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Abstract
Elevated expression of anti-apoptotic Bcl-2 family proteins have been linked to a poor survival rate
of patients with Follicular Lymphoma (FL). This prompted us to evaluate a very potent non-peptidic
Small-Molecule Inhibitor (SMI) targeting Bcl-2 family proteins, Apogossypolone (ApoG2) using
follicular small cleaved cell lymphoma cell line (WSU-FSCCL) and cell isolated from lymphoma
patients. ApoG2 inhibited the growth of WSU-FSCCL significantly with a 50% growth inhibition of
cells (IC50) of 109 nM and decreased cell number of fresh lymphoma cells. ApoG2 activated
caspases-9, -3, and -8, and the cleavage of Poly (ADP-ribose) polymerase (PARP) and Apoptosis
Inducing Factor (AIF). In the WSU-FSCCL-SCID xenograft model, ApoG2 showed a significant anti-
lymphoma effect, with %ILS of 84% in the intravenous and 63% in intraperitoneal treated mice.
These studies suggest that ApoG2 can be an effective therapeutic agent against FL.

Introduction
Follicular Lymphoma (FL) is fifth leading diagnosed can-
cer estimated with over 63,000 new patients in 2007
within the United States. FL is the most common type of
low grade lymphoma and the second most common sub-
type of lymphoma worldwide. The natural history of FL
has not changed over the last 3 decades with median sur-
vival ranging from 7–10 years; the disease is considered
incurable using various anti-cancer agents [1-3]. Current
treatment strategies are aimed at producing remissions,
preserving vital organ function and enhancing patients'
quality of life [4]. Phase II trials of CHOP followed by

Tositumomab/Iodine I-131 demonstrated progression
free survival of 67% of patients [5]. Phase III trials of
Rituximab shows improved progression free survival in
relapsed/resistant FL and enhanced remission induction
when used with CHOP [6], with these improvements in
the treatment, to date there is not a cure except for a lim-
ited number of patients who present with localized dis-
ease. Therefore, developing targeted therapy to proteins
such as Bcl-2 that prevent death of lymphoma cells is
advantageous.

Published: 14 February 2008

Molecular Cancer 2008, 7:20 doi:10.1186/1476-4598-7-20

Received: 28 November 2007
Accepted: 14 February 2008

This article is available from: http://www.molecular-cancer.com/content/7/1/20

© 2008 Arnold et al; licensee BioMed Central Ltd. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 10
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18275607
http://www.molecular-cancer.com/content/7/1/20
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/


Molecular Cancer 2008, 7:20 http://www.molecular-cancer.com/content/7/1/20
Bcl-2 plays an important role in the lymphomagenesis of
FL. Bcl-2 was originally discovered in FL as a proto-onco-
gene involved in the t(14;18) chromosomal translocation
[7-9]. This genetic event is found in more than 85% of FL.
It has been shown that transfection of Bcl-2 into B-cell
lines could increase cell viability and decrease apoptosis
of lymphoma cells and additionally, confers resistance of
these cells to chemotherapeutic drugs [10]. Thus, interfer-
ing with Bcl-2 function is hypothesized to lead to apopto-
sis of lymphoma cells. Therefore, Bcl-2 is a rational
therapeutic target because of its role in regulating the
apoptotic pathway.

Structural analysis of the binding clefts in Bcl-2 and Bcl-XL
using X-ray crystallography and NMR spectroscopy
showed conserved similarity in the BH1, BH2, and BH3
domains. These domains create a hydrophobic surface
pocket that may represent a binding site for pro-apoptotic
members of the Bcl-2 family, such as Bax. The het-
erodimerization of Bcl-2 family proteins is believed to be
pivotal to the anti-apoptotic function of these proteins.
Furthermore, site-specific mutagenesis of BH1 and BH2
domains completely abrogrates the anti-apoptotic activity
of these proteins [11-13]. These studies suggest that this
region could be a promising target for the use of SMIs to
induce apoptosis.

