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Abstract: The synthesis of three water-soluble lactose-modified 4,4-difluoro-4-bora-3a,4a-diaza-s-
indacene (BODIPY)-based photosensitizers with tumor-targeting capabilities is reported, including
an investigation into their photodynamic therapeutic activity on three distinct cancer cell lines
(human hepatoma Huh7, cervical cancer HeLa, and breast cancer MCF-7 cell lines). The halogenated
BODIPY dyes exhibited a decreased fluorescence quantum yield compared to their non-halogenated
counterpart, and facilitated the efficient generation of singlet oxygen species. The synthesized dyes
exhibited low cytotoxicities in the dark and high photodynamic therapeutic capabilities against the
treated cancer cell lines following irradiation at 530 nm. Moreover, the incorporation of lactose
moieties led to an enhanced cellular uptake of the BODIPY dyes. Collectively, the results presented
herein provide promising insights for the development of photodynamic therapeutic agents for
cancer treatment.
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1. Introduction

Photodynamic therapy (PDT) is an emerging clinical strategy for local, controllable, and
noninvasive cancer treatment that combines three key components: light, oxygen, and a
photosensitizing (PS) agent [1,2]. The mechanism of action involves irradiation of the localized
PS agents with light of appropriate wavelengths to generate cytotoxic and highly reactive oxygen
species (ROS), including singlet oxygen (1O2), thereby causing tissue damage in the regions where
these three key components converge [3]. Several PS agents have been reported for use in PDT,
including cyclic tetrapyrroles (chlorins, porphyrins, and bacteriochlorins) and phenothiazinium-based
photosensitizers [4–7]. However, the majority of these PS agents are met with numerous drawbacks
confining their clinical applications, including low light-to-dark toxicity ratios, low photostability, and
structural instability. In addition, these conventional PS agents are synthesized employing elaborate
synthetic routes and purification processes and can only be utilized with certain solvents [8–10].
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Hence, there is an increasing demand for the development of new classes of PDT photosensitizers
that are straightforward to synthesize, highly efficient, photostable, and widely applicable under
various conditions.

A promising class of fluorophore that has shown excellent potential as a PS agent over the
past decade is 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) [7,11–13]. This dye has gained
relevance both in fundamental research and clinical practice, primarily due to its innate advantageous
photophysical characteristics, including high extinction coefficients, high fluorescence quantum yield,
resistance to photobleaching [11,14], and high light-to-dark toxicity ratios, which are higher than those
of conventional phenothiazinium-based PDT agents [2,5]. Apart from being easily synthesized, BODIPY
dyes are amenable to several post-synthetic modifications aimed at modulating their photophysical
properties and improving their ROS generation capability. In particular, the incorporation of heavy
halogen atoms at the 2,6-position of the BODIPY core could significantly enhance singlet-to-triplet
intersystem crossing (ISC) transitions of the chromophore and consequently increase singlet 1O2

quantum yield. Such introduction of heavy atoms onto a molecule that significantly influences the
rates of ISC is termed the heavy-atom effect [15]. In spite of the considerable advances in BODIPY
biomarker research, many of these BODIPY derivatives have limited biological utility due to their
hydrophobic nature, tendency to form aggregates in aqueous environments, and a lack of sufficient
tumor selectivity [16–18]. Numerous synthetic approaches have been reported for enhancing the
aqueous solubility and tumor-selectivity of these PS agents, including the attachment of ionizable
hydrophilic groups (e.g., sulfonic acid, carboxylic acid, phosphonic acid, and ammonium groups), and
biomolecules (e.g., polyethylene glycol, oligonucleotides, and carbohydrates) [19–21].

