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A B S T R A C T   

Objective: This study aimed to investigate and validate the effectiveness of diverse radiomics 
models for preoperatively differentiating lymphovascular invasion (LVI) in clinically node- 
negative breast cancer (BC). 
Methods: This study included 198 patients diagnosed with clinically node-negative bc and path
ologically confirmed LVI status from January 2018–July 2023. The training dataset consisted of 
138 patients, while the validation dataset included 60. Radiomics features were extracted from 
multimodal magnetic resonance imaging obtained from T1WI, T2WI, DCE, DWI, and ADC se
quences. Dimensionality reduction and feature selection techniques were applied to the extracted 
features. Subsequently, machine learning approaches, including logistic regression, support 
vector machine, classification and regression trees, k-nearest neighbors, and gradient boosting 
machine models (GBM), were constructed using the radiomics features. The best-performing 
radiomic model was selected based on its performance using the confusion matrix. Univariate 
and multivariable logistic regression analyses were conducted to identify variables for developing 
a clinical-radiological (Clin-Rad) model. Finally, a combined model incorporating both radiomics 
and clinical-radiological model features was created. 
Results: A total of 6195 radiomic features were extracted from multimodal magnetic resonance 
imaging. After applying dimensionality reduction and feature selection, seven valuable radiomics 
features were identified. Among the radiomics models, the GBM model demonstrated superior 
predictive efficiency and robustness, achieving area under the curve values (AUC) of 0.881 
(0.823,0.940) and 0.820 (0.693,0.947) in the training and validation datasets, respectively. The 
Clin-Rad model was developed based on the peritumoral edema and DWI rim sign. In the training 
dataset, it achieved an AUC of 0.767 (0.681, 0.854), while in the validation dataset, it achieved an 
AUC of 0.734 (0.555–0.913). The combined model, which incorporated radiomics and the Clin- 
Rad model, showed the highest discriminatory capability. In the training dataset, it had an AUC 
value of 0.936 (0.892, 0.981), and in the validation dataset, it had an AUC value of 0.876 (0.757, 
0.995). Additionally, decision curve analysis of the combined model revealed its optimal clinical 
efficacy. 
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Conclusion: The combined model, integrating radiomics and clinical-radiological features, 
exhibited excellent performance in distinguishing LVI status. This non-invasive and efficient 
approach holds promise for aiding clinical decision-making in the context of clinically node- 
negative BC.   

1. Introduction 

Metastasis is a leading cause of breast cancer (BC) recurrence, treatment failure, and tumor-related deaths. Even in patients with 
clinically node-negative BC, approximately 25–33 % of cases experience axillary lymph node involvement following a sentinel lymph 
node biopsy [1,2]. Lymphovascular invasion (LVI) plays a crucial role in lymph node involvement and is considered a potential 
biomarker for chemoresistance during neoadjuvant chemotherapy [1–3]. Moreover, LVI influences surgical interventions and helps 
determine optimal resection margins [4]. However, identifying LVI preoperatively remains challenging in clinical practice, despite the 
recommended preoperative determination to provide individualized and precise treatment for BC patients. Thus, early prediction of 
LVI should be further explored to establish reliable techniques for its accurate detection in patients with invasive BC. 

Furthermore, magnetic resonance imaging (MRI) offers high spatial resolution and enables comprehensive characterization of the 
entire BC lesion through multimodal imaging, and its role in assessing LVI in BC is increasingly being studied. For example, previous 
reports have associated various clinical-radiological (Clin-Rad) features with LVI, including older age, peritumoral edema, adjacent 
vessel sign, diffusion-weighted imaging (DWI) rim sign, kinetic enhancement curve, and peritumor/tumor apparent diffusion coef
ficient (ADC) [5–8]. However, the accuracy and reliability of these features in distinguishing LVI status can sometimes be uncertain, as 
they mainly rely on physicians’ expertise. 