Previous studies in this lab using the SMI (-)-gossypol has
shown significant growth inhibition in vitro and tumor
growth inhibition in vivo in a diffuse large cell lymphoma
model [14]. With a structural based screening approach,
TW-37 a more potent SMI to Bcl-2, was discovered [15].
Subsequently, we have confirmed that TW-37 has anti-
lymphoma properties in our diffuse large cell lymphoma
model [16]. More recently, we developed a new non-pep-
tidic SMI, ApoG2, which binds like the previous SMIs but
with a considerably lower Ki. ApoG2 is a derivative of (-)-
gossypol that binds to the Bcl-2 family of proteins in the
low nanomolar range with a Ki of 35 and 25 nmol/L for
Bcl-2 and Mcl-1, respectively and a Ki of 660 nmol/L for
Bcl-XL [17]. Therefore, the new SMI, ApoG2, could in the-
ory inhibit the anti-apoptotic function of Bcl-2, Bcl-XL and
Mcl-1 more efficiently and induce apoptosis in FL cells. In
this study, we evaluated the effect of ApoG2 on growth of
malignant lymphoid cells in vitro, its ability to induce
apoptosis as well as its anti-lymphoma activity in vivo
using a SCID mouse xenograft model of FSCCL.

Materials and methods
Cell Culture and Reagents
The origin of human FL B cell line WSU-FSCCL was
described previously [18]. The cell line was maintained in
RPMI-1640 medium containing 10% heat-inactivated
fetal bovine serum (FBS), 1% L-glutamine, 100 U/ml pen-
icillin G and 100 μg/ml streptomycin. Cells were incu-

bated at 37°C in a humidified incubator with 5% CO2.
Fresh samples from patients with pre-B-acute lymphob-
lastic leukemia (Pre-B-ALL), mantle cell lymphoma
(MCL), marginal zone lymphoma (MZL), and chronic
lymphocytic leukemia (CLL) were isolated using Lympho-
prep (Axis-Shield, Oslo, Norway). ApoG2 was synthesized
by modifying (-)-gossypol's two aldehyde groups and pre-
pared at a stock concentration of 1 mM.

Western Blot Analysis
Proteins obtained from extracts were resolved using 12%
SDS-PAGE and transferred to Hybond C-extra membranes
(Amersham Life Science, Arlington Heights, IL). Mem-
branes were blocked with 5% milk in Tris Buffer Saline
containing 0.05% Tween 20 (TBST) for 1 h at 25°C and
then incubated with unlabeled primary antibodies in 2%
Bovine Serum Albumin in TBST (1:1000 dilutions in BSA-
TBST) overnight at 4°C. Following incubation, mem-
branes were washed in TBST and incubated with corre-
sponding horseradish peroxidase-conjugated secondary
antibody (Santa Cruz Biotechnology, Santa Cruz, CA;
1:5000 dilution in 5% milk-TBST) for 1 h at 25°C and
then washed before proteins were visualized using an ECL
assay (Amersham Pharmacia Biotech, Inc., Piscataway,
NJ). Primary antibodies specific for Bcl-2, Bcl-XL, Bax, and
Mcl-1(Santa Cruz Biotechnology, Santa Cruz, CA) were
used. Primary antibodies specific for caspase-3, -9, PARP
and AIF were obtained from Cell Signaling, (Danvers,
MA). Protein concentrations were determined using the
Micro BCA protein assay (Pierce Chemical Company,
Rockford, IL). Quantitation of bands: Values are fold
increase of intensity over control based on percentage
Integrated Density Value (IDV), using AlphaEaseFC (San
Leandro, CA).

Detection of apoptosis
ApoG2 effectiveness to induce apoptosis was quantified
using two DNA intercalating dyes. 3,6-bis [Dimethyl-
amino] acridinium chloride hemi-[zinc chloride] (termed
"acridine orange" or AO) and 3,8-diamino-5-ethyl-6-phe-
nyl-phenanthridine bromide (termed "ethidium bro-
mide" or "EB") were used (Invitrogen, Carlsbad,
California). AO stains DNA bright green allowing visuali-
zation of the nuclear chromatin pattern. EB stains DNA
orange but is excluded by viable cells. Dual staining
allows separate enumeration of populations of viable-
non-apoptotic, early-apoptotic, late-apoptotic and
necrotic cells. The assay was performed by combining 100
μg/μl of AO and 100 μg/μl of EB in PBS. WSU-FSCCL cells
and primary lymphocytes from patients were incubated
for the indicated times and concentrations, centrifuged at
2000 g for 5 m at 4°C, resuspended in 50 μl of PBS, with
a resultant of 20 μl of suspension being counted using a
Nikon Fluorescent microscope. For each sample at least
200 cells were counted.
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Flow cytometric analysis of apoptosis
Apoptosis was determined by the flow cytometric meas-
urement of phosphatidylserine exposure using Annexin V
FITC and Propidium Iodide stain. Cells were grown in the
presence or absence of ApoG2 and then centrifuged at
2000 × g for 5 min. The cells were then resuspended in
PBS and stained with fluorescent conjugates of Annexin V
(BioVision, Mountain View, CA) for 1 hour and propid-
ium iodide for 30 min, and then analyzed on a FACScan
machine (BD, San Jose, CA).

