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Abstract
Brain entropy (BEN) mapping provides a novel approach to characterize brain temporal

dynamics, a key feature of human brain. Using resting state functional magnetic resonance

imaging (rsfMRI), reliable and spatially distributed BEN patterns have been identified in nor-

mal brain, suggesting a potential use in clinical populations since temporal brain dynamics

and entropy may be altered in disease conditions. The purpose of this study was to charac-

terize BEN in multiple sclerosis (MS), a neurodegenerative disease that affects millions of

people. Since currently there is no cure for MS, developing treatment or medication that can

slow down its progression represents a high research priority, for which validating a brain

marker sensitive to disease and the related functional impairments is essential. Because MS

can start long time before any measurable symptoms and structural deficits, assessing the

dynamic brain activity and correspondingly BENmay provide a critical way to study MS and

its progression. Because BEN is new to MS, we aimed to assess BEN alterations in the

relapsing-remitting MS (RRMS) patients using a patient versus control design, to examine the

correlation of BEN to clinical measurements, and to check the correlation of BEN to structural

brain measures which have beenmore often used in MS studies. As compared to controls,

RRMS patients showed increased BEN in motor areas, executive control area, spatial coordi-

nating area, and memory system. Increased BEN was related to greater disease severity as

measured by the expanded disability status scale (EDSS) and greater tissue damage as indi-

cated by the mean diffusivity. Patients also showed decreased BEN in other places, which

was associated with less disability or fatigue, indicating a disease-related BEN re-distribution.

Our results suggest BEN as a novel and useful tool for characterizing RRMS.

Introduction
Multiple sclerosis (MS) is an inflammatory central nervous system disease that causes physical
and psychiatric problems including weakness, visual loss, bowel, fatigue, mood symptoms, cog-
nitive issues, and psychiatry problems such as depression, anxiety, etc [1,2]. MS has an early
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disease onset, long disease duration, and a variable disease course, making acute diagnose diffi-
cult. More importantly, the cause of MS is still not clear and there is no known cure. Current
treatment research focuses on improving function after disease attack or preventing new
attacks. A critical step to developing such kind of treatment or medication is to find a bio-
marker sensitive to disease onset and disease progression. Since the last decade, brain imaging
has been increasingly used in MS to assess brain abnormality in MS. Structural MRI has been
shown to be useful for detecting focal abnormalities of white matter, atrophy and monitoring
disease evolution in MS [1]. But in the early course of disease, MS may not show detectable
structural deficits. Alternatively, functional brain activity may carry important brain signatures
sensitive to disease and its progression [1,3].

Functional brain alterations have been studied in MS using the task-evoked activity. But MS
is a slowly progressive neurodegenerative process with minimal apparent clinical symptom in
the initial phase [1,2,4]. Such “silent” degenerations may not become overt dysfunctions detect-
able by functional MRI (fMRI) through the task-invoked brain activation. Meanwhile, task per-
formance only causes less than increase 5% energy consumption. By contrast, the major
component of brain activity, spontaneous brain activity (SBA), accounts for most of brain
energy consumption [5], and assessment of this may provide a more sensitive way to detect
MS-related functional alterations. SBA is widely assessed using resting-state fMRI (rs-fMRI).
Several SBA features, such as functional connectivity (FC), the amplitude of low-frequency
fluctuations (ALFF) [6], have been examined in MS [7,8]. But the findings were somewhat
inconsistent to each other. While these discrepancies may reflect an inhomogeneity of disease
stages or population variability, they may also reflect a technical need for a more comprehen-
sive SBA measure rather than those empirical ones used in those studies.

Entropy is a statistical and physical index that measures the irregularity, and thereafter the
health of a dynamic system [9]. Higher entropy indicates increased randomness of a system,
meaning the dynamic system activity is less predictable and less organized. Using electrophysi-
ological data, entropy has long been used for assessing different brain states [10–14]. With
fMRI, we have recently demonstrated reliable and spatially distributed brain entropy (BEN)
patterns in normal brain [15,16]. The normal BEN distributions, however, may be altered in
disease conditions. Indeed, BEN alterations have been demonstrated in aging [17], schizophre-
nia [18] and attention deficit hyperactivity disorder (ADHD) [19]. In this study, we aimed to
explore BEN alterations in relapsing-remitting MS (RRMS) patients compared to age-matched
healthy controls. Since regional BEN reflects the dynamic state of the brain, it cannot be fully
characterized using any other methods. To evaluate BEN for MS, we collected rsfMRI data,
structural MRIs, and clinical measures from RRMS, which is in the early stage of MS. As an ini-
tial study, we expected to see MS-related BEN alterations and their correlations with micro-
structural brain deficits, and disease-related clinical measures.