Moreover, radiomics has emerged as a promising field, offering a comprehensive quantification of tumor types by extracting and 
analyzing numerous image features [9]. Several applications of radiomics analysis in assessing LVI using advanced algorithms and 
artificial intelligence have been reported [10–13]. Achieving successful radiomics outcomes requires the development of reliable, 
highly accurate, and efficient predictive models. Therefore, it is crucial to compare different machine learning models based on 
radiomics-derived clinical biomarkers [14]. However, to the best of our knowledge, there has been no studies investigating the use of 
various radiomics-based models for distinguishing LVI status. Therefore, this study aimed to develop and validate a multimodal 
MRI-based combined model of radiomics and Clin-Rad features using different machine learning approaches to distinguish LVI status 
accurately. 

2. Materials and methods 

2.1. Patient population 

This retrospective study was conducted from January 2018 to July 2023 and was approved by the Ethical Review Board of Xiangtan 
Central Hospital (No. 2022-09-004). Informed consent was waived due to the study’s retrospective design. 

Fig. 1. Flowchart illustrating the patient enrollment process for the study.  
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This study included 384 patients diagnosed with clinically node-negative BC who underwent either modified radical mastectomy or 
breast-conserving surgery at our hospital between January 2018 and July 2023, with the study period divided into two datasets: a 
training dataset consisting of patients treated from January 2018–January 2022, and a validation dataset consisting of patients treated 
from February 2022–July 2023. 

2.2. Inclusion and exclusion criteria 

We included patients who have met the following inclusion criteria: i) had visible primary breast lesions on MRI, ii) were newly 
diagnosed with BC and underwent potentially curative surgery, and iii) underwent surgery within 2 weeks after undergoing MRI scans. 
We excluded patients meeting any of the following exclusion criteria: i) had previously undergone a biopsy of the breast lesion before 
the MRI scans, ii) had received neoadjuvant chemotherapy preoperatively, or iii) had MRI of insufficient quality, limiting the feasi
bility of manual segmentation. Fig. 1 shows a flowchart depicting the patient inclusion process. 

2.3. MRI examination 

First, patients underwent axial fat-suppressed T2-weighted imaging (T2WI), axial non-fat T1-weighted imaging (T1WI), diffusion- 
weighted imaging (DWI), apparent diffusion coefficient (ADC), and dynamic contrast-enhanced MRI (DCE-MRI) in the prone position. 
The imaging was then performed using a 1.5-T MAGNETOM Aera MRI scanner (Siemens Healthcare, Erlangen, Germany) with an 18- 
channel surface breast coil. Next, the imaging protocol comprised axial fat-suppressed T2WI (inversion time, 165 ms; TR/TE, 4830/48; 
flip angle, 170◦; field of view [FOV], 340–340 mm; acquisition matrix [Acq], 336 × 448; average, 2; slice thickness, 4 mm); axial T1WI 
(TR/TE, 8.08/4.77; flip angle, 20◦; FOV, 320–320 mm; Acq, 336 × 448; average, 1; slice thickness, 1.1 mm); DWI with b-values of 
0 and 1000 s/mm2 (TR/TE, 7460/66; FOV, 153–340 mm; Acq, 72 × 160; slice thickness, 5 mm); and DCE-MRI (TR/TE, 5.03/2.39; flip 
angle, 10◦; FOV, 360–360 mm; Acq, 218 × 256; average, 1; slice thickness, 1.6 mm). Gadoteric acid meglumine salt, a contrast agent, 
was injected at a rate of 3 mL/s through a high-pressure injector at a dose of 0.2 mL/kg. After acquiring pre-contrast images, the 
contrast agent was administered, and flushed by a 20-mL isotonic sodium chloride solution injection. Finally, six consecutive scans of 
90 s each were performed. 

2.4. Histopathological examination 

The excised tumor samples were immersed in 10 % formalin, then embedded in paraffin and sliced into 4-μm-thick sections. These 
sections were later stained with hematoxylin and eosin. To assess LVI, the resected tissue samples were examined under a microscope, 
with special focus on locating tumor cells within the vascular spaces. LVI refers to the presence of tumor cells within lymphatic or blood 
vessels, and its accurate identification and characterization require thorough histopathological analysis conducted by experienced 
pathologists. 

