling and transferred 
immediately in liquid nitrogen until extraction. The proteins were extracted with a lysis buffer 
consisting of 1 × Protease Inhibitor Cocktail (Roche Ltd., Switzerland), 1% sodium dodecyl 
sulfate, and 8 M urea. The lysates were vibrated and ground three times for 400 sec each. 
After completing the lysis for 30 min on ice, the supernatants were split off via centrifugation 
at 15,000 rpm at 4°C for 30 min and then harvested.

Digestion of the proteins and iTRAQ labeling
After the measurements using the BCA assay kit, 100 μg protein in the supernatant of the 
individual sample was aspirated into a new EP tube, and the volume was brought to 100 μL 
by urea (8 M). Subsequently, 2 μL TCEP (0.5 M) was added to each tube, and the proteins 
were incubated at 37°C. After 1 h, the sample was treated with 4 μL iodoacetamide (1 M), 
followed by an additional reaction for 40 min at room temperature (protected from light). 
The samples were precipitated with five volumes of pre-chilled acetone overnight at −20°C. 
The mixture was centrifuged at 12,000 g at 4°C for 20 min, and the precipitate was ultimately 
retained. Subsequently, the precipitate was cleaned twice with 90% pre-chilled acetone and 
dissolved in 100 μL of TEAB (100 mM) after the complete evaporation of acetone. Trypsin 
(Promega, Madison, WI) was added to the redissolved sample for overnight digestion at 37°C 
based on the 1:50 mass ratio (trypsin: protein). Before lyophilization, the digested peptides 
were desalted with a ZipTip C18 column and quantified using a peptide quantification kit 
(Pierce 23275). Labeling of the peptides was performed using an iTRAQ-8plex Isobaric Mass 
Tag Labeling Kit (Thermo Fisher Scientific). Finally, the labeled peptides were mixed and 
lyophilized again.

High pH reverse phase separation
The lyophilized iTRAQ-labeled peptides were dissolved in buffer A (20 mM aqueous solution 
of ammonium formate, adjusted to pH 10 with ammonia). The high pH fractionation 
was performed using an Ultimate 3000 system (Thermo Fisher Scientific) equipped with 
an XBridge C18 reverse-phase column (250 mm × 4.6 mm, 5 μm particle size; Waters 
Corporation, USA). A linear gradient from 5% to 45% buffer B (20 mM ammonium 
formate in 80% ACN, adjusted with ammonia to pH 10) over 40 min was used. The column 
temperature was 30°C while the flow rate of the mobile phase was maintained at 1.0 mL/min. 
The reverse-phase column was equilibrated for 15 min under initial conditions. Eventually, 10 
fractions were obtained and dried using a vacuum concentrator.

Nano-HPLC-MS/MS analysis
After redissolved respectively in 30 μL solvent A (0.1% aqueous solutions of formic acid), 
LC-MS/MS analysis of the salt-free lyophilized peptides was conducted using an Orbitrap 
Fusion Mass Spectrometer connected in series to an EASY-nLC 1200 system (Thermo Fisher 
Scientific). These peptides were loaded onto an Acclaim PepMap C18 analytical column (15 
cm × 75 μm). The separation was achieved by a linear gradient from 6% to 45% solvent B 
(0.1% formic acid in ACN) over 60 min. The mobile phase was set with a 0.3 mL/min flow 
rate while the column temperature was 40°C. The sample injection volume was 3 μL, and the 
electrospray voltage was 2.0 kV.

The parameters for Orbitrap Fusion mass spectrometer were as follows: (1) MS: scan range 
(m/z) = 375–1,800; resolution = 60,000; AGC target = 5e5; maximum injection time = 50 ms; 
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include charge states = 2–6; dynamic exclusion = 30 sec; (2) HCD-MS/MS: resolution = 15,000; 
AGC target = 5e4; isolation window = 2; maximum injection time = 50 ms; collision energy = 38.

Data and bioinformatics analysis
PEAKS studio X+ (Bioinformatics Solutions Inc., Canada) was used to assess the mass spectra data, 
and PEAKS DB was used to search the “Gallus_gallus_201907.fasta” protein database. “Trypsin” 
was defined as the proteolytic enzyme with up to two missed cleavages allowed. The mass error 
tolerances were set to 7 ppm for parent ions and 0.02 Da fragment ions, respectively. Itraq 8plex 
(K, N-term) 304.20 and carbamidomethylation (C) 57.02 were specified as the fixed modifications, 
while acetylation (Protein N-term) 42.01, oxidation (M) 15.99 and deamidation (NQ) 0.98 were 
variable modifications. A 1% false discovery rate (FDR) and one unique peptide were applied to 
filter the peptides. The DEPs were defined using the following criteria: over 1.2-fold change, p < 
0.05, and at least one unique peptide (according to the analysis of variance [ANOVA] algorithm).

