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Recent studies have highlighted the heterogeneity of asthma. Distinct patient phenotypes 
(symptoms, age at onset, atopy, and lung function) may result from different pathogenic 
mechanisms, including airway inflammation, remodeling, and immune and metabolic 
pathways in a specific microbial environment. These features, which define the asthma 
endotype, may have significant consequences for the development and progression of 
the disease. Asthma is generally associated with Th2 cells, which produce a panel of 
cytokines (IL-4, IL-5, IL-13) that act in synergy to drive lung inflammatory responses, 
mucus secretion, IgE production, and fibrosis, causing the characteristic symptoms of 
asthma. In addition to conventional CD4+ T lymphocytes, other T-cell types can produce 
Th2 or Th17 cytokines rapidly. Promising candidate cells for studies of the mechanisms 
underlying the pathophysiology of asthma are unconventional T lymphocytes, such as 
invariant natural killer T (iNKT) and mucosal-associated invariant T (MAIT) cells. This 
review provides an overview of our current understanding of the impact of iNKT and 
MAIT cells on asthmatic inflammation, focusing particularly on pediatric asthma.
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inTRODUCTiOn

Asthma is now considered to encompass different conditions characterized by common symptoms 
(wheeze, cough, shortness of breath, and chest tightness), variable degrees of airflow limitation, and 
different pattern of inflammation. Most patients with asthma have an eosinophilic infiltration of the 
airways, associated with increased production of type 2 cytokines including IL-4, IL-5, IL-13 secreted 
by Th2 cells, together with allergic comorbidities (1). However, around 50% of adults with asthma do 
not fall into this description (2). Asthmatic patients with a neutrophil-high signature were described 
in both adults and children (3–5). This neutrophilic-predominant endotype is less well understood 
than the Th2 endotype and may be related to the activation of the IL-17 pathway (1, 6). Intriguingly, 
despite eosinophilic airway inflammation is a key feature of severe asthma in schoolchildren, there is 
no clear evidence for a Th2 type cytokine signature in bronchial mucosa or bronchoalveolar lavages 
in that population (7, 8). Alternative mechanisms may, therefore, be involved in the pathogenesis 
of asthma in this group. Recent studies have suggested the potential role of unconventional T cells, 
such as invariant natural killer T (iNKT) and mucosal-associated invariant T (MAIT) cells in asthma 
pathogenesis. These T lymphocytes usually reside in the tissues, including those of the airways and 
can respond rapidly to stimuli by producing Th2 and Th17 cytokines. Here, we review the field of 
asthma immunity, focusing on the role of iNKT and MAIT cells in asthmatic patients.
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inKT CeLLS

The major characteristic of iNKT lymphocytes is their expression 
of T cell receptors of limited diversity recognizing lipid antigens 
presented by the non-polymorphic MHC-like molecules, CD1d 
(9, 10). iNKT cells express an invariant TCRα chain, Vα14-Jα18 
(or TRAV11 TRAJ18) in mouse, and Vα24-Jα18 (or TRAV10 
TRAJ18) in humans, together with a limited set of TCRβ chains 
(10, 11). The invariant TCRα chains of mice and human are 
very similar, enabling the iNKT  cells to recognize the same 
glycolipids in both species. A classic example is provided by 
α-galactosylceramide (α-GalCer), an antigen capable of stimulat-
ing both mouse and human iNKT cells (12, 13). α-GalCer and its 
analog, PBS57, are currently used as antigens for the production 
of a CD1d-tetramer complex capable of specifically identifying 
iNKT cells (14). iNKT lymphocytes respond rapidly to specific 
lipid antigens, in a TCR-dependent manner, but they also respond 
to pro-inflammatory cytokines (12, 15, 16). Indeed, IL-12 and 
IL-18 induce the production of IFNγ, whereas IL-1β and IL-23 
will promote the secretion of IL-17A (or IL-17) and IL-22 (17, 18).  
Further, iNKT cells have been shown to express IL-25 (or IL-17E), 
thymic stromal lymphopoietin, and IL-33 receptors that will 
favor their secretion of IL-4, IL-13, and IFNγ (19–22). Human 
iNKT cells require TGFβ for the production of IL-17 and IL-22 
(23). TCR-dependent and TCR-independent pathways can act in 
synergy to stimulate iNKT cells more strongly (15, 24).

