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Real-time device-scale imaging of 
conducting filament dynamics in 
resistive switching materials
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Sangik Lee2, Chansoo Yoon2, Bae Ho Park2 & Gyu-Chul Yi1

ReRAM is a compelling candidate for next-generation non-volatile memory owing to its various 
advantages. However, fluctuation of operation parameters are critical weakness occurring failures in 
‘reading’ and ‘writing’ operations. To enhance the stability, it is important to understand the mechanism 
of the devices. Although numerous studies have been conducted using AFM or TEM, the understanding 
of the device operation is still limited due to the destructive nature and/or limited imaging range of the 
previous methods. Here, we propose a new hybrid device composed of ReRAM and LED enabling us to 
monitor the conducting filament (CF) configuration on the device scale during resistive switching. We 
directly observe the change in CF configuration across the whole device area through light emission 
from our hybrid device. In contrast to former studies, we found that minor CFs were formed earlier 
than major CF contributing to the resistive switching. Moreover, we investigated the substitution of 
a stressed major CF with a fresh minor CF when large fluctuation of operation voltage appeared after 
more than 50 times of resistive switching in atmospheric condition. Our results present an advancement 
in the understanding of ReRAM operation mechanism, and a step toward stabilizing the fluctuations in 
ReRAM switching parameters.

Resistive random access memory (ReRAM) is considered one of the promising non-volatile memory devices to 
overcome the limitations of Si-based flash memory due to its high operating speed, low power consumption, and 
high scalability1–3. However, fluctuations in its switching parameters during operation remain a critical weakness 
that leads to device failures4. To enhance the stability of the operation parameters, it is important to understand the 
switching mechanism of ReRAM devices. Recent studies using transmission electron microscopy (TEM)5–9 and 
conductive atomic force microscopy (C-AFM)10–12 have suggested that the formation of conducting filaments (CFs) 
in bulk or oxygen migration at the interface results in resistive switching. In particular, in situ TEM studies have 
shown the time evolution of CFs, which facilitates a microscopic understanding of the resistive switching mecha-
nism8,9. Nonetheless, the problem of the instability of switching parameters remains unsolved because the instabil-
ity is thought to involve the dynamics of single or multiple CFs at the device scale, whereas TEM or AFM studies are 
unsuited for simultaneously making real-time measurements at multiple spots over a large area. Here, we introduce 
a real-time device-scale imaging of the configuration of CFs by combining ReRAM and a light-emitting diode 
(LED) in a hybrid device, which offers a comprehensive understanding of the origin of resistive switching fluctua-
tions by monitoring the dynamics of multiple CFs in action during the ReRAM device operation.

Materials and Methods
Materials.  A GaN thin film was deposited on an Al2O3 (0001) substrate at three temperature steps: 540 °C 
for 2 min, 970 °C for 15 min, and 1080 °C for 1 h, at flow rates of 15–30 sccm of trimethylgallium (TMGa). The 
substrate was then heated at 1050 °C for 1 min with H2 and NH3, and a GaN-based p-n junction LED structure 
with In1−xGaxN/GaN multi quantum wells (MQW) was grown heteroepitaxially on the surface of the GaN thin 
film. First, a Si-doped n-GaN layer was deposited at flow rates of 15–30 sccm for TMGa and 1–3 sccm for dit-
ertiarybutyl silane. Then, eight-period In1−xGaxN/GaN MQWs were grown at 760 °C and 850 °C, respectively. 
Finally, a Mg-doped p-GaN layer was deposited on the top of the GaN quantum barrier layer at 1000 °C, using 
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biscyclopentadienyl magnesium as the doping source. Schematic structures of a ReRAM/LED hybrid device are 
shown in Fig. 1. To fabricate a ReRAM/LED hybrid device, a 35-nm-thick polycrystalline NiO film was prepared 
by DC reactive sputtering on a p-GaN/MQW/n-GaN/GaN/Al2O3 LED substrate at 500 °C and 1.5 mTorr pressure 
in an Ar +​ O2 gas mixture (7% O2). Pt top electrodes with dimensions of 100 ×​ 100 μ​m2 were deposited and pat-
terned using DC reactive sputtering and a conventional lift-off process, respectively, under the same conditions 
as described in our previous studies13–15. Lithography and BCl3 reactive ion etching were used for the exposure 
of n-GaN layers. Au/Ti (20/20 nm) bilayers were deposited on the n-GaN surface and annealed to make ohmic 
contacts and reduce contact resistance of the electrodes.

Electrical measurements.  I–V characteristic curves were measured using a Keithley 2400 sourcemeter in 
direct voltage scanning at room temperature and atmospheric pressure. Real-time video of light emitting from the 
ReRAM/LED hybrid device was acquired using an optical microscope and commercial digital camera; the time 
resolution of the video was 0.04 s. All of the video files are introduced in supplementary video 1 and 2.