Among the multitude of ionizable hydrophilic moieties and biomolecules employed to improve
the water solubility of BODIPY derivatives, carbohydrate groups have demonstrated a remarkable
ability in balancing the biodegradability, stability, biocompatibility, and tumor-targeting efficacy of the
resulting photosensitizers [22]. It is well known that carbohydrates are essential signaling molecules
and play a critical role in cellular recognition events [23]. Carbohydrate-modified photosensitizers
are thought to be endowed with an outstanding potential for photodynamic therapy applications
due to their enhanced interactions with a number of overexpressed specific receptors in tumor cells
via carbohydrate-mediated cell recognition processes [24,25]. For instance, lactose, a disaccharide
comprising galactose and glucose units, has been regarded as a promising targeting ligand in cancer
treatment. In an aqueous environment, the glucose moiety transforms into its chain structure, while
the galactose group remains in a stable ring structure [26]. Recent developments in the field of
molecular recognition have reported the targeting capabilities of the galactose and lactose-modified
macromolecules against several human cancer cells, particularly hepatocellular carcinoma cells [27–30].

Despite sophisticated carbohydrate methodologies formulated by glycoscientists [31,32], the
development of an effective synthetic approach that is rapid, versatile, straightforward, high-yielding,
regiospecific and does not entail lengthy purification procedures remains desirable, to mitigate the
ever-growing relevance in the preparation of functional carbohydrate derivatives. Owing to its
aforementioned outstanding attributes, a wide array of BODIPY-carbohydrate functional materials
have been prepared and have found wide applications in the fields of chemistry, biology, and material
science [33–35]. Herein, the synthesis of a series of tumor-targeting and water soluble BODIPY-based
photosensitizers conjugated with a lactose moiety via the copper iodide (CuI) catalyzed azide-alkyne
cycloaddition (CuAAC) click reaction is reported. The synthesized dyes were subjected to an extensive
photophysical investigation including UV/Vis absorbance and emission, fluorescence quantum yield,
and singlet oxygen quantum yield measurements. In addition, the biocompatibilities and photodynamic
therapeutic properties of the synthesized dyes were assessed against three distinct cancer cell lines
(human hepatoma Huh7, cervical cancer HeLa, and breast cancer MCF-7 cell lines).
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2. Results and Discussion

2.1. Design and Synthesis of Water-Soluble BODIPY Derivatives

A three-step synthetic route of the tumor-targeting and water-soluble BODIPY derivatives is
outlined in Scheme 1. The BODIPY core synthesis began with the reaction of dimethyl pyrrole with
an acid chloride derivative, 5-bromovaleryl chloride, to form a dipyrromethene hydrochloride salt
intermediate. This unstable intermediate subsequently complexes with the nearby boron trifluoride
diethyl etherate in the presence of triethylamine, eventually producing the BODIPY core. Then, the alkyl
halide moiety of BODIPY was converted in good yield to its corresponding alkyl azide (BODIPY dye 1)
by treatment of the precursor dye with sodium azide (NaN3). The second step involves the introduction
of heavy iodine atoms onto either the 2- or 2,6-position of the BODIPY core, using N-iodosuccinimide
(NIS) as the iodine source. It has been well-established that the incorporation of such heavy atoms onto
aza-BODIPY and BODIPY derivatives significantly enhances the intersystem crossing efficiency and
consequently increases the singlet oxygen quantum yield via an increase in spin–orbit coupling [11,15].
BODIPY dyes 2a and 2b were afforded in excellent yields (78% and 85%, respectively) by adjusting the
corresponding amounts of NIS and the reaction duration. The final step involves the attachment of the
lactose moiety via the facile and straightforward CuAAC click reaction. The conjugation of the sugar
substituent ultimately generated three lactose-functionalized BODIPY-based photosensitizers with
intrinsic tumor-targeting and photodynamic therapeutic properties: BLa, BILa, and BDILa.
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Scheme 1. Synthesis of the tumor-targeting, lactose-modified, and water-soluble 4,4-difluoro-4-bora-
3a,4a-diaza-s-indacene (BODIPY) dyes.