The distribution of up- and down-regulated DEPs were visualized using a volcano plot 
depicted using the ggplot2 package (http://ggplot2.org). Functional enrichment and 
annotation analyses of DEPs were carried out by GOATOOLS and Blast2GO version 5, 
respectively. A webserver KOBAS (http://kobas.cbi.pku.edu.cn/) was used to implement 
KEGG analysis. The interactions among the DEPs were displayed using a PPI network, which 
was generated via STRING v11.5 (www.string-db.org).

Verification of the proteomic results
The expression of genes corresponding to screened DEPs was evaluated by qRT-PCR. The 
specific operation steps were carried out in reference to “Expression of apoptosis-related 
genes”. Table 1 also lists the primer sequences.

Statistical analysis
All parametric data were subjected to one-way ANOVA followed by a least significance 
difference (LSD) test for multiple comparisons. The p values < 0.05, < 0.01, and < 0.001 were 
considered statistically significant.

RESULTS

Serum biochemical examination
Fig. 1 shows the assay results of serum biochemical indicators. The AST activity in the serum 
of broiler chickens increased significantly after DFS administration compared to the control 
group (Fig. 1B). Although no significant difference in the ALT activity was detected, the 
bar plot still showed an increasing trend (Fig. 1A). The uric acid content was also elevated 
significantly in the DFS-administered group within a short period (Fig. 1C).

Histopathology
Chickens in the DFS-administered group began to die with the apparent symptoms of 
poisoning after oral gavage administration for a period. The necropsy of the dead chickens 
showed that the liver was enlarged with the deposition of white urate on the surface. In 
contrast, there was no manifestation of poisoning in the control group, and no abnormality 
was detected at necropsy. Compared to the control group, the histopathological changes 
in the liver sections consisted of dilatation of the hepatic sinusoids and focal necrosis with 
inflammatory cell infiltration. Fig. 2 shows the aforementioned changes.

https://doi.org/10.4142/jvs.22018
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Expression of apoptosis-related genes
Fig. 3 shows the mRNA transcript levels of apoptosis-related genes in the liver. After the oral 
administration of DFS (10 mg/kg), mRNA transcript levels of Bax (p < 0.01) and caspase 3 (p < 
0.01) were up regulated significantly, while Bcl-2 (p < 0.01) was down-regulated significantly. 
Bcl-2 could inhibit apoptosis, while Bax could antagonize the inhibition of Bcl-2 and induce 
apoptosis. Caspase activation is considered the hallmark of apoptosis, and caspase 3 is the 
most important member in the apoptotic endpoint [19,20]. This study hypothesized that DFS 
induces liver cell apoptosis by enhancing the mRNA transcript levels of pro-apoptotic genes 
and simultaneously suppressing the transcript levels of the anti-apoptotic genes.

Protein identification
In the present study, the information obtained by iTRAQ technology was aligned and 
compared with the database, and 4,221 proteins were identified. The peptides were 
predominantly between nine and 19 amino acids in length (Fig. 4A). The reasonable peptide 
length distribution indicated the relatively high quality of data. Seven hundred and ninety-
four proteins had more than 10 peptides, while others contained 1–10 peptides (Fig. 4B). The 
proportion of the relative molecular weight of proteins greater than 100 kDa was 15.80%, and 
the rest of the proteins ranged from zero to 100 kDa (Fig. 4C). The protein sequence coverage 
of 0–10%, 10–20%, 20–30%, 30–40%, and 40–100% accounted for 41.07%, 20.30%, 14.45%, 
9.55%, and 13.93%, respectively (Fig. 4D).
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Identification of DEPs
As shown in Fig. 5, a volcano plot was used to demonstrate the distribution of DEPs. The 
screening criteria for DEPs were as follows: fold change ≥ 1.2 or ≤ −1.2; at least 1 unique 
peptide; p < 0.05 by ANOVA. Two hundred and one DEPs were obtained. Among those, 154 
were down regulated, and 47 were up-regulated. The top 10 down-regulated and 10 most 
up-regulated DEPs were identified based on the fold change (Table 2). ACTBL2 was the most 
down-regulated DEPs in the liver with a 2.84-fold change, and S100A9 was the most up-
regulated DEPs with a 2.36-fold change.