2.5. MR image analysis 

The MR images were evaluated using monitors integrated into a picture archiving and communication system (PACS). All images 

Fig. 2. The patient is a 49-year-old female diagnosed with invasive breast cancer and lymphovascular invasion. Preoperative multimodal MRI 
(T1WI, fs-T2WI, DCE, DWI, ADC) was performed, revealing typical MR morphological features: peritumoral edema (indicated by the red arrows) 
and DWI rim sign (indicated by the blue arrows). 
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were anonymized, randomized, and independently assessed by two experienced radiologists specializing in breast MRI interpretation. 
Discrepancies were resolved through consensus discussions. Radiologists based their interpretations on specific conventional features 
observed in the findings of MRI. 

Moreover, peritumoral edema was visually assessed on fat-suppressed T2WI, where hyperintensity surrounding the tumor mass 
indicated its presence [5]. Fat-suppressed T2WI were also used to evaluate subcutaneous edema, skin thickening, or high signal in
tensity within the subcutaneous tissue [6]. In addition, intratumoral high signal intensity was identified as signal intensity greater than 
that of the surrounding breast tissue on fat-suppressed T2W images [6]. The DWI rim sign was defined as a hyperintense rim visible on 
DWI, outlining either ≥90 % of the lesion (complete) or <90 % (incomplete) [7]. adjacent vessel sign determination involved 
examining vessels entering the enhanced lesion or in contact with its edge [6], while increased ipsilateral vascularity as a higher 
number of vessels within the breast affected by cancer compared to the contralateral breast, with a difference of one or more vessels 
[6]. Internal enhancement patterns were classified into three categories: homogeneous, heterogeneous, or exhibiting rim enhancement 
[7]. Fig. 2 presents the characteristic morphological features of a typical MR image alongside a pathological image depicting the 
presence of LVI. 

2.6. Image segmentation and radiomic feature extraction 

First, the T2WI, DCE, DWI, and ADC maps of all patients were obtained from PACS. These images underwent preprocessing to 
standardize the gray-level intensity ranges and were resampled to a voxel size of 1 × 1 × 1 mm3, following which they were imported 
into the open-source software, three-dimensional (3D) Slicer (version 4.6; https://www.slicer.org). This software is commonly used for 
medical image informatics, processing, and 3D visualization [15]. 

Initially, a radiologist with 5 years of experience in MRI of breast lesions manually and volumetrically delineated the region of 
interest (ROI). Subsequently, another radiologist with 10 years of experience in the same field reviewed and adjusted the lesion 
delineation accordingly. 

ROI delineation followed specific guidelines, which included aligning five modal images (T1WI, T2WI, DCE, DWI, and ADC) 
through image registration. For this purpose, we used the 3D Slicer software, specifically the Elastix module. The Elastix module offers 
different preset registration methods. In this study, we utilized the 3D DCE-MRI (breast) method, which is designed for breast analysis. 
By applying a registration algorithm with a selected set of parameters, we accurately aligned the phase I image, which had the highest 
intensity in the DCE images, with the anatomical features and positioning of the other modal images. After the alignment, we 
delineated the ROIs along the tumor margin. To generate a mask representing the entire tumor, we utilized the phase I image and 
transferred it to the other modal images. 

2.7. Radiomics feature dimensionality reduction and selection 

The Pyradiomics function package (https://pyradiomics.readthedocs.io) was utilized to extract radiomic features from DCE, T2WI, 
DWI, and ADC maps [16]. The process involved three main steps. First, a Z-score transformation method was applied to standardize the 
scale of each radiomics feature, reducing dimensional heterogeneity caused by varying values. Next, the minimum redun
dancy–maximum correlation (mRMR) approach was used to select the most relevant tumor classification features while minimizing 
redundancy. For the feature selection phase, the LASSO regression model with 10-fold cross-validation (CV) was employed to identify 
features with non-zero coefficients. These procedures were then carried out on the training dataset and subsequently applied to the 
validation dataset. Fig. 3 shows the radiomics process, showcasing ROI delineation, feature extraction, dimensionality reduction, and 

Fig. 3. Visual representation of the radiomics process, depicting ROI delineation, feature extraction, dimensionality reduction, and 
feature selection. 
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feature selection. 