Materials and Methods
All study procedures adhered to the Declaration of Helsinki and were approved by the Institu-
tional Review Board of the First Affiliated Hospital, Nanchang University, China. All of the
subjects provided written informed consent before participating in any study procedure.

Subjects
Thirty-four right-handed RRMS patients and 34 right-handed sex-, age-, and education level-
matched healthy subjects were recruited from the First Affiliated Hospital and local commu-
nity, respectively. All patients were diagnosed to be definite MS based on the McDonald’s crite-
ria [20], with clinical evidence of relapsing remitting course [20]. Patients were currently

Abnormal Functional Entropy in MS

PLOSONE | DOI:10.1371/journal.pone.0146080 January 4, 2016 2 / 11

role in the study design, data collection and analysis,
decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared
that no competing interests exist.



treated with immunomodulatory medication (29 with β-interferon, 5 with Glatiramer acetate).
None of them had any relapses or cortico-steroid treatment during the month preceding the
MR acquisition. The clinical and demographic data are listed in Table 1. Disability was charac-
terized with the expanded disability status scale (EDSS). Functional impairment faced by the
patients were evaluated in terms of processing speed and fatigue using the paced auditory serial
addition test (PASAT) and the modified fatigue impact scale 5 (MFIS-5), respectively.

Data acquisition
The following MRI scans were performed on a Trio 3.0 Tesla MRI scanner (Siemens, Erlangen,
Germany): 1) rs-fMRI with repetition time (TR)/echo time (TE) = 2000/30 ms, field of view
(FOV) = 200 × 200 mm2, matrix = 64 × 64, 30 interleaved axial slices with thickness = 4 mm
and inter-slice gap = 1.2 mm. 240 time points were acquired; 2) High resolution anatomical
scan using a three dimensional magnetization prepared rapid gradient echo (MPRAGE)
sequence with the following parameters: TR/TE = 1900/2.26 ms; matrix = 240 × 256 × 176;
FOV = 215 × 230 × 176 mm3; 3) Diffusion tensor imaging (DTI) with TR/TE = 7200/104 ms;
matrix = 128 × 128; FOV = 230 × 230 mm2; 49 axial slices (thickness = 2.5 mm); 64 nonlinear
gradient directions (b = 0, 1000 s/mm2); 4) Two dimensional structural MRI with a
T2-weighted sequence with TR/TE = 5100/117 ms; matrix = 416×416; FOV = 240×240 mm2;
number of excitations = 3; 22 axial slice with a thickness of 6.5 mm.

Image pre-processing and BENmapping
rsfMRI images were preprocessed using Data Processing Assistant for Resting-State fMRI
Advanced Edition (DPARSFA) V2.3 (http://rfmri.org/DPARSF_V2_3), which is based on
SPM8 (http://www.fil.ion.ucl.ac.uk/spm/software/spm8/) and Matlab 7.14.0 (Mathworks,
Natick, MA, USA). The same processing steps as in our previous study [21] were included: 1)
discarding the first 10 images to allow signal to reach stead state; 2) slice-timing correction and
motion correction; 3) registering rsfMRI to the Montreal Neurological Institute (MNI) stan-
dard brain space via each subject’s T1 weighted anatomical image and resampling them to
3-mm cube voxels. The high resolution structural MRI-based spatial registration was per-
formed using the diffeomorphic anatomical registration through exponentiated lie algebra
(DARTEL) algorithm provided in SPM8 [22]; 4) spatial smoothing with an isotropic Gaussian
kernel (full-width-at-half-maximum (FWHM) = 6-mm3); 5) linearly detrending and temporal
band-pass filtering (0.01–0.08 Hz) to eliminate high-frequency noise and low-frequency drift;

Table 1. Demographic and clinical information of the study population.

