
Citation: Urusov, A.E.; Aulova, K.S.;

Dmitrenok, P.S.; Buneva, V.N.;

Nevinsky, G.A. Experimental

Autoimmune Encephalomyelitis of

Mice: Enzymatic Cross Site-Specific

Hydrolysis of H4 Histone by IgGs

against Histones and Myelin Basic

Protein. Int. J. Mol. Sci. 2022, 23, 9182.

https://doi.org/10.3390/

ijms23169182

Academic Editor: Christina Piperi

Received: 7 July 2022

Accepted: 11 August 2022

Published: 16 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Article

Experimental Autoimmune Encephalomyelitis of Mice:
Enzymatic Cross Site-Specific Hydrolysis of H4 Histone by
IgGs against Histones and Myelin Basic Protein
Andrey E. Urusov 1, Kseniya S. Aulova 1 , Pavel S. Dmitrenok 2 , Valentina N. Buneva 1

and Georgy A. Nevinsky 1,*

1 Institute of Chemical Biology and Fundamental Medicine of the Siberian Division of Russian Academy
of Sciences, Lavrentiev Ave. 8, 630090 Novosibirsk, Russia

2 G. B. Elyakov Pacific Institute of Bioorganic Chemistry, Far East Division, Russian Academy of Sciences,
690022 Vladivostok, Russia

* Correspondence: nevinsky@niboch.nsc.ru

Abstract: Histones play vital roles in chromatin functioning and gene transcription, but in intercellular
space, they are harmful due to stimulating systemic inflammatory and toxic responses. Myelin basic
protein (MBP) is the most important protein of the axon myelin–proteolipid sheath. Antibodies-
abzymes with different catalytic activities are critical and specific features of some autoimmune
diseases. Five IgG preparations against histones (H4, H1, H2A, H2B, and H3) and against MBP
corresponding to different spontaneous, MOG (myelin oligodendrocyte glycoprotein of mice), and
DNA–histones that accelerated onset, acute, and remission stages of experimental autoimmune
encephalomyelitis (EAE; model of human multiple sclerosis) development were obtained from EAE-
prone C57BL/6 mice by several affinity chromatographies. IgG-abzymes against five histones and
MBP possess unusual polyreactivity in complexation and catalytic cross-reactivity in the hydrolysis
of histone H4. IgGs against five histones and MBP corresponding to 3 month-old mice (zero time) in
comparison with Abs corresponding to spontaneous development of EAE during 60 days differ in
type and number of H4 sites for hydrolysis. Immunization of mice with MOG and DNA–histones
complex results in an acceleration of EAE development associated with an increase in the activity of
antibodies in H4 hydrolysis. Twenty days after mouse immunization with MOG or DNA–histones
complex, the IgGs hydrolyze H4 at other additional sites compared to zero time. The maximum
number of different sites of H4 hydrolysis was revealed for IgGs against five histones and MBP
at 60 days after immunization of mice with MOG and DNA–histones. Overall, it first showed
that at different stages of EAE development, abzymes could significantly differ in specific sites of
H4 hydrolysis.

Keywords: C57BL/6 mice; EAE model of human multiple sclerosis; immunization mice with MOG
and DNA–histones complex; catalytic antibodies; hydrolysis of histones and myelin basic protein;
cross-complexation and catalytic cross-reactivity

1. Introduction

Histones and their modified forms play a vital role in chromatin functioning. Free
extracellular histones usually act as damage molecules [1]. Treatment of experimental
animals with exogenous histones leads to systemic toxic responses due to inflammatory
reactions and Toll-like receptor activation [1]. Animal treatment by anti-histone neutralizing
antibodies (Abs), heparin, thrombomodulin, and activated protein C leads to the protection
of mice against ischemia-reperfusion injury, sepsis, lethal endotoxemia, trauma, peritonitis,
stroke, pancreatitis, coagulation, and thrombosis. Moreover, the increase in the free histones
and nucleosome fragments in the blood results in several pathophysiological processes,
including progression in inflammatory, several autoimmune diseases (ADs), and cancer [1].
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A central tetramer in the core of nucleosome particles contains two molecules of H4
and H3 circled by two dimers of histones H2B and H2A linked to two supercoiled turns of
double-stranded (ds) DNA [2]. H1 participates in packing chromatin substructures into a
higher-order structure, and H1 is first displaced from chromatin when treated with alkali
or acid. The H3 and H4 histones demonstrate the maximum transfection efficiency of all
tested agents [3].

In systemic lupus erythematosus (SLE), multiple sclerosis (MS), and some other au-
toimmune diseases, autoantibodies (auto-Abs) against DNA are directed against nucleoso-
mal histone–DNA complexes emerging in the blood due to cell apoptosis [4].

Multiple sclerosis (MS) is an inflammatory-demyelinating pathology of the central
nervous system (CNS). It is characterized by perivascular infiltrates containing largely
macrophages and T lymphocytes [5]. The activated myelin-reactive CD4+ T cells might be the
principal mediators of MS [5]. Some data specify a vital role of B cells and auto-Abs against
myelin autoantigens, including myelin basic protein (MBP) in MS pathogenesis [5–7].

There are several various experimental autoimmune encephalomyelitis (EAE) mouse
models that mimic a specific facet of multiple sclerosis well (for review, see [8,9]). Autoim-
mune diseases were first suspected to originate from bone marrow hematopoietic stem
cells (HSCs) defects [10]. It was proved later that the spontaneous and antigen-induced
development of ADs is reached due to specific immune reorganization of bone marrow
HSCs [11–17]. EAE-prone C57BL/6 mice were used recently for the study of possible
mechanisms of spontaneous, DNA–protein complexes [11,12], and myelin oligodendro-
cyte glycoprotein (MOG)-accelerated development of EAE [13,14]. It was demonstrated
that immunization of systemic lupus erythematosus (SLE)-prone MRL-lpr/lpr mice with
DNA–protein complexes [15–17] as well as C57BL/6 mice with DNA–histone complexes
and MOG [11–14] results in an acceleration of SLE and EAE development. The acceler-
ation is associated with specific changes in HSC differentiation profiles, an increase in
lymphocyte proliferation, and repression of apoptosis in different organs of mice [11–17].
These changes in parallel are associated with the production of autoantibodies-abzymes
(Abzs) splitting DNA, RNA, polysaccharides, proteins, and peptides. The detection of dif-
ferent antibodies-abzymes is the most statistically significant and earliest marker of many
ADs [11–23]. Catalytic activities of Abzs are well detected even at the very initial stages of
the autoimmune (AI) pathologies (at the pre-disease onset stage) before the disclosure of
typical markers of different ADs [13–17].

Titers of auto-Abs to specific autoantigens at the beginning of different ADs usually
correspond to typical index ranges conforming to healthy humans and mice. The appear-
ance of multiple abzymes clearly indicates the start of autoimmune pathologies, while
an increment in their catalytic activities is associated with profound pathology develop-
ment. However, several parallel mechanisms might provide different AD development,
eventually leading to a self-tolerance breakdown [20–23].

Natural Abzs splitting different peptides, proteins, oligosaccharides, DNA, and RNA,
were detected in sera of patients with several ADs and viral diseases [18–27].

Abzymes with shallow activities hydrolyzing polysaccharides [28], thyroglobulin [29],
and vasoactive neuropeptide [30] were discovered in sera of some healthy volunteers.
Healthy humans, however, usually lack abzymes [18–23]. However, some germline auto-
Abs of healthy people can possess high levels of superantigen-, amyloid-, and microbe-
directed activities [31,32].

Similar to SLE patients [23], the blood sera of MS patients contain abzymes hydrolyz-
ing DNA and RNA [33–35], MBP [36–39], oligosaccharides [19], and histones [40]. Relative
activities of IgG-abzymes from the cerebrospinal fluids of MS patients splitting polysac-
charides, MBP, and DNA are on average from 30 to 60 times higher than those isolated
from the blood sera of the same patients [41–43]. In various ADs, Abzs splitting MBP can
attack this protein in the myelin-proteolipid sheath of axons and, therefore, could play a
very harmful role in the pathogenesis of MS, SLE, and other AI diseases [19–23].
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Abzymes hydrolyzing five histones (H4, H3, H2A, H2B, and H1) are detected in sera
of MS [37], HIV-infected patients [44–49], and EAE mice [11]. As mentioned above, free
extracellular histones act as damage molecules [1]. Complexes of DNA with histones are
known as the most critical antigens in producing auto-Abs against DNA and histones [4],
which are very hazardous for mammals. They can penetrate through cellular and nuclear
membranes, split chromatin DNA, and induce cell apoptosis [50–52]. Therefore, abzymes
that hydrolyze MBP, DNA, and histones may be involved in the pathogenesis of MS and
other ADs.

It is believed that the development of various ADs could be associated with human
infection by different viruses and/or bacteria (human herpesvirus, human endogenous
retroviruses, and Epstein–Barr virus) (for a review, see [53–56]). At first, there could be the
synthesis of antibodies against viral or bacterial compounds, which may be structurally
similar to human proteins [57,58]. Then, due to the mimicry of any viral or bacterial
protein with those of human ones, there may be immune system violation resulting in
the generation of autoantibodies to human substances and the development of ADs. In
addition, the immunization of different autoimmune-prone mice leads to a significantly
higher incidence of abzymes synthesis with higher catalytic activities than in normal
conventionally used mouse strains [59,60].

Unspecific complex formation of different enzymes with foreign ligands is a widespread
phenomenon [61–63]. The efficiency of correct substrate selection by enzymes on the stage
of complexation is usually only 1–2 orders of magnitude [61–63]. It is subsequent changes
in substrate confirmation at the stage of the catalysis that directly increases the reaction rate
by 5–8 orders of magnitude for specific compared with the non-specific substrates [61–63].
Therefore, catalytic cross-reactivity in the case of normal-classical enzymes is a sporadic
case [61–63]. Typically, normal enzymes catalyze only one chemical reaction.

Non-specific complexation of some proteins with Abs against other ones discovered
by affinity chromatographies or ELISA is a widely distributed phenomenon known as Abs
complexation polyspecificity or polyreactivity [64–67].