Pivotal to our synthetic approach for the preparation of the BODIPY-based PS agents was the
development of a facile, simple, and economic route that would deliver reproducible results and
efficient reaction yields, without employing elaborate experimental set-ups. Thus, we employed the
CuAAC click reaction, which is extensively utilized for the development of a wide array of functional
carbohydrate-modified BODIPY derivatives due to its efficiency, selectivity, and versatility [34]. Herein,
the CuAAC click reaction was accomplished under mild reaction conditions, providing good yields
and entailing simple purification techniques. The three final BODIPY dyes BLa, BILa, and BDILa were
purified via a simple recrystallization method in a methanol/ether solvent system and obtained in good
yields (47% to 63%). Moreover, the conjugation of the lactose moiety rendered the resulting BODIPY
dyes water-soluble. The dyes BLa and BILa were completely dissolved in water, while BDILa could be
readily dissolved in water by dilution from a stock solution in dimethyl sulfoxide (DMSO). Herein, the
sample stock solutions (100 µM) containing 0.5% (v/v) DMSO were prepared, as commonly practiced
in biology related experiments [36]. In addition, the structures of the synthesized BODIPY derivatives
were confirmed by 1H-NMR spectroscopy, while additional 13C-NMR spectroscopic characterizations
were performed for the final three BODIPY derivatives, BLa, BILa, and BDILa.
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2.2. Photophysical and Theoretical Characterizations of Water-Soluble BODIPY Derivatives

The optical properties of the synthesized water-soluble BODIPY-based photosensitizers BLa, BILa,
and BDILa were investigated through UV/Vis absorption and fluorescence spectroscopic measurements
in aqueous solution containing 0.5% (v/v) DMSO. The obtained absorbance and emission spectra of
the prepared BODIPY dyes are shown in Figure 1 and key values are summarized in Table 1. All
of the synthesized BODIPY derivatives exhibited spectral properties characteristic of the BODIPY
core. In the absorption spectra, intense absorbance bands were observed, positioned at 498, 510, and
526 nm for BLa, BILa, and BDILa, respectively. These absorption peaks correspond to the characteristic
strong S0→S1 (π→π *) transition of the boradiazaindacene chromophore [37,38]. In addition, a weaker
and broad absorption band centered at approximately 378 nm was observed, which can be attributed
to the out-of-plane vibrations of the aromatic skeleton S0→S2 (π→π*) transition [39,40]. While the
absorption maxima of the BODIPY-based PS agents were in the range of 498–526 nm, they were
deemed acceptable for the intended biological experiments. Furthermore, the emission spectra of the
synthesized PS agents closely resembled their absorption spectra, demonstrating that the absorbing
and emitting species possess similar corresponding structures. Moreover, the introduction of halogen
atoms onto the BODIPY core, as in BILa and BDILa, induced noticeable red-shifts in the absorption
(12–28 nm) and emission (14–32 nm) maxima, when compared to that of uniodinated BODIPY. This
is owing to the heavy atom effect resulting from the incorporated halogen [15]. In addition, the
emission peak of BODIPY dye BLa was centered at approximately 510 nm and its fluorescence quantum
yield was calculated as being approximately 0.64. Iodination resulted in a red-shift of the emission
peaks of BILa and BDILa to 524 nm and 542 nm, respectively, and a significant decrease in their
respective fluorescence quantum yields was observed, compared to uniodinated BLa. The fluorescence
quantum yields were determined as 0.06 and 0.02 for BILa and BDILa, respectively. Such a reduction
in fluorescence quantum yields, as strongly influenced by the heavy atom effect, suggests improved
photosensitizing capabilities in the iodinated BODIPY dyes BILa and BDILa in comparison to that of
non-iodinated BLa.
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Figure 1. (a) absorption and (b) emission spectra of the water-soluble BODIPY-based photosensitizers
BLa, BILa, and BDILa in aqueous solution. Solutions were excited at their corresponding absorption
maxima.
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Table 1. Photophysical and parameters of the dyes BLa, BILa and BDILa.

BLa BILa BDILa

λab (nm) a 498 510 526
λem (nm) a 510 524 542

ΦF
b 0.64 0.06 0.02

Φ∆
c 0.01 0.27 0.47

ε (M−1 cm−1) 56,000 51,600 41,800
a in aqueous solution; b in methanolic solution; c in ethanolic solution.