Detection of Caspase Activity
WSU-FSCCL cells exposed to 0.35 and 3.50 μM ApoG2 for
0 to 72 hrs were incubated on ice for 30 minutes in cell
lysis buffer (Sigma-Aldrich, St. Louis, MO). The superna-
tant after centrifugation at 14,000 g at 4°C was collected
and proteins were quantified according to the bicin-
choninic acid protein assay methodology (Pierce Chemi-
cal, Rockford, IL.). A total of 50 μg protein in a volume of
50 μl cell lysis mixture was resuspended on ice as tripli-
cates in a 96-well plate; 50 μl of 2× reaction buffer con-
taining 10 mM DTT was added to each sample (MBL
International, Woburn, MA); 50 μM final concentration
substrates for caspase-3 (DEVD-pNA) and caspase-9
(LEHD-pNA; MBL International, Woburn, MA) were
added to each sample for a total volume of 100 μl and
incubated for 180 m at 37°C. Free pNA released from the
labeled synthetic substrate on cleavage by active caspase
was measured on a fluorescence plate reader (Molecular
Devices, Sunnyvale, CA) at 405 nm.

SCID/Human Xenograft
Female ICR SCID mice were obtained from Taconic Labo-
ratories (Germantown, NY) and were housed and treated
in the Wayne State University School of Medicine under
an approved protocol. Four week old mice were injected
intraperitoneally (i.p.) with 5 × 106 WSU-FSCCL cells.
ApoG2 was injected 25 mg/kg QD × 5 days either IP or
intravenously (i.v.). Mice were observed daily and eutha-
nized when they appeared ill. Animals' activity, weight
and survival were monitored three times a week; mice
were sacrificed when they developed hind region paraly-
sis, had decreased activity and weight loss of 15% or more,
or death was felt to be imminent. Necropsy was carried
out and the extent of macroscopic disease was identified
with all major organs being taken for microscopic patho-
logical examination. Major organs included the brain,
femur (for bone marrow), heart, kidney, liver, lungs, pan-
creas, retroperitoneal fat, and spleen. Peripheral blood
smears were examined for evidence of circulating lym-
phoma cells.

Survival curves were created using the product limit of
Kaplan and Meier, and compared using the log-rank test.
The end point for assessing anti-lymphoma activity was

calculated by percent increase in host life span (%ILS).
%ILS = 100 × MDD (median day of death of the treated
tumor-bearing mice) – (MDD of tumor-bearing control
mice)/MDD of the tumor bearing control mice.

Statistical analysis
Apoptosis induction by AnnexinV/PI stains and AO/EB
were compared to control by the student t-test. Survival
functions were estimated using the Kaplan-Meier method
and compared by the log-rank test. P-values < 0.05 were
considered statistically significant. All statistical analyses
were evaluated using GraphPad Prism 4 (San Diego, CA)

Results
Effect of ApoG2 on WSU-FSCCL Cells
The structure of ApoG2 is shown in figure 1A. To study if
ApoG2 is effective in our FL cell line, WSU-FSCCL, we
determined the baseline expression levels of anti-apop-
totic, Bcl-2, Bcl-XL and Mcl-1 and expression levels of pro-
apoptotic, Bax, Bak, and Bad proteins (Fig. 1B). Our west-
ern blots show that our FL cell line has high expression of
anti-apoptotic proteins (Bcl-2, Bcl-XL and Mcl-1) and pro-
apoptotic protein Bax, but low expression of pro-apop-
totic proteins (Bak and Bad). This profile predicts that
ApoG2 should be an effective agent in this model. To
study cytotoxic effects of ApoG2, WSU-FSCCL cells were