It was shown that, similar to normal enzymes, Abzs against many proteins usually
split specifically only one specific protein–antigen and cannot hydrolyze many other control
globular proteins ([19–23] and refs therein). It was shown that anti-MBP Abzs of patients
with several ADs could hydrolyze only MBP [36–40], while abzymes against histones—only
histones [44–49]. Catalytic cross-activity of any Abzs against different proteins has not
yet been discovered [19–23]. However, recently, it was first demonstrated that IgGs of
HIV-infected patients against MBP split specifically MBP and five H1-H4 histones and
vice versa—abzymes against histones effectively hydrolyze MBP [48,49]. Production of
such abzymes with cross-catalytic reactivity could be hazardous for developing many ADs
since Abs against histones can hydrolyze MBP of nerve tissue cells. It seemed interesting to
examine to what extent the phenomenon of enzymatic cross-reactivity between abzymes
against MBP and histones is common for humans and animals with different ADs.

As indicated above, abzymes, hydrolyzing MBP and histones are produced in the
blood of C57BL/6 mice during the development of EAE. However, it remained unclear
whether antibodies against histones and MBP possess polyspecificity in recognition and
catalytic cross-reactivity. In this work, the analysis of the ability of C57BL/6 mice antibodies
against H4, H1, H2A, H2B, and H3 histones and MBP to hydrolyze H4 histone was
undertaken for the first time. It was shown that abzymes of mice against five histones and
MBP possess polyreactivity in complex formation and unusual catalytic cross-reactivity in
the hydrolysis of H4 histone. Moreover, it has been demonstrated that abzymes against
five histones from the blood plasma of mice at different stages of EAE development can
hydrolyze H4 with different efficiency and in various specific sites.
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2. Results
2.1. Choosing a Model for the Study of Catalytic Cross-Reactivity

The development of EAE in prone C57BL/6 mice occurs spontaneously. Immunization
of mice with DNA–protein complexes [11,12] and myelin oligodendrocyte glycoprotein
(MOG) accelerates the development of EAE [13,14]. There are several stages of the EAE
development: the onset on days 7–8, the acute phase on days 18–20, and the remission
stage 25–30 days after immunization. The acceleration of EAE development is associated
with specific changes in bone marrow HSCs differentiation profiles, an increase in lympho-
cyte proliferation, and repression of apoptosis in different organs of mice [11–14]. These
processes are bound in parallel with the production of Abzs splitting DNA, MBP, MOG,
and histones. The parameters characterizing all these changes were investigated earlier
in [11–14]. To study the enzymatic cross-reactivity of IgGs, we chose two models; mice
immunized with MOG [13,14] and with DNA–histones complex [11]. Data on changes
in the differentiation profile of stem cells before and after immunization with MOG and
DNA–histones complex are provided in the supplementary data (Supplementary Figure
S1). Data on the change in the relative concentrations of antibodies against DNA, MOG, and
histones during the development of EAE are presented in Supplementary Figure S2. The
changes in the relative activities of IgGs in the hydrolysis of DNA, MOG, MBP, and histones
during the development of EAE are shown in Supplementary Figure S3. It can be seen that
during spontaneous in time development of EAE, the increase in the relative amounts of
all four precursors of hemopoietic cells (BFU-E, CFU-E, CFU-GM, and CFU-GEMM) in the
bone marrow of the mice is relatively slow and gradual. Treatment of mice with MOG and
DNA–histones complex results in different changes in the profile of stem cell differentiation
over time. However, in all cases, EAE development accelerates.

Here, we study possible enzymatic cross-reactivity IgGs of C57BL/6 mice against
five histones and MBP, taking into account the previously obtained data on the change
in the activity of Abs-abzymes from the blood of C57BL/6 mice before and after their
immunization with various antigens [11–14,68]. It was shown that the acceleration of the
development of EAE after immunization of mice with MOG and complex of DNA with
histones differs to some extent. Immunization of mice with MOG leads to the onset of the
pathology by 7–8 days (the appearance of abzymes) and a sharp exacerbation in the acute
phase at 17–20 days (maximum activity of abzymes) followed by a slow transition to the
stage of remission and a decrease in the activity of abzymes in the hydrolysis of DNA, MBP,
MOG, and histones. After immunization of mice with a complex of DNA–histones, the
first peak of activation of EAE development is observed in 7–20 days. Still, the activity of
abzymes increases more strongly in the period from 30 to 60 days. Therefore, the following
groups of mice were used for analysis of H4 histone hydrolysis sites with IgGs against
histones and MBP corresponding to different stages of EAE.

1. Con-0d: two types—against histones (Con-0d-His) and MBP (Con-0d-MBP), non-
immunized control mice, blood sampling was carried out on the day of the beginning
of the experiment.

2. Con-60d: two types—against histones (Con-60d-His) and MBP (Con-60d-MBP), non-
immunized control mice corresponding to spontaneous development of EAE, blood
sampling was performed 60 days after the start of the experiment.

3. MOG-20d: two types—against histones (MOG-20d-His) and mbp (MOG-20d-MBP),
mice immunized with Mog, blood sampling was performed 20 days after the immu-
nization of mice.

4. DNA-20d: one type—against histones (DNA-20d-His), mice immunized with a com-
plex of DNA and histones, blood sampling was carried out 20 days after the immu-
nization of mice.

5. DNA-60d: two types—against histones (DNA-60d-His) and MBP (DNA-60d-MBP),
mice immunized with a complex of DNA and histones, blood sampling was carried
out 60 days after the immunization of mice.
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IgG antibodies against MBP and five histones were isolated from the blood of mice of
these groups, and their relative activity in the hydrolysis of H4 histone was performed.

2.2. Purification of Antibodies

To analyze the “average” site-specific cleavage of H4 by IgGs against five histones and
MBP, we first obtained electrophoretically homogeneous IgG preparations (IgGmix) from
the mixture of seven plasma blood samples corresponding to each of five groups of mice
mentioned above. The blood plasma proteins were first isolated on Protein G-Sepharose in
conditions allowing the removal of nonspecifically bound proteins [34–38]. Then, IgGmix
preparations were additionally purified using FPLC gel filtration under drastic conditions
(pH 2.6), destroying immune complexes as in [36–49]. After SDS-PAGE of the mixture
of IgGmix preparations, proteolytic activities in the hydrolysis of histones and MBP were
revealed only in one IgG protein band (Figure 1).
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Figure 1. Panel (A) shows the position of molecular mass markers. The IgGmix (14 µg) homogeneity
analysis by SDS-PAGE under non-reducing conditions in the absence of thiol-disulfide reducing
reagent dithiothreitol (B); silver staining. Panel (B) demonstrates the position of IgGs. The relative
activities (RA, %) in the hydrolysis of five histones (�) and MBP (�) were estimated using eluates
of gel fragments (2–3 mm) (C). After incubation for 24 h with eluates, complete hydrolysis of all
substrates was undertaken for 100% (C). The errors of the relative activities estimation from two
independent experiments did not exceed 7–10%.

The relative activities were isolated from every IgGmix preparation (mixture of seven
IgGs against five histones corresponding to each of the mouse groups) by chromatography
on histone5H-Sepharose. The IgG fraction non-specifically bound and with low affinity to
five histones was first eluted with 0.2 M NaCl. Specific anti-histones IgGs having a high
affinity for histone5H-Sepharose were eluted with Tris-Gly buffer, pH 2.6. For additional
purification of anti-histones IgGs from potential impurities of Abs against MBP, the fraction
from histone5H-Sepharose was passed through MBP-Sepharose. The fraction obtained at
loading onto MBP-Sepharose was further used as anti-histone IgGs.

The IgGmix fraction eluted from histone5H-Sepharose at loading was used to obtain
anti-MBP IgGs using affinity chromatography on MBP-Sepharose. IgGs with low affinity
for MBP were eluted using a buffer containing NaCl (0.2 M). Finally, anti-MBP IgGs were
eluted using an acidic buffer (pH 2.6). For additional purifications of anti-MBP IgGs against
potential impurities of anti-histones IgGs, the fractions eluted from MBP-Sepharose were
subjected to re-chromatography on histone5H-Sepharose. The fraction of IgGs eluted from
the sorbent at the loading was named anti-MBP IgGs.

2.3. SDS-PAGE Analysis of Histones and MBP Hydrolysis

Polyclonal unseparated IgGs from the blood sera of HIV-infected patients as shown
earlier [44–49] and patients with MS effectively split both five human histones [40] and
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MBP [36–39]. Moreover, IgGs of HIV-infected patients against MBP and five histones
possess polyspecific complex formation and enzymatic cross-reactivity in the hydrolysis
of five histones and MBP [48,49]. It was interesting whether IgGs of EAE mice against
five histones can also split both five histones and MBP and vice versa. To analyze a
possible enzymatic cross-reactivity, we first used the fraction of anti-histone IgGs (eluted
from histone5-Sepharose) and anti-MBP IgGs (eluted from MBP-Sepharose). Figure 2A,B
demonstrates hydrolysis of H4 histone by IgGs against five histones and anti-MBP IgGs,
while Figure 2C,D shows hydrolysis of MBP by these IgGs.
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Figure 2. SDS-PAGE analysis of H4 histone hydrolysis by IgG-abzymes against five histones (A) and
this histone with IgGs against MBP (B) as well as splitting myelin basic protein by IgGs against five
histones (C) and IgG-abzymes against MBP (D). Lanes C correspond to the histones (A) and MBP
(B) incubated without IgGs. MBP and a mixture of five histones with and without IgGs (0.03 mg/mL)
were incubated for 12 h.

The efficiency of H4 and MBP hydrolysis with different IgGs was judged from the
decrease in these proteins in the initial bands after incubation with antibodies compared
to their content in control—incubation without antibodies (Figure 2). After 12 h of the
incubation with IgGs against histones and MBP, the relative content of H4 and 18.5 kDa
MBP form decreased remarkably compared to the control experiment (lanes C).

These data may potentially point out that anti-MBP and anti-histones IgGs of C57BL/6
mice could exhibit non-specific complex formation polyreactivity [64–67] and enzymatic
cross-reactivity in MBP and histone hydrolysis. These findings, however, cannot provide
truthful evidence of enzymatic cross-reactivity between IgG-abzymes against five histones
and MBP, because, even after their isolation using several affinity chromatographies, one
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cannot exclude the possibility that recovered antibodies contain very small admixtures of
alternative IgGs. The best proof of enzymatic cross-reactivity may be achieved from an
undeniable difference in the specific sites of the histones hydrolysis by IgGs against MBP
and histones. This study first analyzed the possibility of hydrolysis of histone H4 with
specific IgG-abzymes against five histones and MBP.