GO enrichment for DEPs
DEPs in the enrichment results under three classifications (biological process, cellular 
component, and molecular function) were sorted according to the p value. The number of DEPs 
with the smallest p values in the top 20 GO terms (level 2) were counted. As shown in Fig. 6, 
three pie charts were plotted to show the proportion of the number of DEPs in each term.

Within the biological process category, “organic substance metabolic process,” “nitrogen 
compound metabolic process,” “primary metabolic process,” “cellular metabolic process,” 
“response to stress,” and “catabolic process” were mainly enriched, accounting for 17.53%, 
16.16%, 15.62%, 15.07%, 6.58%, and 5.21%, respectively. Under the cellular component 
category, DEPs are enriched considerably in the “membrane-bounded organelle,” 
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“extracellular organelle,” “extracellular space,” and “extracellular matrix,” accounting for 
37.67%, 20.55%, 13.70%, and 6.85%, respectively. For the molecular function category, the 
predominantly enriched terms are “ion binding,” “hydrolase activity,” “enzyme regulator 
activity,” and “cofactor binding,” accounting for 44.30%, 22.15%, 7.38%, and 6.71%, 
respectively. The DEPs in these GO terms might be closely associated with the hepatotoxicity 
of DFS towards broiler chicken.

KEGG analysis for DEPs and selection of the target DEPs
Pathways with corrected p values (Benjamini and Hochberg algorithm) less than 0.05 were 
considered significant, and the results were visualized from a bar plot in Fig. 7. Ordered by 
the proportion of DEPs, the most significant enrichment pathway is “metabolic pathways.” 
Other pathways included “protein processing in endoplasmic reticulum,” “retinol 
metabolism,” “steroid hormone biosynthesis,” “ECM-receptor interaction,” “linoleic 
acid metabolism,” “drug metabolism-cytochrome P450,” “metabolism of xenobiotics by 
cytochrome P450,” “glycine, serine, and threonine metabolism,” “RNA degradation,” 
“protein export,” “drug metabolism-other enzymes,” and “starch and sucrose metabolism.” 
These pathways mentioned above were the focus of the following studies to explore the 
mechanism of DFS hepatotoxicity towards broiler chickens.

The liver is a crucial metabolic organ, and the expression of DEPs was predominantly found 
in several metabolism-related pathways based on GO and KEGG analysis. Table 2 lists some 
screened DEPs that might be associated with the hepatotoxicity of DFS towards broiler 
chickens. As indicated in Fig. 8, the STRING database (v11.5) was utilized to establish the PPI 
network of the DEPs from several significantly enriched signaling pathways. The interaction 
network suggests that a specific protein may be present in various pathways, while a 
particular signaling pathway could be modulated by numerous proteins. This PPI network 
indicates a complicated regulatory relationship between DFS, DEPs, and signaling pathways.

https://doi.org/10.4142/jvs.22018
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Table 2. Top 10 up-regulated and down-regulated DEPs
Accession Description Gene name Fold change p value
P28318 Protein MRP-126 S100A9 +2.36 0.015452544
P80389 Antimicrobial peptide CHP1 AvBD1 +2.32 0.009840111
F1NT18 Cytochrome P450 3A5 CYP3A5 +2.23 0.001035142
P02001 Hemoglobin subunit alpha-D HBAD +2.18 0.020137242
Q6QLQ9 Gallinacin-10 GAL10 +2.16 0.003828247
P02112 Hemoglobin subunit beta HBB +2.12 0.020606299
P01994 Hemoglobin subunit alpha-A HBAA; +2.07 0.031988951
F1NK40 Uncharacterized protein A2ML4 +1.97 0.00055847
Q6QLR3 Gallinacin-6 GAL6 +1.88 0.039627803
A0A1D5PHX5 ER lumen protein-retaining receptor KDELR3 +1.82 0.041783037
E1BZY3 Gamma-glutamylaminecyclotransferase GGACT −1.58 0.035318317
E1BS56 SERPIN domain-containing protein SERPINA4 −1.60 0.007379042
A0A1D5P0Y1 O-GlcNAc transferase subunit p110 OGT −1.62 0.00519996
A0A1D5PJV0 Host cell factor 2 HCFC2 −1.62 0.049773708
P07322 Beta-enolase ENO3 −1.65 0.020183664
E1BZE1 Alpha-2-HS-glycoprotein AHSG −1.68 0.013273945
A0A1D5PY49 Histone H2B LOC426037 −1.88 0.039174188
P81476 Ribonuclease CL2 CL2 −2.44 0.003828247
A0A1D5PKQ8 Cytochrome P450 2C45 CYP2C45 −2.76 0.001990673
A0A1D5NV17 Beta-actin-like protein 2 ACTBL2 −2.84 0.035809644
Plus and minus values of fold change represent the up- and down-regulated alteration trend of DEPs, respectively.
DEP, differentially expressed protein.
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Fig. 6. GO classification results. These pie charts demonstrate the proportion of the number of DEPs in each term under their category. 
GO, Gene Ontology; DEP, differentially expressed protein.
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Verification of the proteomic results
Nine DEPs were selected from Table 3 for qRT-PCR validation, as presented in Fig. 9. 
Compared to the control group, the mRNA transcript levels of CYP3A5 (p < 0.01), HSPA5 (p 
< 0.01) and CALR (p < 0.05) were up-regulated significantly, while STUB1 (p < 0.01), CYP3A4 
(p < 0.05), TDH (p < 0.01), LOC101747660 (p < 0.01), glycine amidinotransferase (GATM; p < 
0.01), and CYP2C45 (p < 0.01) was down-regulated significantly. Thus, the results of qRT-
PCR validation are consistent with proteomics data.