The chemical structure of ApoG2; an analogue of (-)-gossy-pol (A)Figure 1
The chemical structure of ApoG2; an analogue of (-)-
gossypol (A). Baseline endogenous expression of anti-apop-
totic (Bcl-2, Bcl-XL and Mcl-1) and pro-apoptotic (Bax, Bak, 
and Bad) proteins in WSU-FSCCL cell line (B). Protein 
obtained from cell lysates (100 μg) of WSU-FSCCL cells 
were separated on a 12% SDS-PAGE. Proteins were immu-
noblotted using specific primary antibodies to Bcl-2, Bcl-XL, 
Mcl-1, Bax, Bak, and Bad. Primary antibodies were diluted in 
2% BSA. Secondary HRP conjugates were diluted in 5% milk.
Page 3 of 10
(page number not for citation purposes)



Molecular Cancer 2008, 7:20 http://www.molecular-cancer.com/content/7/1/20
exposed to increasing concentrations of the SMI for 24 to
72 h. We exposed WSU-FSCCL cells to ApoG2 at concen-
trations of 0.04, 0.08, 0.18, 0.35, 0.70, 1.75, 3.50, 5.00,
and 10.00 μM. ApoG2 significantly inhibited the growth
of WSU-FSCCL in a concentration and time dependent
manner (Fig. 2A). For example, ApoG2 at a concentration
of 10.00 μM ApoG2 inhibited the growth of WSU-FSCCL
cells by 90% at all incubation times. Plotting the log of the
ApoG2 concentrations, we calculated an IC50 of 109.2 nM
at 72 h (Fig. 2B). There was also a time and concentration
dependent increase in apoptosis, as enumerated by AO/
EB. ApoG2 induced a statistically significant increase in
apoptosis over control at 48 and 72 h, with all concentra-
tions; P = 0.0034, 0.0162, 0.0067, 0.0456 and 0.0322.
Complete apoptosis was observed with ApoG2 concentra-
tion of 5.0 μM and 10 μM 72 h (Fig. 2C). We have con-
firmed apoptosis by Annexin V/PI staining; statistically
significant apoptosis was induced by ApoG2 (P = 0.0324),

with 15% and 20% positivity at 48 and 72 h, respectively,
compared to control (Fig. 2D).

Effect of ApoG2 on Primary Fresh Cases
The IC50 of ApoG2 at 72 h was determined on MCL, MZL,
and CLL fresh patient samples. In general, they fall into a
susceptible group of Pre-B-ALL and MCL or a less suscep-
tible group of MZL and CLL. Pre-B-ALL sample showed an
IC50 of 0.50 μM at 24 h. The MCL sample showed an IC50
of 0.70 μM. MZL patient samples were more resistant and
showed an IC50 of 1.75 μM. CLL patient samples were
resistant to ApoG2 having a range of IC50 from 1.35 to
3.50 μM (Fig. 3A). ApoG2 induced at least a 1.5-fold
increase in apoptosis over control with concentration of
3.5 μM (Fig. 3B). Conversely, exposure of normal periph-
eral blood lymphocytes to 0.35, 0.50 and 1.00 μM ApoG2
did not show any statistically significant cell death at 72 h
(Fig. 3C).

Growth inhibition, IC50 and apoptosis in WSU-FSCCL cells expose to ApoG2Figure 2
Growth inhibition, IC50 and apoptosis in WSU-FSCCL cells expose to ApoG2. WSU-FSCCL cells were seeded in 24 
well culture plates at a density of 2 × 105 cells per 1 mL of RPMI 1640 + 10% FBS. ApoG2 was added at 0.04 μM to 10.0 μM 
concentrations and plates were incubated at 37°C in CO2 incubator for 24 to 72 hours. Trypan blue exclusion dye was used to 
determine viable cells (A). Fifty percent cell inhibition of viable cells was calculated from trypan blue exclusion assay, IC50 = 
109.2 ± 18.1 nM at 72 h (B). AO/EB was quantitated by counting several fields of cells on frosted slides (C). Counting was per-
formed using Nikon light and fluorescent microscope. AnnexinV stain was used to confirm percentage of apoptotic cells incu-
bated for 48 and 72 h (D).
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Effect of ApoG2 on the activation of Caspases in WSU-
FSCCL cells
WSU-FSCCL was exposed to ApoG2 at 0.35 and 3.50 μM
concentrations. ApoG2 at 3.50 μM showed a 3-fold
increase in the activation of caspase-9 at 72 hrs (Fig. 4A).
ApoG2 at 3.50 μM demonstrated a 2-fold increase of cas-
pase-3 activation for all incubation periods (Fig. 4B). To
determine if caspase cleavage in WSU-FSCCL occurred,
cells were exposed to ApoG2 at 0.35, 0.70, 1.75 and 3.50
μM and incubated at indicated times. Greater than 3-fold
increase of caspase-9 cleavage was detected at concentra-
tions greater than 0.70 μM with 24 h incubation time.
Thirty-three fold induction over control of caspase-9
cleavage band was shown at 3.50 μM at 72 h (Fig. 4C).
The next downstream protein of the caspase cascade is cas-
pase-3. ApoG2 induced caspase-3 cleavage of 2-fold with
concentrations of 0.35 μM and a more intense cleavage
band indicating a 25-fold increase was detected at 3.5 μM
at 24 h (Fig. 4D). Previous studies have suggested that cas-

