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Abstract: Without using templates, seeds and surfactants, this study successfully prepared
multi-oxide-layer coated Ag nanowires that enable tunable surface plasmon resonance without
size or shape changes. A spontaneously grown ultra-thin titania layer onto the Ag nanowire surface
causes a shift in surface plasmon resonance towards low energy (high wavelength) and also acts as a
preferential site for the subsequent deposition of various oxides, e.g., TiO2 and CeO2. The difference
in refractive indices results in further plasmonic resonance shifts. This verifies that the surface plasma
resonance wavelength of one-dimensional nanostructures can be adjusted using refractive indices
and shell oxide thickness design.
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1. Introduction

Metal-oxide core-shell nanowires have emerged to improve the functionality and applicability
of metal nanowires. For instance, Ag@TiO2 nanowires show many advantages when used as the
photoelectrodes for dye-sensitized solar cells [1–4], e.g., the prevention of electron-hole recombination
and anti-corrosion from electrolytes. Moreover, the surface plasmon resonance of core-shell
nanostructures encourages the enhanced localized electromagnetic field, which provides light
absorption improvements by dye molecules and thus, a better harvesting efficiency than traditional
TiO2 electrodes.

CeO2 is also a major oxide shell material. Zhang et al. [5] reported that for Ag@CeO2 nanospheres
the oxygen storage capability of the CeO2 shell significantly improves the catalytic properties and
reduces the conversion temperature for CO oxidation, which can be ascribed to oxygen vacancies
generation to provide abundant absorption sites for oxygen species due to the interfacial interactions
between the Ag core and CeO2 shell.

With respect to synthetic one-dimensional metal-oxide core-shell nanostructure production
methods, Dong et al. [6] used hydrolysis with post-annealing to obtain an anatase TiO2 shell
on Ag nanowires. However, the Ag core could be damaged or even disrupted. Eom et al.
proposed a sophisticated and complicated process [7], including the application of a nanoimprint
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and evaporation techniques to fabricate Ag nanowires onto polymer templates. This was followed
by TiO2 electrodeposition onto the Ag nanowire surface. Most metal/CeO2 core-shell structures are
successfully synthesized in the form of nanoparticles, but only a few researchers have developed
core-shell nanowires. One relevant project was conducted by Galicia et al. [8], who applied the sol-gel
precipitation method to produce Ag@CeO2 nanotubes with Kirkendall voids by leveraging a faster
CeO2 shell diffusion rate than that of the Ag core. The majority of core-shell nanowires synthesized
using the aforementioned methods come with amorphous shells. An annealing process is needed to
improve oxide crystallization.

Core-shell nanowires with a metal core and dual-oxide shells comprising native oxides are the only
ones that have been successfully synthesized, e.g., Cu/Cu2O/CuO or Cu/Cu2O/ZnO [9,10]. Our group
successfully synthesized template-free and surfactant-free Ag nanowires with a uniform spontaneous
ultra-thin titania shell (~0.5 nm) on TiO2 coated Si substrate [11]. The titania was denoted as TiO2−x
due to a deficiency of oxygen. Using these ultra-thin TiO2−x coated Ag wires as the template, this study
proposes a facile method to prepare metal-cored nanowires with multi-oxide shells. Electron energy
loss spectroscopy (EELS) and UV-visible spectroscopy were conducted to explore the influence of oxide
shell variation on the Ag nanowire plasmon resonance properties.

2. Experimental Procedures

Figure 1 illustrates the workflows used to synthesize Ag-cored nanowires with multi-oxide shells.
TiO2 thin films were prepared via the sol gel method by dipping Si wafers into the gels and then
were spun at 1000 rpm for 30 s. The TiO2 solutions consisted of isopropylalcohol (IPA)/titanium
isopropoxide (TTIP)/hydrogen chloride (HCl) with a volume ratio of 170:12:0.4, which were aged at
room temperature (20 ◦C) for 2 days before dipping. The coated samples were annealed at 500 ◦C in an
oxygen atmosphere for 8 h to achieve better crystallinity.
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Figure 1. Synthesis process schematic illustration of the steps for obtaining Ag nanowires with
multi-oxide-shells, including step 1. UV irradiation on TiO2 substrate, step 2. Dropping AgNO3