To further elucidate the electronic effects of iodination on BODIPY properties, frontier molecular
orbitals (MOs) of the dyes were theoretically analyzed based on optimized molecular structures of
the BODIPY derivatives. As shown in Figure 2 and Table 2, the narrowing of the highest occupied
molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) gap primarily arose due to a
destabilization of the HOMO, caused by the substituted iodine atoms, resulting in increased oscillator
strength and a red-shift of the absorption band. Moreover, a simulation of the BLa, BILa, and BDILa in
water solution was carried out. As indicated in Figure 3, the calculated absorption spectra in the water
solvent for the three compounds are blue-shifted when compared with that of the experimental values.
Such shifts were also found to some reported BODIPY systems [40].
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Figure 2. Highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO)
transition energies and wave function of BLa, BILa, and BDILa calculated using the density functional
theory (DFT) method with the CAM-B3LYP functional and 6-31G(d,p) basis set (LanL2DZ basis for
I atoms).

Table 2. Selected transition energies and wave function of BIa, BILa, and BDILa in the water solution.

Excited State Energy [eV] λ [nm] f a

BLa b S1 2.995 414 0.63
BILa c S1 2.959 419 0.70

BDILa c S1 2.890 429 0.79
a Oscillator strength; b TDDFT method with the CAM-B3LYP function and 6-31G(d,p) basis set; c TDDFT method with
the CAM-B3LYP function and 6-31G(d,p) basis set (LanL2DZ basis for I atoms) adding the water solvent environment.
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2.3. Singlet Oxygen Generation of Water-Soluble BODIPY Derivatives

While a crucial factor for determining the success of a PDT agent is its ability to subsequently
produce 1O2 after an energy transfer occurs from the photosensitizer triplet excited state (T1) to the
molecular oxygen, the majority of BODIPY-based PSs suffer from low singlet oxygen quantum yields,
as an intramolecular electronic transition from a singlet to a triplet excited state is spin-forbidden.
For most compounds, absorbed light energy is largely contained in singlet excited states (Sn), rather
than undergoing singlet-to-triplet ISC, and released as fluorescence [41]. A spin-orbit perturbation is
generally required for an effective transition between states of different spin multiplicities to occur [42].
It has been well-documented that the direct incorporation of heavy atoms such as halogens onto
the molecule, or confinement of the molecule within a heavy-atom-rich environment significantly
enhances spin–orbit perturbations, influences the rates of the spin-forbidden electronic transition
from a singlet to a triplet state (ISC), and facilitates the generation of 1O2 [43,44]. Hence, iodine
atoms were introduced at the 2- and 2,6-positions of the BODIPY core and compared their 1O2

production capabilities to that of the uniodinated control, which relies solely on its inherent spin-orbit
coupling property in this process. Herein, indirect 1O2 detection was performed to evaluate singlet
oxygen generation of the BODIPY-based PS agents via photodegradation of the fluorescent dye,
1,3-diphenylisobenzofuran (DPBF). The mechanism of 1O2 detection by DPBF relies on its reaction
with 1O2 to generate an endoperoxide through a [4 + 2] cycloaddition reaction. The endoperoxide
subsequently decomposes to 1,2-dibenzoylbenzene, resulting in the total loss of the extended π-electron
system and its distinctive spectroscopic characteristics [45]. The photooxidation rates of the quencher
were tracked spectroscopically by monitoring the change in the absorption bands of DPBF at 424 nm [46].

Trapping experiments were performed by the treatment of DPBF (50 µM) with BODIPY-based PS
agents (0–2.0 µM) in an air-saturated EtOH medium and subsequent exposure of the resulting solutions
to an LED (λmax = 500 nm) light source, corresponding to an irradiance of 9 mW/cm2. As shown in
Figure 4, extensive DPBF bleaching was observed after incubation with the mono- and diiodinated
BODIPY dyes, BILa and BDILa, respectively, and LED irradiation. DPBF bleaching was manifested
in the disappearance of its distinct absorbance band in the region of 424 nm. As shown in Figure 4a,
the absorbance band for the monoiodinated dye BILa was nearly completely absent after 10 min of
incubation, while its diiodinated counterpart, BDILa, exhibited a more abrupt disappearance of the
absorbance band (~6 min, Figure 4b). In contrast, no significant photooxidation of DPBF was observed
for the BLa control (Figure S1), as the distinct DPBF absorbance peak at around 424 nm was evident
even after 70 min of continuous exposure to the light source.
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Figure 4. Time-dependent absorption spectra of 1,3-diphenylisobenzofuran (DPBF) in EtOH with (a)
BILa and (b) BDILa after LED light excitation at 500 nm.