pase-3 is also capable of eliciting cleavage and activation
of the upstream initiator caspase-8, which may potentiate
a feedback amplification loop with further activation of
other death substrates. Caspase-8 cleavage was shown to
have a 9-fold increase over control at 3.50 μM with 48 h
incubation and 8-fold or higher induction at concentra-
tions greater than 0.35 μM with a 72 h incubation period
(Fig. 4E).

ApoG2 Induced Activation of PARP and AIF in the 
Apoptotic Pathway
Caspase-3 is primarily responsible for the cleavage of
PARP during cell death. WSU-FSCCL was exposed to
ApoG2 at 0.35, 0.70, 1.75 and 3.50 μM and incubated for
24, 48 and 72 hrs. As expected, PARP cleavage was shown
at all concentrations and incubations periods. Cleaved
bands greater than 5-fold over the control were shown at
3.5 μM with all incubation periods (Fig. 5A).

Cell viability and apoptosis of patient samples, and cell viability of peripheral blood lymphocytes exposed to ApoG2Figure 3
Cell viability and apoptosis of patient samples, and cell viability of peripheral blood lymphocytes exposed to 
ApoG2. Patient samples (A,B) and peripheral blood lymphocytes from a normal donor (C) were seeded in 24 well culture 
plates at a density of 4 × 105 cells per 1 mL of RPMI 1640 + 10% FBS. ApoG2 was added at 0.35 μM to 3.50 μM concentrations 
and plates were incubated at 37°C in CO2 incubator for 24 to 72 hours. Trypan blue exclusion dye was used to determine via-
ble cells. Trypan blue exclusion was used to determine viable cells (A and C). Each dot represents a different patient. (-) is the 
mean of ApoG2 concentration that causes 50 percent growth inhibition at 72 h, Pre-B-ALL represents 24 h only (A). AO/EB 
was quantitated by counting fields of cells on frosted slides (B).
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PARP can release apoptosis-inducing factor (AIF), which
induces chromatin condensation and large-scale DNA
fragmentation when released into the cytosol [19]. Simi-
lar to PARP, AIF cleavage was shown at concentrations
greater than 0.35 μM. Cleaved bands of AIF greater than 2-

fold and (up to 4-fold) were shown at 3.5 μM at 24 hrs
(Fig. 5B).