The thymic differentiation of iNKT cells is tightly controlled. 
At least three major iNKT cell subsets mature in the thymus, the 
iNKT1 (IFNγ and IL-4 producers), the iNKT2 (IL-4 and IL-13 
producers), and the iNKT17 (IL-17 and IL-22 producers) (25–28). 
Maturation in the thymus is regulated by the Slam-Associated 
Protein (29), the transcription factors PLZF, Egr2, ThPOK, Runx1, 
and RORγt, the microRNA Let-7, and the cytokine IL-7 (30–38). 
iNKT  cells undergo several maturation steps [see Ref. (10, 35) 
for more information], before migrating to peripheral organs as 
CD4+CD8− and double-negative (CD4−CD8−) cells. In humans, 
there is also a CD4−CD8+ subset (39). iNKT  cells are mostly 
resident in tissues, where they can “patrol” to identify threats to 
the body. For instance, these cells have been shown to perform an 
intravascular immune surveillance function in the liver, spleen, 
and lung (40–43). The primary function of iNKT cells is to protect 
the host from infections (24, 44, 45). However, in some condi-
tions, iNKT  cell activation favors tissue injury, including lung 
(Figure 1), as discussed below.

inKT Cells and Murine Asthma Models
Mouse models are widely used to help clarify the role of 
iNKT  cells in asthma. Studies initially focused on allergic 
asthma, with ovalbumin (OVA) as the allergen, associated with 
aluminum hydroxide as adjuvant, for the systemic immuniza-
tion followed by intranasal (i.n.) OVA challenge. First analysis 
showed no major difference in the severity of allergic airway 
inflammation in β2microglobulin (β2m)−/− and CD1d−/− mice, 
which lack iNKT cells (46–48). However, other studies reported 
that iNKT cell-deficient (Jα18−/− and CD1d−/−) mice had attenu-
ated asthma symptoms including airway hyperresponsiveness 
(49), airway eosinophilia, Th2 inflammation, and OVA-specific 

anti-IgE production (50, 51). The adoptive transfer of IL-4- and 
IL-13-producing iNKT cells restored the asthma severity, dem-
onstrating that iNKT  cells favored allergic asthma symptoms 
through the production of these cytokines (50, 51). iNKT cells 
did not recognize OVA as an antigen, but their ability to promote 
lung inflammation was reduced by the treatment of mice with 
anti-CD1d antibodies, indicating that endogenous lipidic anti-
gens stimulated the iNKT cells (50). More recently, another study 
comparing distinct iNKT cell-deficient mice strains (β2m−/− and 
CD1d−/−) reported that NKT  cells were dispensable for T  cell-
dependent allergic airway inflammation (52), even though AHR 
was not analyzed.

A possible reason to explain the discrepancies between studies 
concerning the implication of iNKT cells in asthma severity is 
that, in addition to iNKT cells, type II NKT cells were also absent 
in β2m−/− and CD1d−/− mice (53, 54), while β2m−/− mice also lack 
CD8 T cells. Then, it is not excluded that the absence of type II 
NKT and CD8+ T cells could influence the effect of iNKT cells in 
asthma severity. Another point is that asthma symptoms are more 
severe in 129/Sv mice compared to BALB/c and C57BL/6 animals 
(55). The iNKT cell-deficient mice cited here (β2m−/−, CD1d−/−, 
and Jα18−/− mice) were created on a 129/Sv background. Some 
results showing no significant differences in airway eosinophilia 
used 129/Sv × C57BL/6 CD1d−/− mice (47), while those describ-
ing CD1d−/− and Jα18−/− mice as more resistant to asthma used 
CD1d−/− and Jα18−/− backcrossed with BALB/c animals (51). In 
our hands, Jα18−/− (backcrossed at least 10 times in C57BL/6) 
presented lower allergen-induced airway inflammation and AHR 
than controls (50). Recently, Kronenberg’s team created a new 
mouse strain deficient for iNKT cells. These mice presented no 
airway eosinophilia and significantly less pulmonary resistance 
in response to OVA challenge than did their wild-type (WT) 
counterparts (56). Hence, the discrepancies reported may also 
result from a possible low number of backcross of the knockout 
mice used. Finally, the microbiota differences between the animal 
houses where the studies were performed cannot be excluded. In 
this context, an elegant study by Blumberg’s team showed that 
iNKT  cells accumulated in the lung and in the colonic lamina 
propria in germ-free (GF) mice, rendering these animals more 
susceptible to OVA-induced asthma and oxazolone-induced 
colitis (57). The colonization of neonatal GF mice with a normal 
flora or Bacteroides fragilis decreased the number of iNKT cells 
and protected the mice against these diseases, clearly establishing 
a link between iNKT cells, the microbiota, and disease (57, 58).