Results and Discussion
Figure 1 presents a schematic of device fabrication and measurement set-up of the ReRAM/LED hybrid device. 
As the resistive memory material, a NiO thin film was deposited on a GaN-based LED. Then, Pt top electrodes 
were fabricated on the NiO/LED substrate. To access the underlying n-GaN as the bottom electrode, n-GaN lay-
ers were exposed by lithography and reactive ion etching, and Au/Ti were deposited by thermal evaporation (see 
Materials in Materials and Methods section). To observe the light emission behavior from the back side of the 
LED, the ReRAM/LED hybrid structure was flipped toward the microscope and camera.

Figure 1.  Schematics of device fabrication process and measurement set-up. (a–d) Pt and NiO thin film 
were deposited on the LED substrate. (e) The ReRAM/LED hybrid structure was flipped to measure light 
emission behavior through the microscope and camera.

Figure 2.  I–V characteristic curves of the ReRAM/LED hybrid structure during forming and reset/set processes 
and corresponding light emission images. (a) I–V characteristic curve and (b) light emission images of a ReRAM/
LED hybrid device during the forming and conventional reset/set processes. Light-emission images were obtained 
when the I–V characteristic curves reached the points marked with arrows and numbers during the resistive 
switching. A compliance current of Icomp =​ 10−4 A was set to prevent breakdown during the forming and set processes.
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The forming process of the hybrid device was first investigated using this set-up, during which a conducting 
path was created between the top and bottom surfaces of the NiO thin film upon application of a sufficiently large 
electric field. In Fig. 2a, the current – voltage (I–V) characteristic curve of the forming process shows clearly that 
sweeping the voltage to positive values above a forming voltage (Vforming =​ 8.20 V), with an appropriate compliance 
current to prevent breakdown, resulted in an abrupt increase in the current level. This voltage sweep above Vforming 
modified the state of the NiO film to a non-volatile low-resistance state (LRS). During the forming process, the 
light emission of the ReRAM/LED hybrid device was investigated in real time, which revealed the anomalous 
emergence of multiple current conduction spots. As shown in Fig. 2b–1,2, three light spots appeared, at spots A, 
B, and C, as the voltage was swept near point 2 (6.50 V, 4.12 μ​A). However, at point 3 (8.20 V, marked as Vforming, 
18.9 μ​A), where the current level increased abruptly, an additional light at spot D was observed. This suggests that 
the light at spot D, rather than that at spots A, B, and C, is related to the forming process. Meanwhile, the diame-
ters of the light spots are around 5 μ​m, much larger than the current path through the CF with its typical diameter 
of around 10 nm7,8, resulting presumably from divergence of the emitted light.

Figure 3.  Illustration of CF configuration in NiO thin film. (a) forming, (c) LRS, and (e) HRS states, and 
(b,d,f) their corresponding light emission images.
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The role of spot D was further confirmed by investigating the I–V characteristic curve and light emission in 
the LRS of the ReRAM/LED hybrid device. Sweeping the voltage from 0 V again after the forming process, as 
shown in Fig. 2a (red curve), the current conduction was many orders of magnitude larger than the initial sweep 
(black curve), signifying a LRS. During this step, only one light spot was observed at D, as shown in Fig. 2b–4, 
indicating that, of the four lighting spots A, B, C, and D in Fig. 2b–3, the resistance between the top and bottom 
surfaces of the NiO thin film was lowest at spot D. This indicated that only spot D developed a fully connected 
metallic conduction channel between the two surfaces, which is responsible for the forming behavior, while spots 
A, B, and C were likely due to leakage currents, as will be seen in more detail in subsequent experiments. Under 
this scenario, it may appear odd that the light intensity is weaker at spot D than at the other spots in Fig. 2b, 
despite hosting a much larger current than the other spots (note the logarithmic scale in Fig. 2a). This is due to the 
high temperature, near 800 °C, of the CF at spot D caused by Joule heating during CF formation16, which locally 
degraded the light emission efficiency of the LED.

Further sweeping of the voltage resulted in unipolar resistive switching behaviors between LRS and a high 
resistance state (HRS), where the switching from LRS to HRS is called a reset process, and from that HRS to LRS, 
a set process. During the reset process (Fig. 2a, red curve), according to the light emission from spot D even at low 
applied voltage marked as 1, we assume that the conducting filament (CF) at spot D is connected during the reset 
process, which results in flowing most of current via CF at spot D in contrast to the forming process. The current 
in LRS increases with the applied voltage up to Vreset, after which a step-like drop in current is seen, along with a 
simultaneous dimming of the light at spot D (Fig. 2a–5), indicating a switch from LRS to HRS. Conversely, sweep-
ing the voltage from 0 V again after a reset process results in a set process, where the current in HRS abruptly 
increases above Vset. Simultaneously, the light at spot D turns on (Fig. 2a–6), indicating a switch from HRS to LRS. 
These processes can be repeated multiple times to create 0 and 1 states of a non-volatile memory.