Induction of caspase activation and caspase cleavage in WSU-FSCCL cells expose to ApoG2Figure 4
Induction of caspase activation and caspase cleavage in WSU-FSCCL cells expose to ApoG2. Caspase-9 and -3 
colorimetric activity assay on WSU-FSCCL cells exposed to ApoG2 at indicated times and concentrations. 50 μg of protein 
from cell lysates were incubated in triplicate with the corresponding substrates for caspase-9 (LEHD-pNA) caspase-3 (DEVD-
pNA). Free pNA is released from the labeled synthetic substrate on cleavage by active caspase and analyzed (A and B). Protein 
obtained from cell lysates (100 μg) of WSU-FSCCL were separated on a 12% SDS-PAGE. Proteins were immunoblotted using 
specific antibodies to caspase-9, -3, and -8. WSU-FSCCL cells exposed to ApoG2 at indicated times and concentrations (0.35 
μM to 3.50 μM) (C, D, and E). Primary antibodies were diluted in 2% BSA. Secondary HRP conjugates were diluted in 5% milk. 
Quantitation of bands: Values are fold increase of intensity over control based on percentage Integrated Density Value (IDV).
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Determination of Anti-lymphoma Effect of ApoG2 in SCID 
Mice
Previous studies in this laboratory indicated that the MTD
for ApoG2 could not be determined. We tested up to 800
mg/kg iv of ApoG2; testing beyond 800 mg/kg were not
attempted, due to cost and other logistical issues. For this
efficacy trial, 5 × 106 WSU-FSCCL cells were injected into
the intraperitoneal cavity of 7 mice per group. Seven days
post WSU-FSCCL inoculation, 25 mg/kg of ApoG2 was
injected into each animal either intravenously (i.v.) or
intraperitoneally (i.p.) over 5 days. After 105 days, 42% of
the i.v.-treated animals, and 60% of the i.p.-treated ani-
mals had died from FL (Fig. 6A). Statistical comparison of
survival curves for i.v. treatment and untreated control
show a chi square of 8.005 and P = 0.0047. Statistical
comparison of survival curves for i.p. treatment and
untreated control show a chi square of 4.397 and P =
0.0360 (Fig 6A). Pathological evaluation showed that ret-
roperitoneal lymph nodes were diffusely replaced by
tumor cells in mice that died (data not shown). The effec-
tiveness of ApoG2 was further demonstrated by bone
marrow examination which was completely replaced by
tumor cells by day 34 in control animals (Fig. 6B). In con-
trast, ApoG2 treated mice showed normal bone marrow
with no apparent tumor infiltration (Fig. 6C &6D).

Discussion
FL has been increasing in incidence over the past three
decades and is now the fifth most common malignancy in
the United States [20]. There are many approaches to the
treatment of FL, but the goal of therapy has been to main-
tain the best quality of life and treat when a patient is at
"high risk" or the disease progresses. Standard chemother-
apy regimens directed towards these low-grade lympho-
mas still lack complete curative effects. This may be in part
due to the overexpression of Bcl-2, a key molecule of
resistance in indolent lymphoma. Overexpression of Bcl-
2 has been implicated to play a significant role in the clin-
ical outcome of FL patients [21]. A number of approaches
have been sought to target overexpression of Bcl-2 in FL,
e.g. downregulation of Bcl-2 protein via antisense oligo-
nucleotides [18,22-24]. Most recently, hydrophobic
groove of the Bcl-2 family of anti-apoptotic proteins has
become a very attractive target for the design of SMIs. SMIs
filling the hydrophobic groove mimic cognate proteins
such as Bax and Bid. SMIs directed against BH3 domains
have been categorized into at least eight different chemi-
cal classifications [25]. Laboratories, including this one,
have been in the search to find novel small-molecule
inhibitors to Bcl-2 [15,26-29]. Gossypol has been used as
an anti-cancer agent against prostate cancer, metastatic
adrenal cancer and many other cancers before the BH3
mimetic activity was discovered [30,31]. This discovery

Induction of PARP and AIF cleavage in WSU-FSCCL cells expose to ApoG2Figure 5
Induction of PARP and AIF cleavage in WSU-FSCCL cells expose to ApoG2. WSU-FSCCL cells were exposed to 
ApoG2 concentrations 0.35 μM to 3.50 μM for 24 to 72 h. Protein obtained from cell lysates (100 μg) of WSU-FSCCL cells 
were separated on a 12% SDS-PAGE. Proteins were immunoblotted using specific primary antibodies to PARP (A) and AIF (B). 
Primary antibodies were diluted in 2% BSA. Secondary HRP conjugates were diluted in 5% milk. Quantitation of bands: Values 
are fold increase of intensity over control based on percentage Integrated Density Value (IDV).
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has shown that (-)-gossypol, the active enantiomer of gos-
sypol, binds to anti-apoptotic members of the Bcl-2 fam-
ily, Bcl-2, Bcl-XL and Mcl-1, with nanomolar affinities and
this active enantiomer has been tested in clinical trails for
treatment of patients with advanced malignancies [32].

In clinical trials, gossypol has been associated with side
effects, such as emesis and diarrhea, because of the two
reactive aldehyde-groups [33]. ApoG2 has been designed
and synthesized with the reactive groups completely
removed in order to minimize side effects. In addition,
ApoG2 has superior stability under both stress and nor-
mal conditions compared to (-)-gossypol [34].