DISCUSSION

The toxicity symptoms of different avian species resulting from DFS poisoning are similar, 
while the disparity is only the severity [21,22]. Previous research suggested that the liver is 
one of the major damaged organs [11,18,23], which has been further confirmed by the serum 
biochemical results, histopathological analysis, and the expression of apoptosis-related 
genes in this study. Thus, the liver was chosen as one of the target organs for examining the 
toxic mechanism of DFS in broiler chickens. Compared to other proteomics techniques, 
iTRAQ technology has been applied widely in the occurrence and progression mechanism or 
the search for biomarkers of various diseases with high sensitivity, wide detection range, and 
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Fig. 7. KEGG pathway enrichment results. The horizontal coordinate indicates different pathways, and the vertical coordinate denotes the number of DEPs in 
each pathway as a percentage of total DEPs. Deeper color means smaller corrected p value. 
KEGG, Kyoto Encyclopedia of Genes and Genomes; DEP, differentially expressed protein; LT, livers from treated group; LC, livers from control group; ECM, 
extracellular matrix. 
*p < 0.05, **p < 0.01.
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good repeatability [15,16]. To select the target DEPs associated with the hepatotoxic effects 
of DFS, GO and KEGG enrichment analysis was performed, and a PPI network was then 
established using the STRING database. According to the proteomic results and relevant 
literature, some pathways were selected as the focal points of the analysis.

Programmed cell death (apoptosis) is a universal form of death regulated by genes, which 
is crucial for normal organismal development and homeostasis [19]. The intrinsic and 
extrinsic pathways are the two primary signaling pathways inducing apoptosis. In the 
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Fig. 8. PPI network of the DEPs. These signaling pathways are distinguished by their distinct colors, and the 
various nodes indicate the individual DEPs. 
PPI, protein-protein interaction; DEP, differentially expressed protein; ECM, extracellular matrix.