2.8. Development of radiomics signature models 

After conducting feature dimensionality selection using LASSO regression, the radiomic features were further refined using ma
chine learning. The final selection of radiomic features was then used to build robust radiomics models with the goal of identifying a 
classifier that has exceptional recognition capabilities within the provided dataset. In present study, we considered five prominent 
training models: logistic regression (LR), support vector machine (SVM), classification and regression trees (CART), k-nearest 
neighbors (KNN), and gradient boosting machine (GBM). 

The “caret” R package was used in this study to explain five machine learning approaches. During the model training process, a 
control object was defined with 10-fold CV, the summaryFunction was set to “twoClassSummary,” allowing retrieval of predicted 
probabilities for different models. The LR, SVM, CART, KNN, and GBM were trained using the corresponding functions “glm,” 
“svmLinear,” “rpart,” “knn,” and “gbm,” respectively. We compared the diagnostic performance of these models using the area under 

Table 1 
Comparison of clin-rad features between the training and validation datasets.  

Variables Total (n = 198) Training dataset (n = 138) Validation dataset (n = 60) p-value 

LVI status, n (%)   0.174 
LVI(− ) 151 (76.3) 101 (73.2) 50 (83.3)  
LVI(+) 47 (23.7) 37 (26.8) 10 (16.7)  
Age, Median (Q1,Q3) 51 (45, 57.8) 51 (45, 58) 50 (44, 56.2) 0.434 
Menopausal status, n (%)   0.711 
Premenopausal 100 (50.5) 68 (49.3) 32 (53.3)  
Postmenopausal 98 (49.5) 70 (50.7) 28 (46.7)  
Location, n (%)   1 
Left 106 (53.5) 74 (53.6) 32 (53.3)  
Right 92 (46.5) 64 (46.4) 28 (46.7)  
TIC curves, n (%)   0.871 
Type I 11 (5.6) 8 (5.8) 3 (5)  
Type II 67 (33.8) 45 (32.6) 22 (36.7)  
Type III 120 (60.6) 85 (61.6) 35 (58.3)  
FGT density, n (%)   0.77 
Dense 48 (24.2) 33 (23.9) 15 (25)  
Heterogeneously dense 71 (35.9) 47 (34.1) 24 (40)  
Scattered 52 (26.3) 39 (28.3) 13 (21.7)  
Predominantly fatty 27 (13.6) 19 (13.8) 8 (13.3)  
BPE, n (%)    0.813 
None/minimal 48 (24.2) 36 (26.1) 12 (20)  
Mild 83 (41.9) 56 (40.6) 27 (45)  
Moderate 43 (21.7) 29 (21) 14 (23.3)  
Marked 24 (12.1) 17 (12.3) 7 (11.7)  
Intratumoral high signal intensity, n (%)  0.296 
Absence 147 (74.2) 99 (71.7) 48 (80)  
Presence 51 (25.8) 39 (28.3) 12 (20)  
Peritumoral edema, n (%)   0.469 
Absence 133 (67.2) 90 (65.2) 43 (71.7)  
Presence 65 (32.8) 48 (34.8) 17 (28.3)  
Subcutaneous edema, n (%)   0.966 
Absence 163 (82.3) 113 (81.9) 50 (83.3)  

Presence 35 (17.7) 25 (18.1) 10 (16.7)  
Intratumoral necrosis, n (%)   0.163 
Absence 158 (79.8) 106 (76.8) 52 (86.7)  
Presence 40 (20.2) 32 (23.2) 8 (13.3)  
Internal enhancement pattern, n (%)  0.149 
Homogeneous 15 (7.6) 8 (5.8) 7 (11.7)  
Heterogeneous 155 (78.3) 107 (77.5) 48 (80)  
Rim enhancement 28 (14.1) 23 (16.7) 5 (8.3)  
Adjacent vessel sign, n (%)   0.27 
Absence 76 (38.4) 49 (35.5) 27 (45)  
Presence 122 (61.6) 89 (64.5) 33 (55)  
Increased ipsilateral vascularity, n (%)  0.81 
Absence 108 (54.5) 74 (53.6) 34 (56.7)  
Presence 90 (45.5) 64 (46.4) 26 (43.3)  
DWI rim sign, n (%)   0.052 
Absence 145 (73.2) 95 (68.8) 50 (83.3)  
Presence 53 (26.8) 43 (31.2) 10 (16.7)  

Abbreviation: Clin-Rad, Clinico-radiological; TIC, time-signal intensity; FGT, fibroglandular tissue; BPE, breast parenchymal enhancement; DWI, 
diffusion weighted imaging; LVI, lymphovascular invasion. 
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the curve (AUC) derived from the receiver operating characteristic curve (ROC), as well as sensitivity and specificity measures. 
Subsequently, we conducted a screening process to determine the most effective radiomics model. 