It is notable that our study is the first on ApoG2 in FL. The
goals of new agents such as ApoG2, are to have higher
binding affinity to its targets; ApoG2 has greater than 8-
fold binding affinity to Bcl-2 over its predecessors TW-37

and (-)-gossypol [16,17]. In this study, we have shown a
potent anti-lymphoma effect on FL. ApoG2 shows an IC50
of 9- and 18-fold lower when compared to TW-37 or gos-
sypol. When compared to HA14-1, which is a SMI to Bcl-
2 used against leukemia cell lines HL60 and K562 [29],
ApoG2 has a IC50 which is 200-fold lower. The SMI ABT-
737 has a considerably lower IC50 (8 and 30 nM) when
used against FL cell lines, but ABT-737 does not bind to
Mcl-1 and thus Mcl-1 expression could result in resistance.
In comparison, ApoG2 targets all these three anti-apop-
totic proteins [27,35,36]. In our study, ApoG2 is effective
against FL, pre-B-acute lymphoblastic leukemia, mantle
cell lymphoma, marginal zone lymphoma, as well as
chronic lymphocytic leukemia. Therefore, ApoG2 could
potentially be a more effective drug in the lymphoma
clinic spanning a greater array of patients.

Survival of WSU-FSCCL-bearing SCID mice according to ApoG2 treatment and H & E stains of bone marrow sectionsFigure 6
Survival of WSU-FSCCL-bearing SCID mice according to ApoG2 treatment and H & E stains of bone marrow 
sections. WSU-FSCCL cells were injected into the intraperitoneal cavity at 5 × 106 cells. 25 mg/kg QD × 5 of ApoG2 was 
injected intravenously or intraperitoneally on day 7 post inoculation. Statistical comparison of survival curves for i.v. treatment 
and untreated control show a chi square of 8.005 and P = 0.0047. Statistical comparison of survival curves for i.p. treatment 
and untreated control show a chi square of 4.397 and P = 0.0360 (A). Replacement of the bone marrow with WSU-FSCCL 
cells in the control mouse (B). Negative bone marrow of intravenous (C) and intraperitoneal (D) treatment with ApoG2.
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With the binding of ApoG2 to Bcl-2 family of proteins, it
would be expected that ApoG2 would lead to activation of
downstream apoptotic proteins. The mechanism of action
of ApoG2 has not been elucidated in FL. We show here
that ApoG2 can activate the initiator caspase-9, and the
effector caspase-3, and induce caspase cleavage in
nanomolar concentrations. Moreover, ApoG2 can lead to
the activation of caspase-8 which serves as amplification
loop together with caspase-3 [37,38]. PARP and AIF have
been implicated in the final stages of apoptosis. They play
a role in the chromatin condensation and DNA fragmen-
tation. We show that ApoG2 activates PARP and AIF in the
nanomolar range.

These findings clearly demonstrate that ApoG2 can acti-
vate the Bcl-2 apoptotic pathway in vitro. The exact mech-
anism of action of ApoG2 is unclear. Likely mechanisms
are that ApoG2 binds to Bcl-2 (or Mcl-1, Bcl-XL, A1, Bcl-
w) and prevents its association with BH3-only pro-apop-
totic proteins, thus unleashing the pro-apoptotic proteins
to participate in the apoptotic response. Work in our lab-
oratory is being done to further elucidate the mechanism
of ApoG2 action.

Many agents targeting the Bcl-2 family were shown to
have activity in vitro. However, the main goal of our
research endeavor is to find out if ApoG2 can make its way
into clinical trials. Here, we tested the anti-lymphoma
activity of ApoG2 in vivo. The endpoint for treatment effi-
cacy is survival of the mice bearing the human FL cells.
Our study showed that regardless of route of injection
(i.p. or i.v.), ApoG2 could significantly increase the life
span of lymphoma-bearing SCID mice by at least 42%
(Fig. 6A). Moreover, ApoG2 was safe and well tolerated up
to 800 mg/kg with no weight lose in all treated animals.
ApoG2 has an undetermined MTD, and a large therapeu-
tic window of 25 to 800 mg/kg; with effective dose of only
25 mg/kg; compared to ABT-737, that has a therapeutic
window of 25 to 100 mg/kg, with an undetermined MTD
[39].

In closing, we have shown that ApoG2 can be a potential
novel agent against FL. Our data suggest that ApoG2 also
could be used in several different types of lymphoid
malignancies. ApoG2 in this study does show efficacy for
treatment of FL as a single agent; it can prove to be even
more effective when used in combination with standard
chemotherapy.
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