These studies were highly informative but were designed 
to analyze a specific allergic asthma model. They, therefore, 
underestimated the complexity of asthma pathogenesis. It was 
subsequently shown that α-GalCer, the cognate antigen for 
iNKT  cells, protects sensitized mice against asthma symptoms 
when administered 1  h before the first challenge (59). The 
mechanisms involved are dependent on IFNγ production 
by α-GalCer-stimulated iNKT  cells (59). In another context, 
α-GalCer, administered i.n. at the time of sensitization, was 
found to act as an adjuvant, enhancing asthma symptoms (42). 
This study echoed those in non-human primates showing that 
the administration of α-GalCer alone induces AHR in monkeys 
(60). The iNKT cells are resident mostly in the intravascular space 
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FigURe 1 | Proposed roles of mucosal-associated invariant T (MAIT) and invariant natural killer T (iNKT) cells in the lung. These unconventional T lymphocytes are 
present in the lung at steady state and express several chemokine- and interleukin-receptors. Bacteria, fungus, virus, pollutants, and airway allergens will directly or 
indirectly stimulate MAIT and iNKT cells. Cytokines produced by epithelial cells, namely, IL-25, IL-33, and thymic stromal lymphopoietin, could activate these cells. 
Antigen-presenting cells (APC) present antigens to MAIT and iNKT cells in the context of MR1 and CD1d molecules, respectively. Activated APC produce IL-12, 
IL-18, and IL-23 that will stimulate MAIT and/or iNKT cells. Following TCR-dependent or TCR-independent activation, MAIT and iNKT cells secrete IFNγ, IL-17, IL-4, 
or IL-13. IFNγ contributes to lung protection and promotes potential protective Th1 responses against asthma. IL-17, in turn, could have a dual effect since it is 
known that this cytokine promotes neutrophils recruitment and activation to protect lung from injury, but IL-17 can also enhance neutrophilic asthma severity. Finally, 
IL-4 and IL-13 will favor Th2 immune responses and then amplify allergic eosinophilic airway inflammation.
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rather than in the pulmonary tissue itself, and they are rapidly 
mobilized after exposure to airborne lipid antigen, to which they 
respond by the secretion of cytokines (42). Thus, different lipid 
antigens in the airways, unrecognized by conventional T  cells, 
may amplify airway inflammation by acting on iNKT cells.

Other asthma models have recently been used to investigate 
the role of iNKT cells. Intranasal administration of the natural 
House Dust Mite allergen without adjuvant has been shown to 
induce iNKT cell recruitment in the lung. The iNKT cells were 
stimulated via OX40–OX40 ligand interactions to generate 
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a pathogenic Th2 cytokine environment (61). In this model, 
iNKT-deficient mice displayed significantly lower levels of 
pulmonary inflammation than WT mice (61). iNKT cells were 
further implicated in the model of asthma induced by Aspergillus 
fumigatus (62). This fungus, which is associated with a severe 
form of asthma, expresses asperamide-B, a glycolipid specifically 
recognized by both human and mouse iNKT cells (62). The i.n. 
administration of A. fumigatus- or asperamide-B rapidly induces 
AHR, by activating pulmonary iNKT cells in an IL-33-ST2- and 
IL-4/IL-13-dependent manner (62).

Overall, these findings indicate that iNKT  cells promote 
allergic asthma inflammation and AHR principally through the 
secretion of IL-4 and IL-13. The Th2 paradigm explains many 
features of asthma, but this disease is not limited to pro-Th2 
allergic immune responses and may also include a number of 
different phenotypes, such as neutrophilic asthma (63–65). 
In this context, the i.n. administration of α-GalCer activates 
IL-17-secreting iNKT (iNKT17) cells, which, in turn, recruit 
neutrophils to the airways (25). iNKT17 cells are also required 
for the pathogenic mechanism responsible for disease severity in 
the model of asthma induced by ozone, a major air pollutant (66). 
These findings indicate that iNKT2 and iNKT17 cell populations 
may contribute to asthma inflammation in different ways.