RRMS patients (remitting phase) Healthy controls P values

Gender (M/F) 13/21 13/21 > 0.99

Mean age (range) (years) 42.1 (20–58) 41.8 (21–58) 0.96

Mean disease duration (range) (months) 27.10 (1.5–150) n/a n/a

Median EDSS (range) 2.06(0–4) 0 n/a

Mean PASAT (range) 84.13 (61–103) 97.82(82–118) 0.001

Mean MFIS-5 (range) 11.29 (6–17) 0.29 (0–1) 0.000

Mean TWMLL (range) (ml) (normalized) 18.33(0.43–79.41) n/a n/a

Mean BPF (range) 0.829 (0.78–0.87) 0.86(0.82–0.88) 0.000

Note: BPF = brain parenchymal fraction, EDSS = expanded disability status scale; F = female; M = male; MFIS = modified fatigue impact scale; n/a = not

applicable; PASAT = paced auditory serial addition test; RRMS = relapsing-remitting multiple sclerosis, TWMLL = total white matter lesion load.

doi:10.1371/journal.pone.0146080.t001
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6) temporal nuisance correction using simple regression with the residual head motions, white
matter signal, and cerebrospinal fluid (CSF) signal as the co-variants [23]. Subjects were
excluded from further analyses if their mean head motions were greater than 2 mm in transla-
tions along any the 3 orthogonal axes and less than 2.0° in the 3 directional angular rotations.

After pre-processing, BEN mapping was performed using the Brain Entropy mapping tool-
box [15] (https://cfn.upenn.edu/~zewang/BENtbx.php). BEN was calculated at each voxel Sample
Entropy (SampEn) [24]. SampEn is an approximate entropy measure, which measures the tem-
poral coherence of a time series through calculating the “logarithmic likelihood” that a small sec-
tion (within a window of a length ‘m’) of the data “matches” with other sections will still “match”
the others if the section window length increases by 1. “match” is defined by a threshold< ‘r’
times standard deviation of the entire time series. Based on our previous work, the window length
was set to 3 and the cut off threshold was set to 0.6 [15]. Denoting the rsfMRI data of one voxel
by x = [x1,x2,. . .xN], whereN is the number of acquisitions, SampEn calculation starts with forming
a series of vector sequences, each withm consecutive points extracted from x: ui = [xi, xi + 1,. . .xi +
m − 1], where i = 1 toN −m + 1, and m is the pre-defined window size (3, as stated above). Using
a pre-specified distance threshold r (= 0.6), the number of embedded vectors uj(j = 1, toN −m, and
j 6¼ i) whose distance from uj are less than r is recorded by Bm

i ðrÞ. The same procedure is repeated
for the dimension ofm + 1 to get Bmþ1

i ðrÞ. By averaging across all possible vectors, we can get

BmðrÞ ¼ 1
ðN�mÞðN�mþ1Þ

XN�m

i¼1
Bm
i ðrÞ, AmðrÞ ¼ 1

ðN�mÞðN�m�1Þ
XN�m

i¼1

Bmþ1
i ðrÞ, and SampEn is calculated

as: SampEnðm; r;N; xÞ ¼ �ln AmðrÞ
BmðrÞ

h i
.

The collection of all voxels’ entropy values formed the BEN map, which was smoothed with
an isotropic Gaussian kernel (FWHM = 6mm3). A Fisher’s z-transform was applied to the BEN
maps before performing group level analysis.

Diffusivity measure calculations
DTI data were processed using Functional MRI of the Brain (FMRIB's) diffusion toolbox (fdt-
v2.0, http://fsl.fmrib.ox.ac.uk/fsl/FDT). Processing steps included image distortion correction,
motion correction, and spatial smoothing. Both fractional anisotropy (FA) and mean diffusiv-
ity (MD) were calculated. The consequent FA and MDmaps were registered with T1 image
using the b0 map as the registration reference, and were spatially normalized into MNI space
using the Non-linear Image Registration Tool (FNIRT) provided in FMRIB Software Library
(FSL).

Lesion load and brain atrophy evaluations
Lesion load was assessed using the total white matter lesion load (TWMLL) [25,26]. The proce-
dures for calculating TWMLL were the same as described in [25]. All visible lesions were iden-
tified from the T2 weighted image and a binary lesion mask was manually drawn with
MRIcron (http://www.nitrc.org/projects/mricron) by a radiologist (F.Z). The T2 weighted
image was coregistered with the T1 weighted structural image. The aforementioned T1 image-
based individual brain to MNI standard brain transform was used to warp the lesion mask into
the MNI space. The lesion load calculated from the spatially normalized lesion mask reflects
the TWMLL in relative to the standard brain volume rather than the individual brain volume
so that the effects of different brain volume were controlled. Lesions were re-measured on two
separate occasions (at least three months apart) in the patients, and the inter-rater reliability
was 92.6%.
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T1-weighted structural image was segmented into gray matter (GM), white matter (WM),
CSF using the new segmentation algorithm provided in SPM8. The GM andWM probability
images were then registered and warped into MNI space using the aforementioned DARTEL
process. The brain parenchymal fraction (BPF) was then calculated as the ratio of brain paren-
chymal (GM andWM) volume to the intracranial volume.