2.9. Clin-Rad and combined models’ construction 

First, univariate logistic regression analysis on predictor variables that included clinical and radiological characteristics from the 
training dataset were performed. Next, we conducted multivariable logistic regression using a p-value <0.1 to identify the optimal 
predictor variables for model development. Odds ratios (ORs) and 95 % confidence intervals (CIs) were calculated for each factor. To 
recognize the precision, impartiality, and reliability of machine learning models in assisting clinical decision-making [14], we utilized 
the selected predictors to construct a combined model based on the superior radiomics model. Then, the model’s performance was 
evaluated and validated using confusion matrix analysis on the training and validation datasets using evaluation parameters, including 
AUC, sensitivity, and specificity. Decision curve analysis (DCA) was employed to classify LVI status and assess the clinical effectiveness 
of the models, which quantified net benefits at various threshold probabilities with both the training and validation datasets. 

2.10. Statistical analysis 

We performed statistical analysis using R software (version 4.1.0; https://www.r-project.org). For continuous variables, the Stu
dent’s t-test was used for normally distributed data, while the Mann–Whitney U test was used for non-normally distributed data. The 
chi-squared test was employed for categorical variables. P < 0.05 was considered statistically significant. 

3. Results 

3.1. Patients’ population and Clin-Rad features 

In total, 198 patients were enrolled, with 138 included in the training dataset and 60 in the validation dataset. No significant 
differences were observed between these two datasets (Table 1). Within the training dataset, significant differences were observed in 
several features when comparing patients with LVI (− ) and LVI (+), including location, peritumoral edema, adjacent vessel sign, and 
DWI rim sign (see Supplementary Table 1). 

We conducted univariate and multivariate logistic regression analyses to identify independent predictors of LVI (+), which indi
cated that peritumoral edema (OR 1.292, 95 % CI 1.109–1.504, p = 0.001) and DWI rim sign (OR 1.279, 95 % CI 1.095–1.495, p =
0.002) significantly influenced the likelihood of LVI (+) (Table 2). 

3.2. Radiomic signature models and performances 

A total of 1239 radiomics features were extracted from the multimodal MRI images, including T1WI, T2WI, DCE, ADC, and DWI, 
and 6195 radiomic features were obtained. After performing feature dimensionality reduction and selection (Figs. 4 and 5), seven 
features with nonzero coefficients were retained. 

Figs. 6 and 7 present the ROC curves, AUC, sensitivity, and specificity of the five radiomics models (LR, SVM, KNN, CART, GBM) in 
the training and validation datasets. Our observations revealed that the GBM model outperformed the other models, achieving the 
highest AUC values in both datasets. The AUC in the training dataset was 0.881 (95 % CI 0.823–0.940), with a sensitivity of 0.973 and 
specificity of 0.644. Similarly, the validation dataset exhibited an AUC of 0.820 (95 % CI 0.693–0.947), with a sensitivity of 0.900 and 

Table 2 
Univariate and multivariable logistic regression analyses for selecting Clin-Rad features of model development.  

Variants Odd Ratio (95%CI) p-value Odd Ratio (95%CI) p-value 

Univariate Multivariate 

Age 0.99 (0.96–1) 0.54   
Menopausal status 1 (0.49–2.2) 0.93   
Location 2.1 (0.96–4.4) 0.064   
TIC curves 1.3 (0.67–2.5) 0.45   
FGT density 1.1 (0.74–1.6) 0.67   
BPE 1 (0.7–1.5) 0.88   
Intratumoral high signal intensity 1.3 (0.58–3) 0.51   
Peritumoral edema 5.9 (2.6–13) ＜0.001 1.292 (1.109–1.504) 0.001 
Subcutaneous edema 1.1 (0.41–2.8) 0.88   
Intratumoral necrosis 1.1 (0.45–2.6) 0.85   
Internal enhancement pattern 1.2 (0.53–2.7) 0.68   
Adjacent vessel sign 2.5 (1–6) 0.043 1.058 (0.916–1.222) 0.442 
Increased ipsilateral vascularity 0.84 (0.39–1.8) 0.66   
DWI rim sign 5.6 (2.5–13) ＜0.001 1.279 (1.095–1.495) 0.002 