2.4. MALDI Analysis of H4 Histone Hydrolysis

As shown by the example of abzyme antibodies from the blood of HIV-infected
patients with IgGs against five histones, they hydrolyzed all histones and MBP and
vice versa [42–46]. In addition, it was shown that during the development of EAE in
C57BL/6 mice, after their immunization with MOG or DNA–histones complex, three
stages can be distinguished: onset (7–8 days), acute (17–20 days), and remission (>30 days)
phases [8,9,11–14]. The development of EAE is associated with the production of auto-Abs
against DNA, MOG, MBP, and histones [11–14]. Moreover, these autoantibodies can be
without or abzymes with catalytic activities [11–14,68].

From a theoretical point of view, the immune system of humans and animals can
develop up to a million various antibodies against the same antigen, which may differ in
their very different characteristics [18]. Using monoclonal antibodies, it was demonstrated
that the total pool of antibodies to each of these antigens could contain from 30 to 40% of
antibodies-abzymes possessing different enzymatic activities [21–23]. These abzymes differ
in their affinity for cognate substrates, optimal pH values, dependence, and independence
from ions of one and two valence metals ions, etc.

The analysis of the relative content of antibodies without catalytic activity and abzymes
hydrolyzing DNA, MOG, MBP, and histones was performed for the first time in [68]. It was
shown that each of the three stages of EAE development is characterized by a specific ratio
of IgGs without catalytic activity and abzymes. Moreover, the ratio of antibodies without
activity and those hydrolyzing these substrates at each stage significantly depends on the
antigen used [68]. At each stage of EAE development, the main antigens against which
abzymes are produced can be in a free state or be associated with blood component specific
characteristic of this stage. Each of the antigens analyzed by us has several antigenic
determinants against which antibodies may be produced. For example, MBP has four
antigenic determinants (AGDs) [69], while different histones from 2 to 4 [70,71], while H4—
2 AGDs [72,73]. In principle, various AGDs located on the surface of protein molecules
can form complexes with other different molecules: peptides, proteins, oligosaccharides,
lipids, and nucleic acids. Considering these factors, it could be hypothesized that formation
of autoantibodies against each of the histones may depend on the antigen and stage of
EAE development, thereby leading to the production of abzymes differing in the sites of
their hydrolysis. In this work, for the first time, using the example of abzymes hydrolyzing
histone H4, an analysis of the hydrolysis sites of this histone was carried out depending on
the antigen (MOG or DNA–histone complex) and the stage of EAE development.

The IgG fractions having a high affinity to histones and MBP were used to reveal the
cleavage sites of H4 by MALDI TOFF mass spectrometry. Incubation of IgGs in the absence
of H4 histone did not lead to the appearance of detectable peaks in the region from 3 to
15 kDa (Figure 3A). Right after the addition of the IgGs (Figure 3B), H4 histone was almost
homogeneous, demonstrating two signals corresponding to one- (m/z = 11230.3 Da) and
two-charged ions (m/z = 5616.7 Da).

First, H4 cleavage analysis was carried out with IgGs against histones. The sites of
hydrolysis and the efficiency of H4 cleavage by each of the IgG preparations used were
established based on an average of 7–10 independent spectra. After 6 h of incubation of
H4 with IgGs against five histones, only six reliably detectable peaks of its hydrolysis with
molecular masses (MMs) > 5.6 kDa revealed (Figure 3B). The spontaneous development of
EAE in mice during 60 days led to the appearance of more active abzymes that hydrolyze
H4 at 12 sites (Figure 3C). Interestingly, the number of H4 hydrolysis sites by anti-histone
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antibodies 20 days after immunization of mice with a DNA–histone complex (DNA-20d-
His) was found to be 9 (Figure 4A).
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histone (A), products of H4 histone (0.8 mg/mL) hydrolysis in the absence (B) and the presence of
IgGs ((C,D) 0.045 mg/mL) against five histones before immunization with antigens ((C) zero time—
Con-0d-His preparation) and after spontaneous development of EAE during 60 days (Con-60d-His
preparation) (D).

Sixty days after immunization of mice with the DNA–histone complex (DNA-60-
His), nine peaks were found corresponding to the H4 hydrolysis sites by anti-histones
abzymes (Figure 4B). However, only six peaks corresponded to different sites of H4 abzyme
hydrolysis with DNA-60d-His are the same as those for DNA-20d-His (Figure 4A,B). DNA-
20d-His abzymes did not split H4 at three sites in the N-terminal region of H4 compared
to Con-60d-His Abs (Figure 4B). Anti-histone abzymes, following mouse immunization
with MOG (MOG-20d-His), hydrolyzed H4 histone in eight sites, which partially coincided
with those for other anti-histone IgGs (Figure 4C). These data indicate that at time zero of
the experiment, the blood of three-month-old mice contains a smaller number of abzymes
capable of hydrolyzing histone H4 than after spontaneous development of EAE during 60
days. Moreover, during the spontaneous development of EAE or after immunization of
mice using a complex of DNA with histones or MOG, the number of H4 hydrolysis sites
can be changed, and abzymes can hydrolyze H4 histone at other sites.

An interesting question was also about the existence of catalytic cross-reactivity in
the case of abzymes against histones and MBP and about the similarity and difference in
the H4 hydrolysis sites by antibodies against these proteins. Similar to antibodies against
MBP from the blood of HIV-infected patients [48,49], anti-MBP abzymes of C57BL/6 mice
efficiently hydrolyzed histone H4. Figure 5A shows typical MALDI mass spectra of H4
histone hydrolysis by anti-MBP IgGs corresponding to zero time (Con-0d-MBP preparation),
demonstrating six peaks of histone hydrolysis. After spontaneous development of EAE for
60 days, as in the case of Abs against histones (Con-60d-His), an increase in the number of
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peaks corresponding to hydrolysis at 12 sites is observed for anti-MBP IgGs (Con-60d-MBP)
(Figure 5B).
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Figure 5. MALDI spectra corresponding to products of H4 histone (0.8 mg/mL) hydrolysis in the
presence of IgGs against MBP ((A–D) 0.045 mg/mL) at zero time of the experiment ((A) Con-0d-MBP),
after spontaneous development of EAE during 60 days ((B) Con-60d-MBP), 60 days after mouse
immunization with DNA–histones complex ((C) DNA-60d-MBP), and 20 days after mouse treatment
with MOG ((D) MOG-20d-MBP).

Immunization of mice with MOG leads to the production of abzymes (MOG-20d-MBP)
that cleave H4 at 13 sites (Figure 5D). Somewhat surprisingly, 60 days after immunization
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with the DNA–histone complex, the number of reliably detected peaks in the case of DNA-
60d-MBP is only six (Figure 5C). Additionally, only two of them coincide with those for
Con-0d-MBP (Figure 5).

All H4 histone hydrolysis sites by anti-histone antibodies are summarized in Figure 6.
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It can be seen that, overall, the sites of histone hydrolysis by IgGs corresponding to
the spontaneous development of EAE and different stages of accelerated development after
immunization of mice with a complex of DNA with histones and MOG are substantially
different and are predominantly located in clusters of different lengths.

Data on the sites of H4 splitting by different IgGs against MBP are shown in Figure 7.
One could see that at the beginning of the experiment (time zero; Figure 7A), the

number of H4 hydrolysis sites by anti-MBP IgGs (Con-0d-MBP) is only 6, and there is
no protein splitting in its N-terminal zone (1–38 amino acid (AAs) residues). Hydrolysis
sites in zone 1–34 AAs of H4 by anti-MBP IgGs appear after 60 days of spontaneous
development of EAE (Con-60d-MBP; Figure 7B). Interestingly, there are significantly more
cleavage sites after spontaneous development of EAE (12 sites; Figure 7B; Con-60d-MBP)
and immunization of mice with MOG (11 sites; MOG-20d-MBP; Figure 7D). In this case, the
main sites of H4 hydrolysis in both cases correspond to clusters located in the N-terminal
zone of the protein—1–38 AAs (Figure 7B,D). It should be noted that all used preparations
of IgGs against MBP hydrolyze H4 histone predominantly in different sites.
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For a more straightforward analysis of the coinciding and different sites of hydrolysis
of H4 with IgGs against histones and MBP, they are presented in Table 1.

It can be seen that 10 hydrolysis sites occur only once (marked with italics), and they are
specific characteristics of some IgG preparations. At the same time, some hydrolysis sites
are common from two to five preparations of IgGs. Only two close sites of H4 hydrolysis
(R39-R40 and R40-G41) are common for six of the nine IgG preparations (Table 1). However,
these, like other sites, in the case of different IgGs, differ being major, moderate, and
minor ones.
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Table 1. Sites of H4 histone hydrolysis by IgGs against five histones and MBP *.

Molecular Mass Products of Hydrolysis (Da) and in the Brackets Corresponding to These Peptide Sites of H4 Hydrolysis

Con-0d Con-60d DNA-20d DNA-60d MOG-20d

Anti-His Anti-MBP Anti-His Anti-MBP Anti-His Anti-His Anti-MBP Anti-His Anti-MBP

10,929.0
(R3-G4) - 10,929.0 **

(R3-G4) - - - - - 10,929.0
(R3-G4)

- - 10,687.0
(G6-G7) - - 10,687.0

(G6-G7) - - -

- - - - - 10,744.0 ***
(5K-6G) - -

- - - - - - - - 10,533.9
R95-T96

- - 10,501.9
(K12-G13) - - - - - -

- - 10,146.7
(R17-H18) - 10,146.7

(R17-H18)
10,146.7

(R17-H18) - 10,146.7
(R17-H18) -

- - - 10,089.6
(G13-G14) - - - - -

- - - - - - - - 9677.4
(R17-H18)

9961.6
(A15-K16) - 9961.6

(A15-K16) - 9961.6
(A15-K16) - - -

- - 9384.3
(R19-K20) - 9384.3

(R19-K20) - - - 9384.3
(R19-K20)

9256.1
(K20-V21)

- - - 9044.0
(L22-R23) - - - - 9044.0

(L22-R23)
8887.9

(R23-D24) - - 8887.9 **
(R23-D24)

8887.9
(R23-D24)

8887.9
(R23-D24) - - 8887.9

(R23-D24)

- - - 8616.9
(R78-K79) - - - - -

- - 8417.7
(Q27-G28) - 8417.7

(Q27-G28)
8417.7

(Q27-G28) - 8417.7
(Q27-G28)

8417.7
(Q27-G28)

- - - - - - - 8124.6
(E74-H75)

8124.6
(E74-H75)
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Table 1. Cont.