The 1O2 quantum yields (Φ∆) of the synthesized BODIPY derivatives were additionally determined
using hematoporphyrin (HP) as a reference standard, the Φ∆ of which is known (0.53 in EtOH). The
decay curves of the absorption density and the linearly fitted degradation rates for DPBF in the presence
of the test samples and HP are presented in Figure S2a,b, respectively. The Φ∆ of the BODIPY dyes BILa
and BDILa were calculated as 0.27 and 0.47, respectively. On the other hand, BLa could not generate
1O2 under the same experimental conditions (Φ∆ = 0.01). These results collectively indicate that both
iodinated-BODIPY dyes BILa and BDILa achieved elevated 1O2 generation under LED illumination.
In the case of BDILa, the additional heavy iodine atom induced further spin–orbit perturbations,
resulting in its superior capability to generate singlet oxygen, as evidenced by the faster diminishing
rate of DPBF absorbance bands and the higher singlet oxygen quantum yield, compared to that of the
monoiodinated dye BILa. Nevertheless, both PS agents exhibited the heavy atom effect and facilitated
singlet oxygen generation, demonstrating their potential as efficient photosensitizers for PDT.

2.4. Assessment of Cytotoxicity of the Water-Soluble BODIPY Derivatives

Another critical factor to consider when evaluating the potential of a photosensitizer for clinical
applications, particularly as a PDT agent for cancer treatment, is their ability to exhibit minimal
cytotoxicity in the dark, but outstanding toxicity under light irradiation. Herein, the cytotoxicities
of the synthesized water-soluble BODIPY-based PS agents were assessed against three distinct
cancer cell lines (Huh7, HeLa, and MCF-7). Cell viability assessments were performed using
[3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium] (MTS), a
substrate of mitochondrial succinate dehydrogenase (SDH, EC 1.3.5.1), which is reduced to formazan
by mitochondrial activity of metabolically active cells. The quantity of formazan generated by
dehydrogenase enzymes is directly proportional to the number of living cells in culture and can be
measured spectroscopically at 490 nm [47]. The three cancer cell lines were incubated with various
concentrations of the synthesized BODIPY dyes and the resulting cell viabilities were measured in
the absence and presence of 530 nm LED light illumination. Then, the absorbance values of the wells
containing solutions of MTS (background) were subtracted from those of the wells containing the
treated and control cells. As shown in Figure S3, the toxicities in the dark of all the synthesized
BODIPY-based photosensitizers were found to be negligible against Huh7, and the cells retained at
least 96% viability even at a maximum dye concentration of 2.0 µM. The same low cytotoxicities in
the dark were observed against the other two cancer cell lines, HeLa and MCF-7 (Figures S4 and S5,
respectively, in the supporting information), wherein all three BODIPY dyes exhibited 96% cell viability
or above, even after incubation at a maximum concentration (2.0 µM). The low toxicities exhibited by
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the synthesized PS agents in the absence of light irradiation are a possible indication of their favorable
biocompatibility, attributable to the biological prevalence of the attached lactose moiety.

2.5. Cellular Uptake by Flow Cytometry

The photosensitizer efficacy as a PDT agent is well-associated with its effective cellular uptake and
subcellular localization [48,49]. Therefore, cellular uptake of the synthesized BODIPY derivatives was
quantitatively investigated in Huh7, HeLa, and MCF-7 cells by fluorescence intensity measurements,
employing flow cytometry. The cells were incubated with 2.0 µM of the BODIPY dyes at 37 ◦C.
After 2 h of incubation, the treated cells were collected and subjected to fluorescence-activated cell
sorting (FACS) analysis. As a control, untreated cell lines were likewise subjected to FACS analysis
under the same experimental conditions. The corrected median fluorescence intensities (MFI) of the
synthesized dyes against treated cancer cell lines were summarized in Table 3. As depicted in Figure 5,
Figures S6 and S7, the corresponding controls (without photosensitizers) in all cell types displayed low
fluorescence intensities that corresponded to their inherent mitochondrial autofluorescence, suggesting
that the fluorescence intensities exhibited by the treated cancer cells were attributable to intracellularly
accumulated PS agents. The relative cellular internalization of the PS agents across all cell types was
BDILa < BILa < BLa.