Statistical analysis
Cross-sectional BEN difference (RRMS vs controls) was assessed using a two-sample t-test
implemented in SPM8. Age, gender, and education level were included as nuisances. Statistical
inference was made with a threshold of p< 0.01 at the voxel-level and a cluster size> 50 at the
cluster level. The cluster level p-value was determined using the Monte Carlo simulation-based
multiple comparison correction implemented in the AlphaSim program in Analysis of Func-
tional NeuroImages (AFNI). 1000 permutations were performed.

Correlations between regional BEN and clinical symptoms (measured by EDSS and MFIS-
5) or DTI measures were examined using simple regressions in Statistical Product and Service
Solutions (SPSS version 13, Chicago, IL, USA). Mean BEN values were extracted from the
suprathreshold clusters identified in the above cross-sectional analysis. Significance level was
set be p< 0.05 with Bonferroni correction.

To validate the clinical implications of BEN vs clinical measure correlations, a leave-one-out
cross-validation was performed. At each validation, a prediction model was built using simple
regression based on the clinical measures and BEN values from n-1 (n = 34) patients. The clini-
cal symptom of the remained one subject was then predicted by feeding his/her BEN value into
the prediction model. The same process was then repeated by picking up a new subject as the
testing subject and the remained n-1 as the training samples until all subjects were tested. The
predicted values for all subjects were then correlated with the true values, and the correlation
coefficient was used as a prediction accuracy index of BEN for clinical measures.

ALFF analysis
Since BEN is still new in the literature, we calculated ALFF and repeated the above mentioned
group level analysis as a comparison. ALFF [6,27] was chosen because it is a regional SBA mea-
sure and it has been widely used in resting state studies [27]. Each voxel’s time series was trans-
formed into the frequency domain using Fourier transform, and ALFF was calculated as the
root of the sum of square of the magnitude of the frequency spectrum within the range of 0.01–
0.08 Hz. The ALFF map was subsequently transformed into z-scores using the Fisher's r-to-z
transformation.

Results
TWMLL and BPF calculation results were listed in Table 1. BPF was significantly lower in
RRMS than in controls.

Mean BENmaps
S1 Fig shows the mean BEN maps of the RRMS patients and healthy controls. Both maps
showed a clear entropy contrast between GM andWMwith lower entropy in GM.

Altered BEN in RRMS
BEN comparison results were shown in Fig 1A and Table 2. As compared to controls, RRMS
patients showed significantly increased BEN in bilateral supplementary motor area (SMA),
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right prefrontal cortex (PFC), and right angular gyrus, but decreased BEN in right precentral
operculum (PrCO), left middle temporal gyrus (MTG), bilateral parahippocampus (pHIPP),
brainstem, and right posterior cerebellum (pCB).

Clinical associations of BEN in RRMS
Fig 1B and S1 Table show the BEN vs clinical measure correlations. BEN in RRMS patients was
correlated with EDSS in bilateral SMA (R2 = 0.150, β = 0.387, p = 0.024) and PrCO (R2 = 0.129,
β = 0.359, p = 0.037), and correlated with the MFIS-5 scores in bilateral pHIPP (R2 = 0.138, β =
0.372, p = 0.030), brainstem (R2 = 0.143, β = 0.378, p = 0.028) and right pCB (R2 = 0.186, β =
0.431, p = 0.011). The accuracy of using bilateral SMA BEN to predict EDSS, using PrCO BEN to
predict EDSS, using bilateral pHIPP BEN for predicting MFIS-5, brainstem BEN for MFIS-5, and
right pCB BEN for MFIS-5 were R2 = 0.018 with p = 0.447, R2 = 0.116 with p = 0.048, R2 = 0.127
with p = 0.039, R2 = 0.134 with p = 0.034, and R2 = 0.141 with p = 0.029, respectively.

Fig 1. Altered BEN in the RRMS patients and its correlations to disability and structural measures. (A)
BEN difference between the RRMS patients and healthy control. Red and blue colors indicate increased and
decreased BEN, respectively. The color bars indicate the display window for t-values. (B) Correlations of
BEN in the RRMS patients to clinical measures. (C) BEN correlations with MD in the RRMS patients. Note:
BEN: brain entropy, EDSS: expanded disability status scale, LH: left hemisphere, MD: mean diffusivity, RH:
right hemisphere, pCB: posterior cerebellum, pHIPP: parahippocampal gyrus, PrCO: precentral operculum,
PFC: prefrontal cortex, RRMS = relapsing-remitting multiple sclerosis, SMA: supplementary motor area.

doi:10.1371/journal.pone.0146080.g001

Table 2. Brain areas of altered BEN in the RRMS patients compared with the healthy controls, p < 0.05, corrected for AlphaSim, cluster size� 50
voxels.