Molecular Mass Products of Hydrolysis (Da) and in the Brackets Corresponding to These Peptide Sites of H4 Hydrolysis

Con-0d Con-60d DNA-20d DNA-60d MOG-20d

Anti-His Anti-MBP Anti-His Anti-MBP Anti-His Anti-His Anti-MBP Anti-His Anti-MBP

- - - 7995.6
(T73-E74) - - - - -

7731.5
(T71-Y72) - 7731.5

(T71-Y72)
7731.5

(T71-Y72)
7731.5

(T71-Y72)
7731.5

(T71-Y72) - - -

- 7630.0
(V70-T71) - 7630.0

(V70-T71) - - - - 7630.0
(V70-T71)

- 7581.2
(R35-R36) - - - - 7581.2

(R35-R36) - -

- - 7425.0
(R36-L37) - 7425.0

(R36-L37) - - 7425.0
(R36-L37)

7425.0
(R36-L37)

- - - - - - 7345.3
(A38-R49) - -

- 7084.8
(R39-R40)

7084.8
(R39-R40)

7084.8
(R39-R40)

7084.8
(R39-R40)

7084.8
(R39-R40) - - 7084.8

(R39-R40)
7076.1

(R40-G41) - 7076.1
(R40-G41) - 7076.1

(R40-G41)
7076.1

(R40-G41)
7076.1

(R40-G41)
7076.1

(R40-G41)

- - - 6977.0
(N64-V65) - - - - -

- 6928.7
(A76-K77) - 6928.7

(A76-K77) - - 6928.7
(A76-K77)

6928.7
(A76-K77)

6928.7
(A76-K77)

- 6620.9
(61F-62L) - - - 6620.9

(61F-62L) - 6620.9
(61F-62L) -

- - - 6431.4
(R45-I46) - - - - -

- - - - - - - - 6374.7
(K59-V60)

5977.4
(R55-G56)

5977.4
(R55-G56) - - - 5977.4

(R55-G56)
5977.4

(R55-G56) -

* The molecular masses of the hydrolysis products and the corresponding hydrolysis sites were determined on the basis of a set of data from 7 to 10 spectra. ** Major hydrolysis sites are
marked in red, moderate in black, and minor sites in blue. Missing hydrolysis sites are marked with a dash (-). *** Hydrolysis sites that are found only once in the case of any IgG are
marked with an italic font.
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3. Discussion

The complexation polyreactivity of different antibodies is a widespread
phenomenon [64–67]. Abs affinity for unspecific molecules is usually significantly lower
than for cognate antigens, and they can be usually removed at affinity chromatography
by 0.1–0.15 M NaCl [19–23]. Therefore, we eluted nonspecifically bound IgGs using
0.2 M NaCl. IgGs against five histones and MBP were additionally passed through al-
ternative affinity sorbents. Finally, IgG fractions against MBP and five histones containing
no alternative IgGs were obtained. It was shown that IgGs of EAE mice used in this study
do not contain any normal proteases (Figure 1). The comparison of H4 hydrolysis sites with
IgGs against MBP and five histones confirms this conclusion well. Trypsin splits various
proteins after lysine (K) and arginine (R) residues. The H4 sequence contains 25 sites for
potential cleavage of H4 by trypsin. However, the number of sites of H4 cleavage by all
IgGs used after K and R residues varies mainly from 2 to 7 (Figures 6 and 7). Chymotrypsin
hydrolyzes proteins after F, Y, and W aromatic AAs. There are six potential sites of H4 his-
tone hydrolysis by chymotrypsin. Only one site of hydrolysis after F (61F-62L) was found
in the case of three out of nine used IgG preparations. Not a single site of H4 hydrolysis
was found after the Y residue (Figures 6 and 7, Table 1).

Interestingly, the sites of hydrolysis are mainly grouped in specific clusters of the
histone H4 sequence. In addition, sites of splitting more often occur after neutral AAs: G,
A, L, Q, T, and V (Figures 6 and 7, Table 1). The sites of H4 specific hydrolysis by nine
IgG preparations do not correspond to those for trypsin and chymotrypsin. They are not
distributed along the entire protein length but are grouped into particular AA clusters.

The primary evidence that the IgGs against five histones and MBP do not contain
at least noticeable impurities of alternative abzymes follows the mismatch of the H4
hydrolysis sites by Abs against histones and MBP (Figures 6 and 7, Table 1). This indicates
that IgGs against histone H4 and MBP have not only polyspecificity of complexation but
also possess enzymatic cross-reactivity. In addition, these data, together with previously
published results, indicate that the phenomenon of polyspecificity of complex formation
and enzymatic cross-reactivity are characteristic of abzymes against histones and MBP, not
only for IgGs from the blood of HIV-infected patients [48,49] but also for experimental
mice predisposed to EAE. We have previously shown that in the case of each immunogen
(MOG and complex DNA–histones) at different stages of EAE development, remarkably
or significant differences are observed in the differentiation profiles of bone marrow stem
cells, level of lymphocyte proliferation in different organs, and in the relative activity of
abzymes in the hydrolysis of DNA, MBP, MOG, and histones [11–14,68]. Despite significant
differences, the immunization of mice predisposed to EAE with different antigens ultimately
accelerates the development of this pathology.

As previously shown, IgG antibodies against five different histones hydrolyze specific
histones mainly at sites corresponding to their antigenic determinants [45–49]. However,
different histones have antigenic determinants characterized by a high level of homology
of protein sequences. This may be the main reason for hydrolysis of H4 by Abs against
H4 histone and MBP. Using IgGs from the blood of HIV-infected patients against MBP
and individual Abs against each of the five histones, it was shown that the main reason
for catalytic cross-reactivity might be a consequence of the high level of protein sequence
homology between MBP and histones [48,49]. Therefore, it was helpful to estimate the
general homology between the protein sequence of H4 with four other histones and MBP.

Complete identity of AAs between H4 and H1 (three alignment) was from 25.2 to
30.5% (average value 27.5 ± 2.7%), while similarity (identical together with non-identical
amino acids but with highly similar physicochemical properties) varied from 48.6 to 58.4%
(average 54.4 ± 5.1%). Identity of AAs between H4 and H2A varies from 28.2 to 32.8%
(average value 30.5 ± 3.3%) and similarity from 49.1 to 54.6% (average 51.4 ± 4.6%). Ap-
proximately the same homology demonstrated H4 and H2B histones: identity—24.4–25.4%
(average 24.8 ± 0.5%); similarity—49.0–54.1% (average value 51.0 ± 3.0%). Homology
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between H4 and H3 histones: identity—30.3%; and similarity—52.3% (there was only one
variant of alignment found).

Since antibodies against MBP efficiently hydrolyze H4 histone, it seemed interesting
to assess the homology of the MBP sequence with H4 and other histones. H4 histone has
identity of AAs with MBP 25.0–29.4% (average 27.2 ± 3.1), while similarity is 46.2–48.6
(average 47.4 ± 1.1%). The average level of MBP identity with four other histones varied
from 24.4 to 26.9% (average 25.7 ± 1.0%), while similarity from 45.5 to 50.8% (average
value 48.6 ± 2.2%). The indicators of the AA identity of the sequences of all five histones
(24.8–30.3%) and MBP (25.7–27.2%) and similarity in the case of five histones (51.0–54.4) as
well as histones and MBP (46.2–50.8%) are very similar. In addition, all five histones and
MBPs contain a large number of positively charged amino acid residues. Interestingly, not
only five histones but also MBP effectively bind to DNA [73]. This may be several reasons
for the possibility of antibodies against different histones and MBP binding with H4 and
then hydrolysis of this histone (Table 1). However, as shown in [48,49] on the example of
antibodies from the blood of HIV-infected patients, it is not the general level of homology
between the complete sequences of histones and MBP. Still, the higher homology between
the sequences that hydrolyze abzymes against MBP and histones in their cognate proteins
is more important for abzyme enzymatic cross-reactivity.

In this work, using the EAE mice, we analyzed for the first time the possibility of
changing the substrate specificity and sites of protein hydrolysis, depending on the stage
of development of EAE. As shown in Figures 6A and 7A and Table 1, the blood of three-
month-old mice contains abzymes against histones and MBP, which hydrolyze histone
H4 in both cases at six sites in total; only one of them (R55-G56) is the same for Con-0d-
His and Con-0d-MBP. The spontaneous development of EAE within 60 days leads to a
substantial increase in the number of H4 hydrolysis sites by both anti-histone (11 sites;
Con-60d-His) and MBP (12 sites; Con-60d-MBP) antibodies. Moreover, for IgGs against
histones at the beginning (Con-0d-His) and after 60 days of spontaneous development
of EAE (Con-60d-His), there is a coincidence of only four sites of H4 cleavage. In the
case of IgGs against MBP at time zero (Con-0d-MBP) and after 60 days of spontaneous
development of EAE (Con-60d-MBP), only three of the same hydrolysis sites are observed
(Table 1). As shown earlier, a change in the differentiation profile of stem cells, leading to
the appearance of lymphocytes synthesizing abzymes, occurs already at the level of the
cerebrospinal fluid of MS patients’ spinal cords [41–43]. Abzymes that hydrolyze DNA,
MBP, and polysaccharides from the cerebrospinal fluid are about 30–60 times more active
than the same individuals’ blood [41–43]. The difference in sites of H4 cleavage indicates
that during the process of spontaneous development of EAE, there is an expansion of
B-lymphocytes synthesizing antibodies against histones and MBP possessing catalytic
cross-reactivity.

As shown earlier, the maximum increase in the relative activity of abzymes in the
hydrolysis of DNA, MOG, and MBP after mouse immunization with MOG occurs during
the acute phase of pathology at 17–20 days [11–14]. It could be expected that a sharp
increase in the relative catalytic activity of abzymes at this time may be associated not only
with an increase in the blood in the relative content of abzymes but also with expanding
the ability of Abs to hydrolyze proteins at various sites. Nevertheless, 20 days after
immunization of mice with MOG, abzymes against histones (seven sites; MBP-20d-His)
showed significantly fewer H4 hydrolysis sites than after spontaneous development of
EAE (Con-60d-His). Only three sites for MBP-20d-His preparation coincided with those for
Con-0d-His antibodies, and four sites were the same with DNA-20d-His IgGs (Table 1).