Abbreviation: Clin-Rad, Clinico-radiological; TIC, time-signal intensity; FGT, fibroglandular tissue; BPE, breast parenchymal enhancement; DWI, 
diffusion weighted imaging. 
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specificity of 0.680 (Table 3). Thus, the GBM model was selected as the optimal radiomic model to ensure the stability and reliability of 
our study. 

3.3. Combined model construction and validation 

A Clin-Rad model was developed by peritumoral edema and the DWI rim sign. The model achieved an AUC of 0.767 (0.681, 0.854) 
with a sensitivity of 0.811 and specificity of 0.653 in the training dataset. In the validation dataset, the AUC was 0.734 (0.555–0.913) 
with a sensitivity of 0.700 and specificity of 0.700. The Clin-Rad model was integrated with the radiomics model constructed using the 
optimal machine learning model (GBM) to provide a comprehensive evaluation of diagnostic efficacy. 

Fig. 8 shows the ROC curves of the three models in the training and validation datasets. The combined model demonstrated 
considerably improved discrimination ability and provided a comprehensive evaluation compared to the Clin-Rad and radiomic 
models (Table 4). This improvement is indicated by higher AUC values: 0.936 (0.892, 0.981) with a sensitivity of 0.811 and specificity 
of 0.911 in the training dataset, and AUC values of 0.876 (0.757, 0.995) with a sensitivity of 0.900 and specificity of 0.720 in the 
validation dataset. In addition, Fig. 9 presents the DCAs of the three models, which further supports the superior performance of the 
combined model. Therefore, we believe the combined model provided the most substantial net benefit for classifying LVI status 
accurately. 

4. Discussion 

Our results suggest that integrating multimodal MRI-based radiomics models with Clin-Rad features can enhance the classification 
of LVI status accurately and improve comprehensive diagnostic efficacy. Therefore, we developed a combined model that integrates 
the predictive capabilities of Clin-Rad predictors and radiomics signatures using GBM, to achieve satisfactory classification outcomes 
for LVI status and offer a feasible and reliable noninvasive method for evaluating malignant behavior and treatment strategies in 
patients with clinically node-negative BC. 

Clin-Rad model developed using peritumoral edema and DWI rim sign. Macroscopically, peritumoral edema is associated with 
aggressive tumor characteristics, such as large tumor size, LVI, and a high Ki-67 index, which may indicate a poor prognosis [3,6,17], 
and microscopically in BC to pathological features, including angiectasia, growth pattern, interstitial fibrosis, and tumor necrosis. The 
presence of peritumoral edema may result from mechanical obstruction of vascular and lymphatic vessels by LVI tumor emboli, leading 
to secondary fluid retention or leakage in the surrounding space. This incomplete neovascularization and abnormal lymphatic 

Fig. 4. (a) The LASSO regression algorithm was utilized for dimensionality reduction of radiomics features. (b) Shows the optimal parameter (λ) 
interval for Lasso regression using 10-fold cross-validation. 

Y. Jiang et al.                                                                                                                                                                                                           



Heliyon 10 (2024) e23916

8

drainage causes vascular leakage and increased interstitial fluid pressure [18]. Moreover, peritumoral edema is associated with the 
presence of hyaluronic acid, which reflects malignant behavior. For example, an accumulation of hyaluronic acid in the stromal tissue 
surrounding BC leads to an increase in T2 relaxation time on MR images [19]. Furthermore, peritumoral edema has been related to 
high levels of tumor-infiltrating lymphocytes, which are considered a precursor to LVI [20]. The DWI rim sign is a useful indicator of 
malignancy in BC, and is associated with tumor histological features, such as grade, size, and subtype. Additionally, this sign dem
onstrates a borderline correlation with Ki-67, a protein that serves as a marker of cancer aggressiveness by reflecting the cell prolif
eration rate [21,22]. Furthermore, our findings align with the previous study reporting a consistent association between the DWI rim 
sign and LVI [7]. However, the limitations of these studies mainly arise from the subjective impact of individual clinical experience and 
the dependence on a single evaluation index. Currently, there is no consensus on the classification of LVI status using MRI morpho
logical characteristics. Hence, innovative noninvasive methods for assessing LVI status should be investigated. 