Cluster site Peak MNI coordination (x,y,z) Peak intensity (t values) Cluster size (voxel)

RRMS > Healthy control

1 Bilateral supplementary motor area (SMA) 0, -21, 51 2.96 79

2 Right prefrontal cortex (PFC) 15, 69, -3 3.43 53

3 Right angular gyrus 30, -69, 51 2.63 55

RRMS < Healthy control

4 Right precentral operculum (PrCO) 57, 3, 12 -3.35 86

5 Left middle temporal gyrus (MTG) -60, -27, -12 -3.19 127

6 Bilateral parahippocampal gyrus (pHIPP) -30, -27, -18 -3.93 627

7 Brainstem -6, 0, -18 -4.54 566

8 Right posterior cerebellum (pCB) 42, -69, -51 -3.44 118

Note: MNI = Montreal Neurological Institute; RRMS = relapsing-remitting multiple sclerosis.

doi:10.1371/journal.pone.0146080.t002
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BEN-structure correlations in RRMS
Fig 1C and S2 Table show the correlations between BEN and DTI measures in RRMS. BEN
was significantly correlated with local MD values in bilateral SMA (R2 = 0.135, p = 0.033, β =
0.367) and right PFC (R2 = 0.126, p = 0.039, β = 0.355); BEN in bilateral SMA (R2 = 0.124,
p = 0.041) and right PFC (R2 = 0.126, p = 0.039) predicted local microstructure tissue damage
as measured by MD. No significant relations were found between BEN and local FA values (p:
0.152 to 0.973), brain parenchymal fraction (p: 0.149 to 0.870), or T2 lesion volume (p: 0.057 to
0.996).

ALFF analysis results
As a comparison, Fig 2 and S3 Table show the results of ALFF-based analyses. RRMS patients
showed lower ALFF in frontal cortex but higher ALFF in temporal, parietal and visual cortex.
ALFF in RRMS patients was negatively correlated with EDSS in bilateral pHIPP (R2 = 0.118,
β = -0.344, p = 0.046), left pHIPP (R2 = 0.137, β = -0.370, p = 0.031), bilateral superior frontal
gyrus (R2 = 0.136, β = -0.403, p = 0.018), and bilateral PFC (R2 = 0.139, β = -0.372, p = 0.030).
However, there were no significant relations between ALFF and other clinical measures (p:
0.206 to 0.943).

Discussion
Resting BEN was assessed in RRMS using brain entropy mapping. BEN is a new metric recently
proposed for characterizing resting state brain activity [15,16, 28–30]. Different from other
resting state metrics such as FC, resting state networks, regional homogeneity, ALFF, etc, BEN
indicates the state of the temporal brain dynamics, measuring the irregularity of brain activity.
Higher irregularity means higher unpredictability, which may correspond to higher vulnerabil-
ity to internal or external disruptions. In this study, we found both increased and decreased
resting BEN in RRMS in areas involved in motor control, integration and execution (SMA,
PrCO, right pCB, and brainstem), cognitive control (PFC), spatial coordination (angular

Fig 2. Altered ALFF in the RRMS patients.Note: ALFF: amplitude of low frequency fluctuation, L: left, LH:
left hemisphere, R: right, RH: right hemisphere; RRMS = relapsing-remitting multiple sclerosis. The color bars
indicate the display window for t-values.

doi:10.1371/journal.pone.0146080.g002
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gyrus), and memory (MTG and pHIPP) function. While we don’t have data showing func-
tional alterations in the BEN-affected brain regions when patients are explicitly challenged
with a functional test, these regions have been identified in previously published functional or
structural brain studies in MS [31,32]. BEN alterations in those areas suggest an altered func-
tional temporal dynamics of the resting brain in RRMS, providing new and complimentary
information to functional brain differences in RRMS reported by the literature.