Immunization of mice with the DNA–histones complex also accelerates the develop-
ment of EAE. However, in this case, there are two stages of an increase in the enzymatic
activity of abzymes. In the period from 7 to 20 days, the first increase occurs, and after
30 days, the second more powerful increase in their activity occurs [11,12]. A total of
20 days after immunization with a complex of DNA with histones, IgGs from the blood of
mice (DNA-20d-His) show nine hydrolysis sites, and four of them (including two major
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sites of the splitting—R39-R40 and N64-V65) are not among the sites of H4 hydrolysis by
antibodies (Con-0d-His) corresponding to mice before immunization. Additionally, 60 days
after immunization, IgGs against histones (DNA-60d-His) hydrolyze H4 histone also at
nine sites (Table 1). Five of these sites do not coincide with those for Con-0d-His, and three
are different from sites for DNA-20d-His preparation.

With the spontaneous development of EAE, an increase in the relative activity of
abzymes occurs relatively slowly and smoothly in comparison with those after immu-
nization of mice with MOG or a complex of DNA with histones [11–14]. Therefore, it is
somewhat unexpected that it is during the spontaneous development of pathology that
there may be a more intensive expansion in the number of abzymes with different prop-
erties, which hydrolyze H4 at a greater number and different sites. This may mean that
immunization of mice with MOG and complex DNA–histones leads to the production of
specific abzymes that hydrolyze H4 at a smaller number of sites.

At present, the question of why abzymes can differ significantly at different stages of
EAE development has remained open. First, IgG might be maturated during immunization.
At the same time, various types of IgG might be produced in parallel by different B-cells.
In the latter case, the poly-reactive function of IgGs can be well and easily explained.

Theoretically, the immune system can provide up to 106 Ab variants against one
antigen [74]. We have analyzed many monoclonal antibodies against DNA and MBP of
SLE patients [75–79]. It was shown that the possible number of abzymes with DNase and
MBP hydrolyzing activities that differ in optimal pH, dependence and independence from
monovalent and divalent metal ions, exhibiting the properties of different DNases (DNase I
and DNase II) or proteases (serine- and thiol-like, or metalloprotease) may be ≥1000. These
data on monoclonal Abs are more in favor of the fact that the formation of B-lymphocytes
producing antibodies with different enzymatic properties can occur in parallel. However, it
cannot be ruled out that some of the abzymes are formed as a result of their maturation
during immunization.

4. Materials and Methods
4.1. Materials and Chemicals

All chemicals, an equimolar mixture of H1, H2A, H2B, H3, and H4 histones, and
homogeneous individual H4 were from Sigma (St. Louis, MO, USA). Superdex 200 HR
10/30 and Protein G-Sepharose columns were from GE Healthcare (GE Healthcare, New
York, NY, USA). MBP was obtained from the Molecular Diagnostics and Therapy Center
(DBRC; Moscow, Russia). Sepharoses containing immobilized histones and MBP were
prepared using the standard manufacturer’s protocol, BrCN-activated Sepharose (Sigma),
MBP, or the mixture of five histones. Mouse oligopeptide MOG35–55 was from EZBiolab
(Heidelberg, Germany). All preparations were free from any possible contaminants.

4.2. Experimental Animals

Inbred C57BL/6 mice (3 months of age) were used recently to study possible mecha-
nisms of spontaneous and antigen-induced EAE development [11,12]. They were obtained
in a special mouse breeding facility of the Institute of Cytology and Genetics (ICG) using
standard conditions free of any pathogens. All experiments with C57BL/6 mice were
performed under protocols of the Bioethical Committee of the ICG (document number
134A of 7 September 2010), satisfying the humane principles for working with animals
established by the European Communities Council Directive (86/609/CEE). The Bioethical
Committee of the ICG supported this study. The relative overtime weight, titers of Abs
against MBP and histones, the relative level of proteinuria (concentration of protein in
the urine, mg/mL), and some other parameters characterizing EAE development were
analyzed as in [11–14].
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4.3. Antibody Purification

Electrophoretically homogeneous polyclonal IgGs from the blood plasma of mice
were first isolated by affinity chromatography of plasma proteins on Protein G-Sepharose
and then additionally by Fast protein liquid chromatography–gel filtration (FPLC) on a
Superdex 200 HR 10/30 column [11–14]. For additional purification, central parts of IgG
peaks after gel filtration and filtration through filters (pore size 0.1 µm) were used.

Removal of all IgGs against five histones (H1, H2A, H2B, H3, and H4) from total
preparation of polyclonal Abs was fulfilled using histone5H-Sepharose (5 mL) containing
five immobilized histones. The column was equilibrated using 20 mM Tris-HCl, pH 7.5
(buffer A). After IgGs loading, the column was washed to zero optical density (A280) with
buffer A. Adsorbed Abs with low affinity for five histones were first eluted using buffer
A supplemented NaCl (0.2 M), and finally, anti-histones IgGs with high affinity for the
histones were specifically desorbed using acidic buffer (0.1 M glycine–HCl, pH 2.6). The
IgG fractions eluted from histone5H-Sepharose at loading and washing with 5 mL of buffer
A were combined and used to obtain anti-MBP Abs using affinity chromatography on the
MBP-Sepharose column (5 mL) equilibrated in buffer A. After the MBP-Sepharose washing
to zero optical density (A280) with buffer A, adsorbed IgGs with low affinity for MBP were
first eluted using buffer A and then this buffer containing NaCl (0.2 M). Finally, anti-MBP
IgGs were eluted using acidic Tris-Gly buffer (pH = 2.6), similar to histone5H-Sepharose.

For additional purifications of anti-histones IgGs from possible small hypothetical
impurities of antibodies against MBP, the fractions eluted from histone5-Sepharose were
subjected to re-chromatography on MBP-Sepharose. The fraction eluted at the loading was
named anti-histones IgGs. The fractions of anti-MBP antibodies eluted with an acid buffer
from MBP-Sepharose were re-chromatographed on the histone5-Sepharose to remove
hypothetically possible admixtures of IgGs against histones. The fraction of IgGs eluted at
the loading was named anti-MBP IgGs.

To exclude possible traces of normal proteases, the IgGs against histones and MBP were
subjected to the assay of MBP- and histone-hydrolyzing activities after their SDS-PAGE
using eluates of gel fragments as in [11–14]. It was shown that only intact IgGs demonstrate
protease activity, and no other protein bands or proteolytic activities in different fragments
of gel were found.

4.4. Proteolytic Activity Assay

For analysis of protease activity of IgG-abzymes, the reaction mixtures (10–17 µL)
contained 20 mM Tris-HCl (pH 7.5), 0.8–1.0 mg/mL MBP, or an equimolar mixture of five
histones, or H4 histone, and 0.01–0.05 mg/mL IgGs against MBP or five histones according
to [41–46]. All mixtures were incubated during 3–12 h at 37 ◦C. Then, the reactions were
stopped by adding SDS to the final 0.1% concentration. The efficiency of hydrolysis of
histones and MBP was analyzed using SDS-PAGE in 20% gel. All proteins were detected
using silver or Coomassie Blue staining. All gels were scanned and then quantified using
Image Quant v5.2 software (Media Cybernetics, LP, New York, NY, USA). The relative
protease activities of antibodies were evaluated from the decrease in relative intensity of
bands corresponding to initial non-hydrolyzed proteins after their incubation without IgGs
compared with their content after incubation with different IgGs.

4.5. MALDI-TOF Analysis of Histones Hydrolysis

H4 histone was hydrolyzed during 0–25 h using anti-MBP, anti-histones IgGs as
described above. The aliquots of reaction mixtures (1–2 µL) were analyzed over time
using MALDI mass spectrometry. The analysis of the H4 histone hydrolysis products was
performed using the Reflex III system (Bruker Frankfurt, Germany): a 337 nm nitrogen
laser VSL-337 ND, 3 ns pulse duration, sinapinic acid was used as the matrix. To 1.6 µL
of the matrixes and 1.6 µL of 0.2% trifluoroacetic acid, 1.6 µL of the solutions containing
hydrolyzed histone H4 were added, and 1–1.6 µL of the obtained mixtures were applied on
the MALDI plates that were air-dried for the analysis. All MALDI spectra were calibrated
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using mixtures of oligopeptides and proteins standards II and I (Germany, Bruker Daltonic)
in the internal and/or external calibration mode. The analysis of molecular masses and
specific sites of H4 hydrolysis by different IgGs was performed using Protein Calculator
v3.3 (Scripps Research Institute).

4.6. Analysis of Protein Sequence Homology

The level of homology between peptides and proteins sequences was carried out using
lalign (http://www.ch.embnet.org/software/LALIGN_form.html (accessed on 1 January
2008)).

4.7. Statistical Analysis

The results correspond to the average values (mean ± standard deviation) from
7–10 independent spectra for each preparation of IgGs against five histones and MBP.

5. Conclusions

Here, for the first time, we showed that IgG-abzymes from EAE-prone C57BL/6 mice
against histones, and myelin basic protein (MBP) possess the ability to form complexes
with H4 histone demonstrating polyreactivity in complexation and catalytic cross-reactivity
hydrolysis of histone H4. It was shown that IgGs against histones and MBP at the beginning
of experiment (3-month-old mice) and after spontaneous development of EAE differ in
sites and their number in which hydrolysis occurs. Immunization of mice with MOG and a
complex of DNA with histones leads to an acceleration of the development of EAE and an
increase in the relative activity of antibodies in H4 hydrolysis. After 20 days of immuniza-
tion, the appearance of antibodies is observed that hydrolyze H4 at other additional sites,
the number of which increases moderately. The maximum number of different sites of H4
hydrolysis was found for antibodies against histones and MBP corresponding to 60 days
after immunization of mice.

Supplementary Materials: The supporting information can be downloaded at: https://www.mdpi.
com/article/10.3390/ijms23169182/s1. References [11,13,14] are cited in the supplementary materials.