solution on TiO2 substrate, step 3. Heat treatment for forming Ag nanowires, and step 4. Coating of
outer oxide shells, as well as the TEM analytical results of the synthesized Ag nanowires (TEM image
and selected-area diffraction pattern).
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Fifteen µL of 0.05 M silver nitrate (I) (AgNO3) solution was dropped onto the TiO2 substrate,
and then subjected to proper UV exposure (Step 1 and 2 in Figure 1) [12]. A heat treatment was
conducted at 300 ◦C for 3 h followed by furnace-cooling (Step 3). The parameters of the heat treatment
for nanowire synthesis were determined based on our previous investigations [12,13]. The TEM image
and selected area diffraction pattern given in Figure 1 verify that the obtained Ag nanowires were
single crystalline growing towards (220). The average wire diameter ranged from 100~150 nm, and the
average length was 8.3 µm. In step 4, the synthesized Ag@TiO2−x nanowires served as templates and
were dipped into 0.05 M titanium tetrachloride (TiCl4) or ammonium ceric nitrate (Ce(NO3)3·6H2O)
aqueous solutions. Reactions were held at 200 ◦C for 4 h.

A GIXRD (grazing incidence X-ray diffraction, Bruker D8 Discover SSS, Billerica, MA, USA)
was used to analyze the crystalline phase (at the parameters Cu kα (40 kV 100 mA); λ = 0.15418 nm;
incidence angle = 2θ; scan range = 20◦–60◦; scan speed = 2◦ per minute). Using small incident angles
for the incoming X-ray beam, the diffractions can be made surface-sensitively, and are suitable for
detecting the oxide shells on Ag nanowires. A scanning electron microscope (JEOL JSM-6500F, Tokyo,
Japan) and transmission electron microscopy (Philips Tecnai G2 and Nion USTEM200, Kirkland, WA,
USA) with an acceleration voltage set at 200 kV were used for microstructural observation. Elemental
line scanning and mapping were performed using EELS, which was equipped in a Nion USTEM200
operated at either 100 or 200 keV. The low loss spectra were acquired with an energy dispersion of
typically 20 meV per channel, millisecond acquisition time and an energy resolution of 0.3 eV. A UV-Vis
spectrophotometer (Jasco V-670, Easton, MD, USA) was also used to measure absorption peaks using
surface plasmon resonance.

3. Results and Discussion

Figure 2 presents the HAADF (high-angle annular dark-field) image and EELS mapping results
for Ag nanowires, indicating an ultra-thin oxide layer with the thickness of around 1 nm that uniformly
covered the whole wire surface. Our previous study [11,13] revealed that this ultra-thin oxide
spontaneously forms during nanowire growth. The spontaneously grown thin oxide layer is oxygen
deficient and the Ti valence is between Ti4+ and Ti3+. Therefore, the Ag nanowires could be denoted
using Ag/TiO2−x. Figure 3 shows the XRD diffraction pattern of Ag nanowires (Ag/TiO2−x) and
those coated with TiO2 and CeO2 (Ag/TiO2−x/ TiO2 and Ag/TiO2−x/CeO2). For Ag/TiO2-x samples,
only diffraction peaks of Ag were detected. In addition to the Ag diffraction peaks, Ag/TiO2−x/TiO2

nanowire samples also reveal anatase-TiO2 signals, while Ag/TiO2−x/CeO2 nanowires show both the
Ag and CeO2 diffraction peaks.
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Figure 2. (a) high-angle annular dark-field (HAADF)-STEM image and (b) EELS mapping of Ag NW
edge grown onto the TiO2 substrate after heating at 300 ◦C for 3 h. The elemental mapping was slightly
shifted due to specimen drift.
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Figure 3. GIXRD patterns of the Ag/TiO2−x, Ag/TiO2−x/TiO2 and Ag/TiO2−x/CeO2 NWs (The shell
thicknesses were 1 nm for TiO2−x, 5–7 nm for TiO2, and 4–6 nm for CeO2).

Figure 4 presents the microstructural analytical results for Ag/TiO2−x/TiO2 nanowires.
STEM-HAADF and EELS elemental mapping images (Figure 4a,b) display a continuous second
phase enriched with Ti and O formed on the Ag nanowires surface with a layer thickness of about
5–7 nm. The lattice spacing of (101) planes, 0.35 nm (Figure 4c), again identifies the outmost oxide shell
was anatase TiO2. STEM-HAADF images and corresponding EELS elemental mapping, respectively,
shown in Figure 5a,b clearly show the dual shell feature of Ag/TiO2−x/CeO2 nanowires, i.e., Ti-rich inner
shell and Ce-rich outer shell. The thicknesses of inner and outer shells were about 1 nm and 4–6 nm,
respectively. The lattice spacing, 0.31 nm shown in Figure 5c, is consistent with that of CeO2 (111)
planes. The selected area diffraction patterns, Figure 5d, reveal spots from crystalline Ag nanowire and
rings from CeO2 nanocrystals. TiO2−x between the Ag wire and CeO2 was too thin to be observed
in Figure 5d.
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Figure 4. Microstructure analytic results of the outmost oxide shell of a Ag/TiO2−x/TiO2 nanowire:
(a) STEM-HAADF image, (b) EELS elemental mapping taken from the marked region in (a),
(c) HRTEM images.
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Figure 5. Ag/TiO2−x/CeO2 nanowire oxide shell microstructure analytical results: (a) HAADF image,
(b) EELS elemental mapping taken from the marked region in (a) (point 1, point 2 and point 3 indicate
Ag wire, TiO2−x and CeO2, respectively), (c) HRTEM images, and (d) selected area diffraction patterns.