To examine the dynamics of light emission spots during resistive switching, we suggest the model illustrated 
in Fig. 3, which is based on observations of randomly grown CFs demonstrated by TEM and AFM in previous 
reports, namely the surface of the oxide thin film studied using AFM10–12 during resistive switching, and discon-
nected CFs near the top electrode observed at LRS using TEM7. Figure 3a,b, respectively, show the configuration 
of CFs and their light emission image during the forming process, depicting three minor CFs (spots A, B, and C) 
and a major CF (spot D). Light emissions at minor CFs observed at voltages as small as 6.50 V before the forming 
process at 8.20 V can be ascribed to leakage currents originating from insufficiently formed CFs and/or struc-
tural defects, which will be discussed in more detail in relation to the fluctuation behaviors to be seen shortly. 
These conduction spots do not accompany sudden jumps in current or light emission intensity, indicating that 
the overall conduction path remains non-metallic. After the major CF connects the top and bottom surfaces of 

Figure 4.  I–V characteristic curves of the ReRAM/LED hybrid structure during unstable reset and its subsequent 
set and corresponding light emission images. (a) an unstable reset process and (b) its subsequent set process.
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the NiO thin film under an applied electric field due to the forming process, the ReRAM device switches to LRS. 
Then, carriers are injected into the LED via the major CF, and light is emitted even at a low applied voltage near 
2.50 V, as illustrated in Fig. 3c,d. After a reset process, the major CF is ruptured, and the ReRAM device switches 
to HRS, as illustrated in Fig. 3e. Due to the ruptured CF, carrier injection into the LED is reduced markedly, and 
light emission disappears, as shown in Fig. 3f.

Repeating the switching experiments further, we were able to observe two different types of occasional ReRAM 
device fluctuation behaviors and to get glimpse the nature of the anomalous current conduction at the minor CFs. 
The first type of fluctuation involves an unstable reset process, as shown in Fig. 4a, where the major CF blinks fiercely 
during the voltage sweep in LRS and switches to HRS at an unusually high Vreset of 4.50 V. This is presumably because 
the major CF goes through soft ruptures and simultaneous formations due to the accumulated stress of repeated 
switching. Moreover, the subsequent set process, shown in Fig. 4b, reveals that the minor CFs can now emit light 
at a voltage as low as 3.60 V (as opposed to 6.50 V during the forming process, Fig. 2b–2). Meanwhile, if the light 
from spot A, B, and C are emitted by current flow through completely formed CFs, turn-on voltages of the spot A, 
B, and C would not be affected by previous unstable resistive switching process and they should be observed at the 
same voltage with in case of Fig. 2b–2. In more detail, if the origin of the light emission from spot A, B, and C are 
regarded as the leakage currents originating from incompletely formed CFs, decrease of the turn on voltages is able 
to be emerged by decrease of the distance between incompletely formed CFs and top electrode (increase of the leak-
age currents even at low voltage) resulting from repetition of soft rupture and soft formation processes introducing 
blinking of the light at spot D. This suggests that conducting paths from resistive switching were involved at spots A, 
B, and C, albeit in incomplete form (which is why we call them minor CFs), which grew over time during the switch-
ing processes to lower the threshold voltage for the light emission of the hybrid ReRAM/LED stack at those spots.

The second type of fluctuation involves a set process in which the major CF becomes stressed and causes 
switching from a different CF. Using a new device, we performed 50 consecutive resistive switchings and light 
emission imaging to investigate the unstable resistive switching characteristics. Figure 5a shows the Vset of the 
ReRAM/LED hybrid device in these measurements. At a forming voltage of 9.55 V, many light emission spots 
appeared, as shown in Fig. 5b, similar to the behavior seen in Fig. 2. After the forming process, normal set opera-
tions showed consistent set switching at voltages around 4.00 V associated with the major CF at spot E as shown 
in Fig. 5c. However, as is often observed in repeated ReRAM switching measurements4, we found a sudden 

Figure 5.  Fifty resistive switchings and real-time light emission. (a) Vset versus switching cycle and (b–d) 
light emission images obtained at several set processes during 50 resistive switchings. A new ReRAM/LED 
hybrid device was used for this experiment.
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increase in Vset at cycle #31 (marked as Abnormal), accompanied by a change in light emission configuration. 
For this cycle, spot E was dark, but there was a faint emission at spot A, as shown in Fig. 5d. This was attributed 
to the deterioration of the major CF at spot E and subsequent connection of an alternative minor CF at spot A 
at a higher voltage. Meanwhile, except in case of cycle #31, light emission is observed at spot E for every cycles. 
Individual I–V characteristic curves measured before and after cycle #31 (see Figure S1) show significantly differ-
ent current levels, supporting this explanation.

Conclusion
In conclusion, we propose a new hybrid structure composed of a ReRAM and LED that enables monitoring 
of the time evolution of CF configurations at the device scale during resistive switching. In contrast to former 
studies using in situ TEM or AFM, the change in CF configuration across the whole device area was observed in 
real time. Using the ReRAM/LED hybrid structure, conventional form/set/reset processes, as well as the fluctua-
tion behaviors during set and reset processes, were investigated. In particular, we observed that minor CFs were 
formed earlier than the major CF contributing to the resistive switching behavior. Furthermore, we investigated 
the unstable reset process accompanied by the growth of minor CFs and the fluctuation among set processes, 
where the configuration of the major CF was changed when a large fluctuation in operation voltage appeared. We 
believe that these findings further the understanding of the fluctuation behaviors in ReRAMs and present a step 
toward enhancing the reliability of ReRAM devices.
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