Radiomics is a cutting-edge, non-invasive methodology that employs intelligent algorithms to construct models based on original 
medical images. This methodology yields additional insights and reveals potentially pertinent phenotypic information by capturing 

Fig. 5. Conducting feature dimensionality reduction and identifying features through the LASSO method.  

Fig. 6. Receiver operating characteristic (ROC) curves of radiomics models based on five machine learning algorithms (logistic regression [LR], 
support vector machine [SVM], k-nearest neighbors [KNN], classification and regression trees [CART], and gradient boosting machine [GBM]) in 
the training dataset (a) and validation dataset (b). 
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tumor heterogeneity [9]. The rationale for using multimodal MRI images for radiomics analysis is the complementary information 
provided by different sequences. Multimodal imaging allows for the holistic characterization of tissue properties, capturing diverse 
aspects like morphology, function, and the hemodynamic changes. This comprehensive approach improves the efficiency of radiomics 
analysis, leading to a deeper understanding of underlying biological processes and disease phenotypes. The results of our study 
indicated that the radiomics model developed by the GBM algorithm outperformed other machine learning models. GBM is an 
ensemble learning algorithm that utilizes decision trees as base models to generate a more powerful predictive model through iterative 
training of a series of weak classifiers. It optimizes the model using gradient descent and corrects the errors of the previous model in 
each iteration. This algorithm has consistently demonstrated superior performance in various applications, including classification, 

Fig. 7. The area under the curve, sensitivity, and specificity of the five radiomics models (LR, SVM, KNN, CART, GBM) in both the training dataset 
(a) and validation dataset (b). 

Table 3 
Diagnostic performance of various machine learning models in predicting LVI in clinically node-negative breast cancer.  

Model Datasets AUC (95%CI) Sensitivity Specificity 

SVM Training 0.809 (0.721,0.897) 0.838 0.713  
Validation 0.796 (0.646,0.946) 0.700 0.840 

CART Training 0.817 (0.730,0.903) 0.730 0.832  
Validation 0.697 (0.528,0.866) 0.700 0.680 

KNN Training 0.856 (0.792,0.920) 0.865 0.673  
Validation 0.777 (0.644,0.910) 0.600 0.880 

LR Training 0.809 (0.725,0.893) 0.811 0.713  
Validation 0.796 (0.649,0.943) 0.700 0.800 

GBM Training 0.881 (0.823,0.940) 0.973 0.644  
Validation 0.820 (0.693,0.947) 0.900 0.680 

Abbreviation: LVI, lymphovascular invasion; AUC, area under the curve; SVM, Support Vector Machine; CART, Classification and Regression Trees; 
KNN, K-Nearest Neighbors; LR, Logistic Regression; GBM, Gradient Boosting Machine. 

Fig. 8. Display of the ROC curves of the three models in both the training dataset (a) and validation dataset (b).  