Unlike previous studies, the multi-oxide shell developed in our case is comprised of TiO2−x,
TiO2, and CeO2, which are other than native oxides of metal cores (e.g., copper oxides to copper).
This can be referred to as the spontaneously formed oxide shell, TiO2−x, which serves as a buffer
layer enhancing subsequent oxide adsorption and deposition, and thus facilitates the formation of
multi-oxide shell metal-cored nanowires. It has been proposed that the TiO2−x shell forms through Ti
oxidation which is repelled from single-crystalline Ag during nanowire crystallization, and Ti is from
TiO2 substrate dissolution in molten salt [11]. Ag@CeO2−x nanowires can also be prepared using the
same spontaneous growth method [14], thereby CeO2−x can be developed as an alternative for the
inner oxide shell.

Figure 6a illustrates the UV-Vis spectra of Ag@TiO2-x nanowires and those with TiO2 or CeO2

outer oxide shells. Ag@TiO2−x shows an absorption peak at 408 nm. It is worth noting that further
coating with a second oxide shell, TiO2 or CeO2, gave rise to a red shift in the absorption peaks
to 426 nm (Ag/TiO2−x/TiO2) and 420 nm (Ag/TiO2−x/CeO2). The low-loss EELS region (Figure 6b)
indicates Ag nanowires without any oxide shell and surfactants exhibited a localized surface plasmon
resonance (LSPR) at 3.40 eV (364 nm) [15,16]. SPR can be red-shifted due to spontaneously-grown
ultra-thin oxide shell (inner shell) as well as an additional oxide layer (outer shell). As illustrated, LSPR
appeared at 3.25 eV (382 nm) for Ag/TiO2−x nanowires. A thicker extra oxide layer resulted in a greater
shift, i.e., 3.16 eV (392 nm) for Ag/TiO2−x/CeO2 nanowires and 3.08 eV (403 nm) for Ag/TiO2−x/TiO2.
The above results imply that the LSPR location can be tuned by the number of layers and oxide shell
material selection, as well as the thickness control.
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of EELS.

Studies on Ag-TiO2 and Ag-Al2O3 core-shell clusters [17,18] suggest that when the outer oxide
layer refractive indices are greater than those of the inner metal, surface plasmon resonance shifts will
be generated. The incident beam polarization affects the refracted beam. That is to say, a refracted beam
is damped or attenuated. Its amplitude decreases as a function of the penetration depth. The higher
the embedding medium refractive index, the greater the incident beam will be the polarized, which
will weaken the restoration forces inside the polarized particles. This gives rise to the excitation of
another oscillation mode resulting in resonance shifting towards the higher wavelength side or lower
energy side.

With respect to the oxide shells in our cases, the TiO2 refractive index is 2.54 [19], while that of
CeO2 is 2.2 [19]. The fact that TiO2 has a higher refractive index than CeO2 explains the greater red
shift in TiO2-covered nanowires compared to Ag/TiO2−x/CeO2 nanowires.

4. Conclusions

A simultaneously-grown ultra-thin oxide on the Ag nanowire surface leverages the buffering
characteristics for developing multi-oxide shell metal-cored nanowires. The EELS mapping
demonstrates that an ultra-thinTiO2−x layer with a thickness of about 1 nm fully covers Ag nanowires.
Further deposition of similar or dissimilar oxides can proceed readily. The spectra results at the low-loss
peak region verify surface plasmon peak resonance variation. The covering of one spontaneous TiO2−x
layer at approximately 1 nm on the Ag nanowire surface causes the shift in surface plasmon resonance
toward low energy (high wavelength). Additional outer oxide shells magnify the shift. The LSPR shift
can be controlled through the oxide refractive index selection. This study sheds light on the possibility
for one-dimensional nanostructure preparations that enable tunable surface plasmon resonance without
shape changes.
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