Author Contributions: Conceptualization, P.S.D. and G.A.N.; methodology, K.S.A. and G.A.N.;
formal analysis, G.A.N. and P.S.D.; investigation, A.E.U. and K.S.A.; resources, G.A.N.; data curation,
V.N.B. and P.S.D.; writing—original draft preparation G.A.N.; writing—review and editing, G.A.N.
and P.S.D.; project administration, G.A.N.; funding acquisition, G.A.N. and P.S.D. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was performed due to a grant from the Russian Science Foundation, 22-15-00103.

Institutional Review Board Statement: All experiments with C57BL/6 mice were performed pur-
suant to protocols of the Bioethical Committee of the ICG (document number 134A of 7 September
2010), satisfying the humane principles for working with animals established by the European
Communities Council Directive (86/609/CEE).

Data Availability Statement: The data that supports the results of this study are included in the
article and its Supplementary Material.

Conflicts of Interest: The coauthors have no competing financial interest.

Abbreviations

Abs, antibodies; AGDs, antigenic determinants; Abz, abzyme; AI, autoimmune; AA,
amino acid; ADs, autoimmune diseases; HIV-1, human immunodeficiency virus type
1; MBP, myelin basic protein; MOG, mouse oligodendrocyte glycoprotein; MS, multiple
sclerosis; MALDI-TOF, matrix-assisted laser ionization/desorption times-of-flight mass
spectrometry; SLE, systemic lupus erythematosus.

http://www.ch.embnet.org/software/LALIGN_form.html
https://www.mdpi.com/article/10.3390/ijms23169182/s1
https://www.mdpi.com/article/10.3390/ijms23169182/s1


Int. J. Mol. Sci. 2022, 23, 9182 19 of 22

References
1. Chen, R.; Kang, R.; Fan, X.-G.; Tang, D. Release and activity of histone in diseases. Cell Death Dis. 2014, 5, e1370. [CrossRef]

[PubMed]
2. Suwa, A. Specificities and Clinical Significance of Autoantibodies Directed Against Histones. Nihon Rinsho Meneki Gakkai Kaishi

2005, 28, 123–130. [CrossRef]
3. Hasselmayer, O.; Demirhan, I.; Chandra, A.; Bayer, M.; Müller, R.; Chandra, P. Inhibition of Histone-Mediated Gene Transfer in

Eucaryotic Cells by Anti-Histone IgG. Anticancer Res. 2001, 21, 2377–2386.
4. Founel, S.; Muller, S. Antinucleosome antibodies and T-cell response in systemic lupus erythematosus. Ann. Med. Interne 2002,

153, 513–519.
5. O’Connor, K.C.; Bar-Or, A.; Hafler, D.A. Neuroimmunology of multiple sclerosis. J. Clin. Immunol. 2001, 21, 81–92. [CrossRef]
6. Archelos, J.J.; Storch, M.K.; Hartung, H.P. The role of B cells and autoantibodies in multiple sclerosis. Ann. Neurol. 2000, 47,

694–706. [CrossRef]
7. Hemmer, B.; Archelos, J.J.; Hartung, H.P. New concepts in the immunopathogenesis of multiple sclerosis. Nat. Rev. Neurosci. 2002,

3, 291–301. [CrossRef]
8. Croxford, A.L.; Kurschus, F.C.; Waisman, A. Mouse models for multiple sclerosis: Historical facts and future implications. Biochim.

Biophys. Acta 2011, 1812, 177–183. [CrossRef]
9. Mouse, E.A.E. Models. Overview and Model Selection; Hooke Laboratories, Inc.: Lawrence, MA, USA, 2011.
10. Ikehara, S.; Kawamura, M.; Takao, F. Organ-specific and systemic autoimmune diseases originate from defects in hematopoietic

stem cells. Proc. Natl. Acad. Sci. USA 1990, 87, 8341–8344. [CrossRef] [PubMed]
11. Aulova, K.S.; Toporkova, L.B.; Lopatnikova, J.A.; Alshevskaya, A.A.; Sedykh, S.E.; Buneva, V.N.; Budde, T.; Meuth, S.G.; Popova,

N.A.; Orlovskaya, I.A.; et al. Changes in cell differentiation and proliferation lead to production of abzymes in EAE mice treated
with DNA-Histone complexes. J. Cell. Mol. Med. 2018, 22, 5816. [CrossRef]

12. Aulova, K.S.; Toporkova, L.B.; Lopatnikova, J.A.; Alshevskaya, A.A.; Sennikov, S.V.; Buneva, V.N.; Budde, T.; Meuth, S.G.; Popova,
N.A.; Orlovskaya, I.A.; et al. Changes in haematopoietic progenitor colony differentiation and proliferation and the production of
different abzymes in EAE mice treated with DNA. J. Cell. Mol. Med. 2017, 21, 3795–3809. [CrossRef] [PubMed]

13. Doronin, V.B.; Parkhomenko, T.A.; Korablev, A.; Toporkova, L.B.; Lopatnikova, J.A.; Alshevskaja, A.A.; Sennikov, S.V.; Buneva,
V.N.; Budde, T.; Meuth, S.G.; et al. Changes in different parameters, lymphocyte proliferation and hematopoietic progenitor
colony formation in EAE mice treated with myelin oligodendrocyte glycoprotein. J. Cell. Mol. Med. 2016, 20, 81–94. [CrossRef]

14. Doronin, V.B.; Korablev, A.; Toporkova, L.B.; Aulova, K.S.; Buneva, V.N.; Budde, T.; Meuth, S.G.; Orlovskaya, I.A.; Popova, N.A.;
Nevinsky, G.A. Changes in several disease parameters including abzymes and hematopoietic progenitor colony formation in
brain inflammation and demyelination. J. Neurol. Neurol. Disord. 2017, 3, 302.

15. Andryushkova, A.S.; Kuznetsova, I.A.; Buneva, V.N.; Toporkova, L.B.; Sakhno, L.V.; Tikhonova, M.A.; Chernykh, E.R.; Orlovskaya,
I.A.; Nevinsky, G.A. Formation of different abzymes in autoimmune-prone MRL-lpr/lpr mice is associated with changes in
colony formation of haematopoetic progenitors. J. Cell. Mol. Med. 2007, 11, 531–551. [CrossRef] [PubMed]

16. Andryushkova, A.A.; Kuznetsova, I.A.; Orlovskaya, I.A.; Buneva, V.N.; Nevinsky, G.A. Antibodies with amylase activity from
the sera of autoimmune-prone MRL/MpJ-lpr mice. FEBS Lett. 2006, 580, 5089–5095. [CrossRef] [PubMed]

17. Andryushkova, A.S.; Kuznetsova, I.A.; Orlovskaya, I.A.; Buneva, V.N.; Nevinsky, G.A. Nucleotide- hydrolyzing antibodies from
the sera of autoimmune-prone MRL-lpr/lpr mice. Int. Immunol. 2009, 21, 935–945. [CrossRef]

18. Keinan, E. (Ed.) Catalytic Antibodies; Wiley-VCH Verlag GmbH and Co. KgaA: Weinheim, Germany, 2005; pp. 1–586.
19. Nevinsky, G.A. Autoimmune processes in multiple sclerosis: Production of harmful catalytic antibodies associated with significant

changes in the hematopoietic stem cell differentiation and proliferation. In Multiple Sclerosis; Conzalez-Quevedo, A., Ed.; InTech:
Rijeka, Croatia, 2016; pp. 100–147.

20. Nevinsky, G.A.; Buneva, V.N. Natural catalytic antibodies–abzymes. In Catalytic Antibodies; Keinan, E., Ed.; VCH-Wiley Press:
Weinheim, Germany, 2005; pp. 505–569.

21. Nevinsky, G.A. Natural catalytic antibodies in norm and in autoimmune diseases. In Autoimmune Diseases: Symptoms, Diagnosis
and Treatment; Brenner, K.J., Ed.; Nova Science Publishers Inc.: New York, NY, USA, 2010; pp. 1–107.

22. Nevinsky, G.A. Natural catalytic antibodies in norm and in HIV-infected patients. In Understanding HIV/AIDS Management and
Care—Pandemic Approaches the 21st Century; Kasenga, F.H., Ed.; InTech: Rijeka, Croatia, 2011; pp. 151–192.

23. Nevinsky, G.A. Catalytic antibodies in norm and systemic lupus erythematosus. In Lupus; Khan, W.A., Ed.; InTech: Rijeka,
Croatia, 2017; pp. 41–101.

24. Planque, S.A.; Nishiyama, Y.; Sonoda, S.; Lin, Y.; Taguchi, H.; Hara, M.; Kolodziej, S.; Mitsuda, Y.; Gonzalez, V.; Sait, H.B.; et al.
Specific amyloid β clearance by a catalytic antibody construct. J. Biol. Chem. 2015, 290, 10229–10241. [CrossRef]

25. Bowen, A.; Wear, M.P.; Cordero, R.J.; Oscarson, S.; Casadevall, A. A Monoclonal Antibody to Cryptococcus neoformans
Glucuronoxylomannan Manifests Hydrolytic Activity for Both Peptides and Polysaccharides. J. Biol. Chem. 2017, 292, 417–434.
[CrossRef]

26. Hifumi, E.; Taguchi, H.; Tsuda, H.; Minagawa, T.; Nonaka, T.; Uda, T. A new algorithm to convert a normal antibody into the
corresponding catalytic antibody. Sci. Adv. 2020, 6, eaay6441. [CrossRef]

27. Hifumi, E.; Taguchi, H.; Nonaka, T.; Harada, T.; Uda, T. Finding and characterizing a catalytic antibody light chain, H34, capable
of degrading the PD-1 molecule. RSC Chem. Biol. 2020, 2, 220–229. [CrossRef]

http://doi.org/10.1038/cddis.2014.337
http://www.ncbi.nlm.nih.gov/pubmed/25118930
http://doi.org/10.2177/jsci.28.123
http://doi.org/10.1023/A:1011064007686
http://doi.org/10.1002/1531-8249(200006)47:6&lt;694::AID-ANA2&gt;3.0.CO;2-W
http://doi.org/10.1038/nrn784
http://doi.org/10.1016/j.bbadis.2010.06.010
http://doi.org/10.1073/pnas.87.21.8341
http://www.ncbi.nlm.nih.gov/pubmed/2236044
http://doi.org/10.1111/jcmm.13850
http://doi.org/10.1111/jcmm.13289
http://www.ncbi.nlm.nih.gov/pubmed/28780774
http://doi.org/10.1111/jcmm.12704
http://doi.org/10.1111/j.1582-4934.2007.00048.x
http://www.ncbi.nlm.nih.gov/pubmed/17635644
http://doi.org/10.1016/j.febslet.2006.08.036
http://www.ncbi.nlm.nih.gov/pubmed/16950261
http://doi.org/10.1093/intimm/dxp060
http://doi.org/10.1074/jbc.M115.641738
http://doi.org/10.1074/jbc.M116.767582
http://doi.org/10.1126/sciadv.aay6441
http://doi.org/10.1039/D0CB00155D


Int. J. Mol. Sci. 2022, 23, 9182 20 of 22

28. Savel’ev, A.N.; Eneyskaya, E.V.; Shabalin, K.A.; Filatov, M.V.; Neustroev, K.N. Autoantibodies with amylolytic activity. Protein
Pept. Lett. 1999, 6, 179–184.