Increased BEN in SMA, angular gyrus, and PFC indicates more irregular (disordered) brain
activity therein than other locations. Since SMA, angular gyrus, and PFC are associated with
motor planning, spatial coordinating, and cognitive control, increased BEN in those regions is
consistent with the major symptoms of having difficulty of motion and spatial coordination,
and cognitive dysfunction in MS patients. In SMA, we further found a positive correlation
between BEN and EDSS, suggesting that BEN alteration in SMA is directly related with RRMS
with higher BEN corresponding to more severe disability. Using cross-validations, we further
showed that BEN is linearly predictive of functional impairments of RRMS patients, though
the BEN vs EDSS linear association didn’t survive cross-validations.

Reduced BEN was also observed in several brain regions, including PrCO, MTG, pHIPP,
brainstem, and pCB, indicating more regular resting state activity in RRMS in those regions.
Increased regularity in RRMS might represent a compensation mechanism [33] for the BEN
increase in the aforementioned areas when MS is still in the early stage (RRMS), which was fur-
ther supported by our clinical implication analysis results. By relating BEN to clinical measures,
we found that lower BEN in PrCO was related with less severe disease (EDSS); lower BEN in
pHIPP, rpCB, and brainstem was associated with lower fatigue level, a typical index for the
functional impairment suffered by MS patients. These data suggest that the compensation
might be manifested as a redistribution of BEN, meaning that some brain areas become more
regulated (or equivalently more temporally coherent) in order to compensate the reduced regu-
larity in the disease target area such as SMA.

To examine BEN’s connections with structural brain measures, we calculated its correla-
tions with several structural measures. Higher BEN was found to be associated with higher
level of local tissue damage (higher MD, S4 Table) in SMA and right PFC, suggesting that tissue
damage contributes to increase BEN in RRMS. Increased MD is typical in MS though might be
benign in RRMS [34]. Since MD is mainly dependent on the free space water, increased MD
may indicate axonal or myelin lesion or edema, which can all cause alterations to the regularity
of brain activity because those changes damage the physical inter-neuronal connections. Nev-
ertheless, the BEN-MD correlations proved that BEN is a meaningful brain index that coupled
with a structural brain measure.

We also compared BEN with a frequency analysis-based method, ALFF and found that
ALFF alteration patterns in RRMS only showed minor overlap with BEN alteration patterns in
temporal cortex. This difference clearly indicates that BEN provides a different view of brain
status that cannot be fully characterized by only examining a certain frequency band of the
entire signal (note that ALFF focuses on the low frequency band only). In the clinical measure
correlation analyses, ALFF only showed correlations to EDSS not to MFIS-5. These differences
suggest that BEN provides more comprehensive information about RRMS that cannot be char-
acterized by ALFF.

Several limitations were in the present study. First, we only studied the brain. Spinal cord
lesion is one key factor of MS that has been shown to be highly predictive of disability in MS
[35]. Future study may need to include that. Second, BEN calculation was based on SampEn in
this study, which has two parameters that may yield affect the estimated entropy but should
not affect the group-level entropy comparison results, as supported by additional analyses with
various different SampEn parameters (see S2 Fig).
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Conclusion
As an initial BEN mapping study in RRMS, our data suggest that MS disease-related functional
brain changes can be detected with BEN; BEN alterations reflect disease severity, functional
impairment, as well as regional micro-structural damages. Our findings suggest BEN as a
potential marker for associating MS-related disability, fatigue, or tissue damage, though these
findings should be re-assessed using independent cohorts or test-retest data.

Supporting Information
S1 Dataset. Brain entropy analysis of RRMS patients and HC groups.
(ZIP)

S2 Dataset. ALFF analysis of RRMS patients and HC groups.
(ZIP)

S1 Fig. Whole brain entropy maps of healthy control (A) and the RRMS (B) group (one
sample t-test) in different pre-specified distance threshold (r values).Warm and cold colors
denote higher and lower than the mean of whole brain, respectively. Images are displayed in
radiological convention.
(TIF)

S2 Fig. Map wise brain entropy (BEN) alterations in the RRMS patients (vs. healthy con-
trol) in different pre-specified distance threshold (r values), p< 0.05, cluster size� 50 vox-
els (1350 mm3), with corrected. Red and blue colors denote increased and decreased BEN,
respectively. The color bars indicate the t-values. Images are displayed in radiological conven-
tion. Exemplary the BEN values altered pattern of the left pHIPP (F) and the bilateral SMA (G)
in different pre-specified distance threshold (r values). The broken line means the compared t
values of two groups in different pre-specified distance threshold (r values). For examples, the
masks of the left pHIPP and the bilateral SMA were extracted based on the union of the altered
BEN maps from the different pre-specified distance threshold conditions.
(TIF)
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