inKT Cells and Asthmatic Patients
Several studies have analyzed the possible implication of 
iNKT cells in the physiopathology of human asthma. Studies ana-
lyzing the frequency of iNKT cells in the [bronchoalveolar-lavage 
fluid (BALF)] or bronchial tissues of asthmatic patients have 
reported discordant results (67–70). The study of Akbari et  al. 
(68) found that about 60% of the pulmonary CD4+CD3+ T cells 
in adult patients with moderate-to-severe persistent asthma were 
iNKT cells. These results were not reproduced by Vijayanand et al. 
(69), who found that up to 2% of the T cells obtained from airway 
biopsy, BALF, and sputum induction from subjects with mild or 
moderately severe asthma were iNKT cells. The study of Thomas 
et al. (71) also observed less than 2% of iNKT cells among gated 
T lymphocytes from BALF of asthmatic patients. Of note, further 
analysis from the initial group have demonstrated that only a 
small fraction of T cells in the lung of adult asthmatic patients 
were iNKT cells (72). In our hands (73), iNKT cells accounted for 
less than 1% of T cells in BALF from severe asthmatic children. 
The discrepancies with the first study (68) could be due to the 
limited number of samples, the heterogeneity of the cohort, or to 
non-specific staining of cells in BALF, as suggested by the study 
of Thomas et al. (71).

It was showed that the frequency of iNKT cells in the blood of 
adult asthmatic patients was similar to that in blood from control 
donors (74). Further, it was suggested that pro-Th2 iNKT cells 
may be particularly frequent in blood from asthmatic patients, 
and that these cells was associated with lung function (67). Our 
previous study indicated that the percentage of peripheral blood 
iNKT cells did not differ significantly between asthmatic children 
classified as exacerbators (1 or more severe exacerbations in the 
last 12  months) and those classified as non-exacerbators (75). 
Similarly, it has recently been reported that there is no relation-
ship between the frequency of iNKT  cells and that of IL-4- or 

IFNγ-producing iNKT cells in the blood of 1-year-old children 
and asthma-related clinical outcomes at the age of 7 years (76).

There is now a consensus that a limited number of iNKT cells 
is present in the BALF of adults and pediatric patients with severe 
asthma. However, several questions remain unanswered: Is the 
presence of iNKT cells in the BALF associated with specific asthma 
endotypes? What role do iNKT cells play in the pathophysiology 
of asthma? Further studies are therefore required to characterize 
the mechanisms by which iNKT cells could contribute to asthma.

MAiT CeLLS

Invariant natural killer T and MAIT cells may be considered to 
be “twins” in several respects. Like iNKT cells, most MAIT cells 
express an invariant TCRα chain (Vα7.2-Jα33 or TRAV1-2-
TRAJ33) and a small number of TCRβ chains (77). MAIT cells 
are restricted by the MHC class I-related molecule MR1 and 
recognize microbial-derived vitamin B2 (riboflavin) metabolites, 
such as the 5-(2-oxopropylideneamino)-6-d-ribitylaminouracil 
(5-OP-RU) (78). The endogenous ligands able to either select 
MAIT cells in the thymus or to potentially stimulate these cells 
in peripheral lymphoid organs remain to be defined.

Mucosal-associated invariant T  cells, similar to iNKT  cells, 
develop in the thymus, where they became functionally compe-
tent and able to produce IFNγ, TNFα, and IL-17 in response to 
stimulation (79). MAIT cells produce low-to-moderate levels of 
IL-4 and IL-13 when stimulated (80–83). Thymic MAIT devel-
opment is also directed by the transcription factor PLZF and is 
dependent on microRNAs (79, 84). Human MAIT cells are CD8+, 
CD4+, or double-negative (CD4−CD8−) and express high levels of 
CD161 and IL-18Rα (85). MAIT cells can be activated in a TCR-
dependent and -independent manner. In the latter situation, 
they can be stimulated by pro-inflammatory cytokines, such as 
IL-7, IL-12, IL-18, and IL-23 (29, 86, 87). Indeed, MAIT cells, in 
addition to IL-18Rα, can also express IL-7Rα, IL-23R, IL-12Rβ1, 
CCR5, CXCR6, CCR6 (83, 84, 88, 89). These receptors will allow 
the activation of MAIT cells by IL-7, IL-12, IL-18, and IL-23 and 
their migration to peripheral tissues.