Y. Jiang et al.                                                                                                                                                                                                           



Heliyon 10 (2024) e23916

10

regression, and ranking tasks. For instance, Lee et al. [23] found that the GBM algorithm achieved better performance than LR in 
predicting early gastric cancer, while Zhou et al. [24] demonstrated that GBM achieved higher accuracy and AUC value than other 
machine learning models for predicting peritoneal metastasis of gastric cancer by combining dimensionality reduction techniques with 
different models. This study integrated both Clin-Rad model and radiomics model to establish a combined, which demonstrated the 
best and most comprehensive diagnostic performance, followed by the radiomics model and then the Clin-Rad model. BC exhibiting 
LVI (+), indicative of cancer aggressiveness, tend to exhibit rapid growth and increased susceptibility to necrosis and micro
hemorrhage. Thus, these factors contribute to heightened tumor heterogeneity compared to those without LVI (− ). Radiomics models 
demonstrate superior predictive capabilities compared to Clin-Rad features, because they could quantitatively detect additional 
heterologous and heterogeneous features that cannot be visually interpreted. This indicates that while radiomics models outperform 
Clin-Rad features in terms of predictive capabilities, Clin-Rad remains a useful predictive model. Hence, the combined model accu
rately predicts LVI status by integrating vital information from other models. Incorporating multi-domain and abundant data into the 
combined model enhances the diagnostic efficiency for predicting LVI. The radiomics model, based on the GBM algorithm, demon
strates high diagnostic efficiency with an AUC of 0.881 (0.823, 0.940) in the training dataset and 0.820 (0.693, 0.947) in the validation 
dataset. The sensitivity is high in the training and validation datasets at 0.973 and 0.900, respectively, but the specificity remains 
relatively low at 0.644 and 0.680 in the training and validation datasets. However, when Clin-Rad and radiomics are combined, the 
constructed model achieves a higher AUC value of 0.936 (0.892, 0.981) in the training dataset and 0.876 (0.757, 0.995) in the 
validation dataset. This enhancement is particularly evident in specificity, which significantly improves to 0.911 and 0.720 in the 
training and validation datasets, respectively. Importantly, the diagnostic performance achieved by the combined model, constructed 
using machine learning algorithms in this study, is comparable to the study by Feng et al. [10], which uses deep learning with transfer 
learning to predict LVI. Specifically, this present study avoids overfitting and demonstrates a more practical and robust model. 

However, this study had some limitations. First, it focused solely on analyzing intra-tumoral radiomic features while disregarding 
peri-tumoral radiomic features, which have been shown to hold significance in predicting LVI [25]. To enhance the comprehensiveness 
of future research, peritumoral radiomic signs should be included in future studies. Second, the retrospective design and limited 
sample size of this study restrict its generalizability. A larger-scale multicenter prospective trial should be conducted in the future to 
validate and reinforce these findings and ensure their applicability to a wider population. Third, integrating data from multiple im
aging sequences poses challenges. Variations in acquisition parameters, image quality, and potential co-registration errors may 
introduce sources of variability that can confound the analysis. Additionally, the presence of artifacts and technical limitations specific 
to each MRI sequence may impact the reliability and reproducibility of radiomics features. Lastly, the manual delineation of regions of 
interest introduces the possibility of interobserver variability, which can limit the clinical utility of the findings. Therefore, future 
studies should employ automated or semi-automated methods for region delineation; this would increase consistency and reduce 

Table 4 
Diagnostic performance of various machine learning models in predicting LVI in clinically node-negative breast cancer.  

Model Datasets AUC (95%CI) Sensitivity Specificity 

Clin-Rad Training 0.767 (0.681,0.854) 0.811 0.653  
Validation 0.734 (0.555,0.913) 0.700 0.700 

Radiomics* Training 0.881 (0.823,0.940) 0.973 0.644  
Validation 0.820 (0.693,0.947) 0.900 0.680 

Combined Training 0.936 (0.892,0.981) 0.811 0.911  
Validation 0.876 (0.757,0.995) 0.900 0.720 

Abbreviation: LVI, lymphovascular invasion; AUC, area under the curve. 
* Represents models were constructed using Gradient Boosting Machine (GBM). 

Fig. 9. Presentation of the decision curve analyses (DCAs) of the three models (Clin-Rad, radiomic models, and combined model) in both the 
training dataset (a) and validation dataset (b). 
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observer-dependent variations. 

5. Conclusions 

Our study introduced and validated a multimodal MRI-based combined model that integrates Clin-Rad features and radiomics 
features for classifying LVI status. We demonstrated that the combined model, employing GBM, had the highest diagnostic perfor
mance. This study has the potential to significantly enhance clinical decision accuracy, patient prognosis, and treatment selection. 
Through our approach, which aligns with the principles of precision medicine, this study may contribute to revolutionize clinical 
therapeutic strategies and lead to tailored and more effective patient care. 
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