29. Kalaga, R.; Li, L.; O’Dell, J.R.; Paul, S. Unexpected presence of polyreactive catalytic antibodies in IgG from unimmunized donors
and decreased levels in rheumatoid arthritis. J. Immunol. 1995, 155, 2695–2702. [PubMed]

30. Paul, S.; Volle, D.J.; Beach, C.M.; Johnson, D.R.; Powell, M.J.; Massey, R.J. Catalytic hydrolysis of vasoactive intestinal peptide by
human autoantibody. Science 1989, 244, 1158–1162. [CrossRef] [PubMed]

31. Paul, S.; Planque, S.A.; Nishiyama, Y.; Hanson, C.V.; Massey, R.J. Nature and nurture of catalytic antibodies. Adv. Exp. Med. Biol.
2012, 750, 56–75. [PubMed]

32. Planque, S.A.; Nishiyama, Y.; Hara, M.; Sonoda, S.; Murphy, S.K.; Watanabe, K.; Mitsuda, Y.; Brown, E.L.; Massey, R.J.; Primmer,
S.R.; et al. Physiological IgM class catalytic antibodies selective for transthyretin amyloid. J. Biol. Chem. 2014, 289, 13243–13258.
[CrossRef] [PubMed]

33. Baranovskii, A.G.; Kanyshkova, T.G.; Mogelnitskii, A.S.; Naumov, V.A.; Buneva, V.N.; Gusev, E.I.; Boiko, A.N.; Zargarova, T.A.;
Favorova, O.O.; Nevinsky, G.A. Polyclonal antibodies from blood and cerebrospinal fluid of patients with multiple sclerosis
effectively hydrolyze DNA and RNA. Biochemistry 1998, 63, 1239–1248.

34. Baranovskii, A.G.; Ershova, N.A.; Buneva, V.N.; Kanyshkova, T.G.; Mogelnitskii, A.S.; Doronin, B.M.; Boiko, A.N.; Gusev, E.I.;
Favorova, O.O.; Nevinsky, G.A. Catalytic heterogeneity of polyclonal DNA-hydrolyzing antibodies from the sera of patients with
multiple sclerosis. Immunol. Lett. 2001, 76, 163–167. [CrossRef]

35. Vlassov, A.; Florentz, C.; Helm, M.; Naumov, V.; Buneva, V.; Nevinsky, G.; Giegé, R. Characterization and selectivity of catalytic
antibodies from human serum with RNase activity. Nucleic Acid Res. 1998, 26, 5243–5250. [CrossRef]

36. Polosukhina, D.I.; Kanyshkova, T.G.; Doronin, B.M.; Tyshkevich, O.B.; Buneva, V.N.; Boiko, A.N.; Gusev, E.I.; Favorova, O.O.;
Nevinsky, G.A. Hydrolysis of myelin basic protein by polyclonal catalytic IgGs from the sera of patients with multiple sclerosis. J.
Cell. Mol. Med. 2004, 8, 359–368. [CrossRef]

37. Polosukhina, D.I.; Buneva, V.N.; Doronin, B.M.; Tyshkevich, O.B.; Boiko, A.N.; Gusev, E.I.; Favorova, O.O.; Nevinsky, G.A.
Hydrolysis of myelin basic protein by IgM and IgA antibodies from the sera of patients with multiple sclerosis. Med. Sci. Monit.
Int. Med. J. Exp. Clin. Res. 2005, 11, BR266-72.

38. Polosukhina, D.I.; Kanyshkova, T.G.; Doronin, B.M.; Tyshkevich, O.B.; Buneva, V.N.; Boiko, A.N.; Gusev, E.I.; Nevinsky, G.A.;
Favorova, O.O. Metal-dependent hydrolysis of myelin basic protein by IgGs from the sera of patients with multiple sclerosis.
Immunol. Lett. 2006, 103, 75–81. [CrossRef] [PubMed]

39. Bezuglova, A.V.; Konenkova, L.P.; Doronin, B.M.; Buneva, V.N.; Nevinsky, G.A. Affinity and catalytic heterogeneity and metal-
dependence of polyclonal myelin basic protein-hydrolyzing IgGs from sera of patients with systemic lupus erythematosus. J. Mol.
Recognit. 2011, 24, 960–974. [CrossRef] [PubMed]

40. Baranova, S.V.; Mikheeva, E.V.; Buneva, V.N.; Nevinsky, G.A. Antibodies from the Sera of Multiple Sclerosis Patients Efficiently
Hydrolyze Five Histones. Biomolecules 2019, 9, 741. [CrossRef] [PubMed]

41. Parkhomenko, T.A.; Doronin, V.B.; Castellazzi, M.; Padroni, M.; Pastore, M.; Buneva, V.N.; Granieri, E.; Nevinsky, G.A.
Comparison of DNA-hydrolyzing antibodies from the cerebrospinal fluid and serum of patients with multiple sclerosis. PLoS
ONE 2014, 9, e93001. [CrossRef]

42. Doronin, V.B.; Parkhomenko, T.A.; Castellazzi, M.; Padroni, M.; Pastore, M.; Buneva, V.N.; Granieri, E.; Nevinsky, G.A.
Comparison of antibodies hydrolyzing myelin basic protein from the cerebrospinal fluid and serum of patients with multiple
sclerosis. PLoS ONE 2014, 9, e107807. [CrossRef]

43. Doronin, V.B.; Parkhomenko, T.A.; Castellazzi, M.; Cesnik, E.; Buneva, V.N.; Granieri, E.; Nevinsky, G.A. Comparison of antibodies
with amylase activity from cerebrospinal fluid and serum of patients with multiple sclerosis. PLoS ONE 2016, 11, e0154688.
[CrossRef]

44. Baranova, S.V.; Buneva, V.N.; Nevinsky, G.A. Antibodies from the sera of HIV-infected patients efficiently hydrolyze all human
histones. J. Mol. Recognit. 2016, 29, 346–362. [CrossRef]

45. Baranova, S.V.; Dmitrienok, P.S.; Ivanisenko, N.V.; Buneva, V.N.; Nevinsky, G.A. Antibodies to H1 histone from the sera of
HIV-infected patients recognize and catalyze site-specific degradation of this histone. J. Mol. Recognit. 2017, 30, e2588. [CrossRef]

46. Baranova, S.V.; Dmitrienok, P.S.; Ivanisenko, N.V.; Buneva, V.N.; Nevinsky, G.A. Antibodies to H2a and H2b histones from the
sera of HIV-infected patients catalyze site-specific degradation of these histones. Mol. Biosyst. 2017, 13, 1090–1101. [CrossRef]

47. Baranova, S.V.; Dmitrenok, P.S.; Zubkova, A.D.; Ivanisenko, N.V.; Odintsova, E.S.; Buneva, V.N.; Nevinsky, G.A. Antibodies
against H3 and H4 histones from the sera of HIV-infected patients catalyze site-specific degradation of these histones. J. Mol.
Recognit. 2018, 31, e2703. [CrossRef]

48. Baranova, S.V.; Dmitrienok, P.S.; Buneva, V.N.; Nevinsky, G.A. Autoantibodies in HIV-infected patients: Cross site-specific
hydrolysis of H1 histone and myelin basic protein. Biofactors 2019, 45, 211–222. [CrossRef] [PubMed]

49. Baranova, S.V.; Dmitrienok, P.S.; Buneva, V.N.; Nevinsky, G.A. HIV-Infected Patients: Cross Site-Specific Hydrolysis of H2a and
H2b Histones and Myelin Basic Protein with Antibodies against These Three Proteins. Biomolecules 2020, 10, 1501. [CrossRef]
[PubMed]

50. Sinohara, H.; Matsuura, K. Does catalytic activity of Bence-Jones proteins contribute to the pathogenesis of multiple myeloma?
Appl. Biochem. Biotechnol. 2000, 83, 85–92. [CrossRef]

http://www.ncbi.nlm.nih.gov/pubmed/7650397
http://doi.org/10.1126/science.2727702
http://www.ncbi.nlm.nih.gov/pubmed/2727702
http://www.ncbi.nlm.nih.gov/pubmed/22903666
http://doi.org/10.1074/jbc.M114.557231
http://www.ncbi.nlm.nih.gov/pubmed/24648510
http://doi.org/10.1016/S0165-2478(01)00185-7
http://doi.org/10.1093/nar/26.23.5243
http://doi.org/10.1111/j.1582-4934.2004.tb00325.x
http://doi.org/10.1016/j.imlet.2005.10.018
http://www.ncbi.nlm.nih.gov/pubmed/16310860
http://doi.org/10.1002/jmr.1143
http://www.ncbi.nlm.nih.gov/pubmed/22038803
http://doi.org/10.3390/biom9110741
http://www.ncbi.nlm.nih.gov/pubmed/31731780
http://doi.org/10.1371/journal.pone.0093001
http://doi.org/10.1371/journal.pone.0107807
http://doi.org/10.1371/journal.pone.0154688
http://doi.org/10.1002/jmr.2534
http://doi.org/10.1002/jmr.2588
http://doi.org/10.1039/C7MB00042A
http://doi.org/10.1002/jmr.2703
http://doi.org/10.1002/biof.1473
http://www.ncbi.nlm.nih.gov/pubmed/30496641
http://doi.org/10.3390/biom10111501
http://www.ncbi.nlm.nih.gov/pubmed/33143355
http://doi.org/10.1385/ABAB:83:1-3:85


Int. J. Mol. Sci. 2022, 23, 9182 21 of 22

51. Kozyr, A.V. Autoantibodies to nuclear antigens: Correlation between cytotoxicity and DNA-hydrolyzing activity. Appl. Biochem.
Biotechnol. 1998, 75, 45. [CrossRef]

52. Nevinsky, G.A.; Buneva, V.N. Catalytic antibodies in healthy humans and patients with autoimmune and viral pathologies. J.
Cell. Mol. Med. 2003, 7, 265–276. [CrossRef]

53. Ternynck, P.; Falanga, B.; Unterkircher, C.; Gregoire, J.; Da Silva, L.P.; Avrameas, S. Induction of high levels of IgG autoantibodies
in mice infected with Plasmodium chabaudi. Int. Immunol. 1991, 3, 29–37. [CrossRef]

54. Hentati, B.; Sato, M.N.; Payelle, B.; Avrameas, S.; Ternynck, T. Beneficial effect of polyclonal immunoglobulins from malaria-
infected BALB/c mice on the lupus-like syndrome of (NZB × NZW) F1 mice. Eur. J. Immunol. 1994, 24, 8–15. [CrossRef]

55. Matsiota-Bernard, P.; Mahana, W.; Avrameas, S.; Nauciel, C. Specific and natural antibody production during Salmonella
typhimurium infection in genetically susceptible and resistant mice. Immunology 1993, 79, 375–380.