Table 3. List of the screened DEPs after DFS administration
Accession Protein name Gene name Fold change p value
F1NT18 Cytochrome P450 3A5 CYP3A5 +2.23 0.001035142
Q90593 Endoplasmic reticulum chaperone BiP HSPA5 +1.21 0.003515604
A0A1D5P0U5 Calreticulin CALR +1.20 0.018197009
P00789 Calpain-1 catalytic subunit CAPN11 −1.20 0.027542287
F1P1M1 UDP-glucuronosyltransferase UGT1A1 −1.21 0.011117317
Q9I993 Beta beta-carotene 15,15'-dioxygenase BCO1 −1.22 0.00311889
Q5ZHY5 STIP1 homology and U box-containing protein 1 STUB1 −1.24 0.047424199
Q98UC3 Ubiquitin fusion-degradation 1-like protein Ufd1l −1.24 0.001896706
A0A1D5PCR2 Protein transport protein Sec24B SEC24B −1.26 0.042854852
E1BVB6 Cytochrome P450 3A4 CYP3A4 −1.30 0.030269134
F1NFM2 Epimerase domain-containing protein TDH −1.33 0.02618183
R4GII9 Beta_elim_lyase domain-containing protein LOC101747660 −1.33 0.049773708
F1NXN3 Glycine amidinotransferase GATM −1.44 0.035237087
A0A1D5PKQ8 Cytochrome P450 2C45 CYP2C45 −2.76 0.001990673
DEP, differentially expressed protein; DFS, diclofenac sodium.
Plus and minus values of fold change represent the up- and down-regulated alteration trend of DEPs, 
respectively.
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intrinsic pathway, activation of the caspase cascade in the cytosol was accomplished through 
various pro-apoptotic proteins released from different organelles or induced expression of 
those genes encoding pro-apoptotic proteins. The external pathway was mediated by the 
interaction between the pro-apoptotic molecules and cell surface receptors to activate the 
caspase cascade in the cytosol. Hence, it is also referred to as the “death receptor pathway” 
[20]. Previous studies have shown that DFS can induce apoptosis through multiple routes. 
In human hepatocytes, diclofenac induces apoptosis by inhibiting mitochondrial respiration 
[24]. A previous study suggested that diclofenac could also induce human intestinal Caco-2 
cell death via endoplasmic reticulum stress and mitochondrial dysfunction [25]. Diclofenac 
led to a significant increase in death ligand-mediated apoptosis in squamous cell carcinoma 
cells [26]. In the present study, some DEPs were enriched in the “protein processing in 
endoplasmic reticulum” signaling pathway, suggesting that the hepatotoxicity of DFS may 
be achieved by inducing hepatocyte apoptosis through the endoplasmic reticulum pathway. 
On the other hand, Yamazaki et al. [27] stated that diclofenac can suppress the apoptosis of 
human neuroblastoma SHSY5Y cells induced by the endoplasmic reticulum, indicating that 
an intensive investigation is needed to explain the hepatotoxicity mechanism of DFS in terms 
of inducing apoptosis.
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Retinol (vitamin A), a fat-soluble vitamin, is converted to retinaldehyde and retinoic acid in 
the liver to maintain the normal physiological functions, such as growth, vision, immunity, 
and antioxidation [28-30]. Retinol and its derivatives can improve the capabilities of 
antioxidation and scavenging free radicals to reduce the risk of inflammation and oxidative 
stress [31]. For bovine mammary epithelial cells, a retinol pretreatment attenuated the 
oxidative injury induced by NO, while the pretreatment with retinoic acid reduced oxidative 
stress induced by H2O2 [32, 33]. Jiang et al. [34] reported that all-trans-retinoic acid 
could increase the superoxide dismutase activity and glutathione level while reducing the 
malondialdehyde content in common bile duct ligation rat liver by restoring retinol and 
retinoic acid contents, and ultimately relieve liver injury. Certainly, retinol is not always 
favorable for enhancing antioxidant capacity. Dal-Pizzol et al. [35] reported that high-dose 
retinol could induce oxidative stress in rat Sertoli cells. In the present work, some DEPs were 
enriched in the “retinol metabolism” pathway, suggesting that DFS might affect the hepatic 
antioxidant capacity and hepatotoxicity.

Unlike mammals, nitrogen is eventually excreted in the form of uric acid within avian species 
because of the absence of the ornithine cycle and the lack of uricase [36,37]. Uric acid is the 
major ultimate product of the purine metabolism. The primary sites for the endogenous 
production of uric acid are the liver, kidney, intestine, and muscle [38]. De novo synthesis 
and salvage synthesis are two pathways to produce purine nucleotides. The precursors of the 
purine ring were determined using an isotope tracer technique: aspartic acid, glutamine, 
glycine, CO2, and one-carbon unit [39,40]. The “Glycine, serine, and threonine metabolism” 
pathway was one of the most significantly enriched pathways in the present study, which was 
also enriched in a previous study on the nephrotoxicity of DFS on broiler chickens [14]. In 
the above two studies, GATM was selected as the target DEP and showed a down-regulation 
trend, highlighting its special status. The liver and kidney are the sites for uric acid synthesis, 
and glycine is involved in uric acid production. Hence, this pathway can be considered a focus 
of further research.

Through an analysis of the proteomic results, signaling pathways enriched by DEPs and the 
complex network connections among them were revealed, all of which may be related to the 
hepatotoxicity of DFS to broilers. More in-depth studies will be needed on these DEPs and 
pathways in subsequent work.

In conclusion, DFS administration caused noticeable damage to the liver of broiler chickens, 
indicating that the liver is one of the main sites of its toxicity. The DEPs and their enriched 
signaling pathways were screened by proteomic analysis. The hepatotoxicity of DFS on 
broiler chickens might be achieved by inducing liver cell apoptosis and affecting the 
metabolism of retinol and purine. The present study could provide molecular insights into 
the hepatotoxicity of DFS on broiler chickens while also providing a reference for developing 
more effective and much safer NSAIDs for birds.
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