Despite their striking similarities, iNKT and MAIT cells also 
differ in several important ways. Unlike iNKT cells, MAIT cells 
are rare in conventional laboratory mouse strains and abundant 
in humans. In healthy individuals, MAIT  cells account for up 
to 10% of peripheral blood T cells and are numerous in the gut, 
lung, and liver (49, 85, 89). The expansion of the MAIT  cell 
population in response to commensal flora antigens explains 
their abundance in mucosal tissues, in which they are involved 
in antimicrobial responses (49). Their presence in the liver may 
be explained by the constant exposure of this organ to bacterial 
products absorbed from the gut. There is a clear causal relation-
ship between the number of MAIT cells and the presence and 
the diversity of the commensal flora, as shown by the absence of 
MAIT cells from the peripheral organs of GF mice (49).

MAiT Cells and infections
In addition to the commensal flora, pathogens may also stimulate 
MAIT cells, which play a crucial role in antimicrobial defenses, 
through the secretion of IFNγ, TNFα, and IL-17 and the killing 
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of target cells through the production of cytotoxic perforin and 
granzyme B molecules (29, 87, 90). MAIT  cell analysis, in 
both humans and in experimental models, has been greatly 
facilitated by the use of antigen-loaded MR1 tetramers (83, 84). 
Experimental studies in non-human primates have reported 
the activation of circulating MAIT cells in response to Bacillus 
Calmette–Guerin vaccination and Mycobacterium tuberculosis 
infection (91). MAIT  cells from the spleen of these macaques 
produced IFNγ, TNFα in response to stimulation by Escherichia 
coli in a TCR-dependent manner (91). Intranasal inoculation with 
Salmonella typhimurium in mice induced a striking enrichment 
in IL-17-producing MAIT cells in the lungs (92). The response of 
MAIT cells to lung infection with S. typhimurium was rapid and 
dependent on the MR1 presentation of riboflavin biosynthesis-
derived bacterial ligands (92). These findings are consistent with 
previous reports indicating that patients infected with mycobac-
teria have many more MAIT cells in the infected lung and fewer 
MAIT cells in the blood than uninfected controls (93, 94).

Infections with viruses, such as dengue virus, hepatitis C virus, 
influenza A virus, and HIV-1 can activate human MAIT  cells. 
MAIT cells do not recognize virus antigens, because no riboflavin 
metabolites are found in host cells or viruses (78), but they may 
be activated by cytokines produced during viral infection, such 
as IL-18 in synergy with IL-12, IL-15, and/or IFNα/β (29, 95). 
Activated MAIT  cells during virus infections robustly secrete 
IFNγ and granzyme B (29, 95).

Mucosal-associated invariant T  cells have also been impli-
cated in non-infectious diseases. Several studies have reported 
large decreases in MAIT cell number in the peripheral blood of 
patients with the following diseases: antineutrophil cytoplasm 
antibody-associated vasculitis, chronic kidney disease, Crohn’s 
disease, ulcerative colitis, newly diagnosed and relapsed multiple 
myeloma, obesity and type 2 diabetes (96–100). However, the 
mechanisms by which MAIT cells influence these human diseases 
remain to be elucidated.

MAiT Cells and Adult Asthmatic Patients
Despite the prevalence of MAIT cells in the lung, and their involve-
ment in airway infections, very little is known about the possible 
role of these cells in asthma. MAIT cells are detected in human 
fetal lung and are numerous in the lungs of adult rhesus macaques 
(91, 101), consistent with a protective role against infections in 
this organ. The frequency of MAIT cells is significantly lower in 
the peripheral blood, sputum, and bronchial biopsy specimens of 
asthmatic patients than in control subjects (102). The percentage 
of MAIT cells in BALF does not differ significantly between these 
two groups (102). A re-analysis of the results, comparing patients 
with mild, moderate, or severe asthma to healthy donors, showed 
that the lower frequency of MAIT cells was significant only in the 
peripheral blood and sputum of patients with moderate or severe 
asthma (102). The results of this study suggest that the frequency 
of MAIT  cells is negatively correlated with clinical severity. 
Furthermore, MAIT  cell frequency is associated with serum 
vitamin D3 concentrations and the use of oral corticosteroids. 
Proof of concept for the association between corticosteroid use 
and MAIT frequencies was provided by the demonstration of a 
decrease in the frequency of circulating MAIT cells in 12 patients 

with moderate asthma treated with oral corticosteroids for seven 
days (102). It remains to elucidate whether corticosteroids may 
modify MR1 expression and MAIT cell activation. Some drugs 
can influence antigen presentation by MR1 molecules. For 
instance, doxofylline, a bronchodilator used to treat asthma, is 
known to upregulate MR1 expression weakly, but does not act as 
a MAIT cell agonist (103). Thus, some of the drugs currently used 
in asthma treatment may influence MAIT cell functions.