56. Barzilai, O.; Ram, M.; Shoenfeld, Y. Viral infection can induce the production of autoantibodies. Curr. Opin. Rheumatol. 2007, 19,
636–643. [CrossRef]

57. Libbey, J.E.; Cusick, M.F.; Fujinami, R.S. Role of pathogens in multiple sclerosis. Int. Rev. Immunol. 2014, 33, 266–283. [CrossRef]
58. Andersen, O.; Lygner, P.E.; Bergstrom, T. Viral infections trigger multiple sclerosis relapses: A prospective seroepidemiological

study. J. Neurol. 1993, 240, 417–422. [CrossRef] [PubMed]
59. Nishi, Y. Evolution of catalytic antibody repertoire in autoimmune mice. J. Immunol. Methods 2002, 269, 213–233. [CrossRef]
60. Tawfik, D.S.; Chap, R.; Green, B.S.; Sela, M.; Eshhar, Z. Unexpectedly high occurrence of catalytic antibodies in MRL/lpr and

SJL mice immunized with a transition-state analog: Is there a linkage to autoimmunity? Proc. Natl. Acad. Sci. USA 2002, 92,
2145–2149. [CrossRef] [PubMed]

61. Nevinsky, G.A. Structural, thermodynamic, and kinetic basis of DNA- and RNA-dependent enzymes functioning: Important role
of weak nonspecific additive interactions between enzymes and long nucleic acids for their recognition and transformation. In
Protein Structures: Kaleidoscope of Structural Properties and Functions; Uversky, V.N., Ed.; Research Signpost: Thiruvananthapuram,
India, 2003; pp. 133–222.

62. Nevinsky, G.A. Structural, thermodynamic, and kinetic basis for the activities of some nucleic acid repair enzymes. J. Mol.
Recognit. 2011, 24, 656–677. [CrossRef] [PubMed]

63. Nevinsky, G.A. How Enzymes, Proteins, and Antibodies Recognize Extended DNAs, General Regularities. Int. J. Mol. Sci. 2021,
22, 1369. [CrossRef]

64. Zhou, Z.H.; Tzioufas, A.G.; Notkins, A.L. Properties and function of polyreactive antibodies and polyreactive antigen-binding B
cells. J. Autoimmun. 2007, 29, 219–228. [CrossRef]

65. James, L.C.; Roversi, P.; Tawfik, D.S. Antibody multispecificity mediated by conformational diversity. Science 2003, 299, 1362–1367.
[CrossRef]

66. James, L.C.; Tawfik, D.S. Conformational diversity and protein evolution–a 60-year-old hypothesis revisited. Trends Biochem. Sci.
2003, 28, 361–368. [CrossRef]

67. James, L.C.; Tawfik, D.S. The specificity of cross-reactivity: Promiscuous antibody binding involves specific hydrogen bonds
rather than nonspecific hydrophobic stickiness. Protein Sci. 2003, 12, 2183–2193. [CrossRef]

68. Aulova, K.S.; Urusov, A.A.; Sedykh, S.E.; Toporkova, L.B.; Lopatnikova, J.A.; Buneva, V.N.; Sennikov, S.V.; Budde, T.; Meuth, S.G.;
Popova, N.A.; et al. The association between EAE development in mice and the production of autoantibodies and abzymes after
immunization of mice with different antigens. J. Cell. Mol. Med. 2021, 25, 2493–2504. [CrossRef]

69. Hashim, G.A. Myelin basic protein: Structure, function and antigenic determinants. Immunol. Rev. 1978, 39, 60–107. [CrossRef]
[PubMed]

70. Thomas, J.O.; Wilson, C.M.; Hardin, J.A. The major core histone antigenic determinants in systemic lupus erythematosus are in
the trypsin-sensitive regions. FEBS Lett. 1984, 169, 90–96. [CrossRef]

71. Banchev, T.B.; Zlatanova, J.S. Antigenic structure of histone H1. Mol. Cell. Biochem. 1991, 107, 161–168. [CrossRef] [PubMed]
72. Muller, S.; Soussanieh, A.; Bouley, J.P.; Reinbolt, J.; Van Regenmortel, M.H. Localization of two antigenic determinants in histone

H4. Biochim. Biophys. Acta 1983, 747, 100–106. [CrossRef]
73. Krasitskaya, V.V.; Chaukina, V.V.; Abroskina, M.V.; Vorobyeva, M.A.; Ilminskaya, A.A.; Kabilov, M.R.; Prokopenko, S.V.;

Nevinsky, G.A.; Venyaminova, A.G.; Frank, L.A. Bioluminescent aptamer-based sandwich-type assay of anti-myelin basic protein
autoantibodies associated with multiple sclerosis. Anal. Chim. Acta 2019, 1064, 112–118. [CrossRef]

74. Khaitov, R.M.; Ignatieva, G.A.; Sidorovich, I.G. Immunology; Medicine: Moscow, Russian, 2000.
75. Kostrikina, I.A.; Buneva, V.N.; Nevinsky, G.A. Systemic lupus erythematosus: Molecular cloning of fourteen recombinant DNase

monoclonal kappa light chains with different catalytic properties. Biochim. Biophys. Acta 2014, 1840, 1725–1737. [CrossRef]
76. Botvinovskaya, A.V.; Kostrikina, I.A.; Buneva, V.N.; Nevinsky, G.A. Systemic lupus erythematosus: Molecular cloning of several

recombinant DNase monoclonal kappa light chains with different catalytic properties. J. Mol. Recognit. 2013, 26, 450–460.
[CrossRef]

77. Timofeeva, A.M.; Buneva, V.N.; Nevinsky, G.A. Systemic lupus erythematosus: Molecular cloning and analysis of 22 individual
recombinant monoclonal kappa light chains specifically hydrolyzing human myelin basic protein. J. Mol. Recognit. 2015, 28,
614–627. [CrossRef]

http://doi.org/10.1007/BF02787708
http://doi.org/10.1111/j.1582-4934.2003.tb00227.x
http://doi.org/10.1093/intimm/3.1.29
http://doi.org/10.1002/eji.1830240103
http://doi.org/10.1097/BOR.0b013e3282f0ad25
http://doi.org/10.3109/08830185.2013.823422
http://doi.org/10.1007/BF00867354
http://www.ncbi.nlm.nih.gov/pubmed/8410082
http://doi.org/10.1016/S0022-1759(02)00233-8
http://doi.org/10.1073/pnas.92.6.2145
http://www.ncbi.nlm.nih.gov/pubmed/7892238
http://doi.org/10.1002/jmr.1096
http://www.ncbi.nlm.nih.gov/pubmed/21584877
http://doi.org/10.3390/ijms22031369
http://doi.org/10.1016/j.jaut.2007.07.015
http://doi.org/10.1126/science.1079731
http://doi.org/10.1016/S0968-0004(03)00135-X
http://doi.org/10.1110/ps.03172703
http://doi.org/10.1111/jcmm.16183
http://doi.org/10.1111/j.1600-065X.1978.tb00397.x
http://www.ncbi.nlm.nih.gov/pubmed/75170
http://doi.org/10.1016/0014-5793(84)80295-1
http://doi.org/10.1007/BF00225519
http://www.ncbi.nlm.nih.gov/pubmed/1724285
http://doi.org/10.1016/0167-4838(83)90127-9
http://doi.org/10.1016/j.aca.2019.03.015
http://doi.org/10.1016/j.bbagen.2014.01.027
http://doi.org/10.1002/jmr.2286
http://doi.org/10.1002/jmr.2476


Int. J. Mol. Sci. 2022, 23, 9182 22 of 22

78. Timofeeva, A.M.; Ivanisenko, N.V.; Buneva, V.N.; Nevinsky, G.A. Systemic lupus erythematosus: Molecular cloning and
analysis of recombinant monoclonal kappa light chain NGTA2-Me-pro-Tr possessing two different activities-trypsin-like and
metalloprotease. Int. Immunol. 2015, 27, 633–645. [CrossRef]

79. Timofeeva, A.M.; Buneva, V.N.; Nevinsky, G.A. Systemic lupus erythematosus: Molecular cloning and analysis of recombinant
monoclonal kappa light chain NGTA1-Me-pro with two metalloprotease active centers. Mol. Biosyst. 2016, 12, 3556–3566.
[CrossRef]

http://doi.org/10.1093/intimm/dxv042
http://doi.org/10.1039/C6MB00573J

	Introduction 
	Results 
	Choosing a Model for the Study of Catalytic Cross-Reactivity 
	Purification of Antibodies 
	SDS-PAGE Analysis of Histones and MBP Hydrolysis 
	MALDI Analysis of H4 Histone Hydrolysis 

	Discussion 
	Materials and Methods 
	Materials and Chemicals 
	Experimental Animals 
	Antibody Purification 
	Proteolytic Activity Assay 
	MALDI-TOF Analysis of Histones Hydrolysis 
	Analysis of Protein Sequence Homology 
	Statistical Analysis 

	Conclusions 
	References