Mucosal-associated invariant T cells are present and can be 
activated in the lung (Figure  1). However, to date, there is no 
evidence indicating that MAIT  cells could recognize via their 
TCR any airway allergens or pollutants potentially implicated 
on asthma. Consequently, MAIT cells could be activated either 
directly by endogenous compounds presented by MR1 molecules 
or indirectly by pro-inflammatory cytokines present in the lung 
of asthmatics, namely IL-1β, IL-7, and IL-23 (104, 105). These two 
possibilities are not mutually exclusive. Of note, asthma exacerba-
tions are frequently associated with virus infections (104), which 
indirectly activate MAIT  cells through the induction of pro-
inflammatory cytokines (29, 95). MAIT cells then activated will 
secrete IFNγ and/or IL-17. Knowing that MAIT cells secrete low 
levels of Th2 cytokines, namely IL-4 and IL-13 (80–82, 88–90, 106),  
we cannot exclude the possibility that these lymphocytes will 
promote Th2 responses (Figure 1). However, as discussed before, 
asthma is a complex pathology that is not restricted to overpro-
duction of Th2 cytokines. Further, IL-17 and IFNγ production 
were associated with asthma severity in some steroid-resistant 
patients (107, 108). Overall, these studies have provided a basis for 
further analyses of the role of MAIT cells in asthma, potentially 
on steroid-resistant asthma, and of the mechanisms by which 
these cells affect asthma severity.

MAiT Cells and Pediatric Asthmatic 
Patients
Asthma is frequent in children, but little is known about the 
possible influence of MAIT  cells on the pathophysiology of 
this disease in childhood. We recently reported a similar frequ-
ency of circulating MAIT  cells between exacerbators and non- 
exacerbators, in a population of asthmatic children (75). However, 
the frequency of IL-17-producing MAIT (MAIT-17) cells was 
found to be positively correlated with the number of severe exac-
erbations and negatively correlated with the asthma control test 
(ACT) score (75). No significant modification of the frequency of 
IFNγ-producing MAIT cells was observed (109). These findings 
indicate a possible association of MAIT-17 cells with asthma 
symptoms. Interestingly, higher levels of IL-17 production by 
MAIT cells have been observed in a number of non-infections 
pathologies, such as obesity, type 2 diabetes, and inflammatory 
bowel disease (99, 100), indicating that mechanisms other than 
infections may favor IL-17 production by MAIT cells.

Another recent study reported that an association between 
a high frequency of circulating MAIT cells at 1 year of age and 
a lower risk of asthma by the age of 7 years (76). Furthermore, 
this high frequency of MAIT  cells was correlated with higher 
frequency of IFN-γ-producing CD4+ T  cells, indicating a pos-
sible protective effect of MAIT cells as children grow older (76). 
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IL-17 production by MAIT cells did not correlate with asthma 
in this study (110). Taken together, the results of these two stud-
ies suggest that MAIT-17 cells may be associated with asthma 
symptoms, whereas pro-Th1 MAIT cells may promote protection 
(75, 76).

COnCLUSiOn

Our understanding of the biology of both iNKT and MAIT cells 
and their role in asthma has increased considerably in recent 
years (Figure 1). As a result, many new questions have been 
raised concerning the mechanisms by which iNKT and 
MAIT cells could promote human severe asthma. For exam-
ple, time may be an important element, because asthma often 
begins early in childhood, when the number and functional 
properties of lung iNKT and MAIT cells may be fixed. Studies 

conducted in children may, therefore, be crucial. Analyses 
of circulating iNKT and MAIT  cells, as biomarkers, may be 
informative, but data for BALF and bronchial biopsies are 
still lacking. Finally, detailed analyses of the frequency and 
functional subsets of these cells in the context of different 
asthma endotypes may be crucial for the development of new 
therapeutic approaches.
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