Table 3. Corrected median fluorescence intensities (MFI) of the dyes BLa, BILa and BDILa against
treated cancer cell lines.

BLa (log) a BILa (log) a BDILa (log) a

HeLa 7807 ± 460 5102 ± 123 2380 ± 100
Huh7 12083 ± 632 7589 ± 84 4138 ± 70

MCF-7 38952 ± 1730 5414 ± 447 2938 ± 219
a Data are mean ± SD (n = 3).
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The results for the iodinated-BODIPY dyes, BILa and BDILa compared with the corresponding
parent dye BLa, clearly demonstrated that the incorporation of iodine atoms onto the BODIPY core
decreased their capability for internalization by the treated cancer cells. For instance, Huh7 cells treated
with BLa exhibited the highest fluorescence intensity (Figure 5), suggesting enhanced cellular uptake
of the incorporated dye. The mean fluorescence for Huh7 cells treated with BLa was approximately
18-fold higher than that of the untreated cells, whereas BILa- and BDILa-treated Huh7 cells exhibited
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approximate increases of 12- and 7-fold, respectively. This trend was similarly observed for the other
two cancer cell lines (Figures S6 and S7). Both HeLa and MCF-7 cells incubated with BDILa, BILa, and
BLa demonstrated an increase in their mean fluorescence of approximately ~5-, ~9 to 11, and ~16-fold,
respectively, relative to that of the untreated cells. The overall cellular uptake profiles of the PS agents
agree with the rationale that molecular synthetic modifications can lead to significant variations in
partition coefficient values. It is important to note that the overall lipophilicity/hydrophilicity of the
photosensitizer plays a vital role in photosensitizer-cell surface interactions [50]. Hence, a favorable
balance between the hydrophilicity and lipophilicity of the PS is imperative to achieve adequate
biodistribution and cellular uptake. Excessive PS lipophilicity would impede its transport through
the blood vessels, while high hydrophilicity would hamper its penetration into cell membranes [35].
While additional iodine atoms facilitate the efficient generation of singlet oxygen, they however
decrease the overall hydrophilicity of the molecules, resulting in reduced uptake of the PS by the
treated cells. Particularly, the diiodinated derivative BDILa exhibited relatively low cellular uptake,
as evidenced by its lower fluorescence intensity, when compared to that of BILa and BLa. Despite
the slight decrease in cellular uptake, both of the iodinated-BODIPY PS agents induced excellent
phototoxicity towards the tested cancer cell lines, thus implying that the incurred cellular uptake is
sufficient for photodynamic therapy.

It is also noteworthy that several proteins, receptors, and transporter molecules were found to
be overly expressed on the tumor cell surfaces and membranes. Such overly expressed receptors
and transporters are unique and specific for a given cell line. For instance, hepato liver carcinoma
Huh7 cells are known to display overexpressed C-lectin type and asialoglycoproteins (ASGPR)
receptors [51,52], while human breast adenocarcinoma MCF-7 cells possess mannose-receptor-rich
tumor cell surfaces [18]. These overly expressed receptors can interact with the targeting molecules via
carbohydrate-mediated cell recognition processes [24,25]. Hence, we compared the cellular uptake
profiles among all the cancer cell lines tested, to assess the tumor-targeting capabilities of the PS
agents. The lactose moiety of the synthesized BODIPY derivatives serves as the targeting ligand that
can selectively interact with a specific overexpressed receptor on the tumor cell surface. The results
indicated that Huh7 cells exhibited the highest transfection of the lactose-modified photosensitizers,
compared to that of the other two cancer cell lines. As mentioned, the surfaces and membranes of Huh7
cells contained overexpressed C-lectin type and ASGPR receptors, which have been well-documented
to selectively bind to and interact with galactose and galactose-functionalized macromolecules [53,54].
This may explain the higher transfection of the photosensitizers in Huh7 cells, attributable to enhanced
carbohydrate-protein interactions, which demonstrates the favorable tumor-targeting capacity of the
water-soluble lactose-modified BODIPY-based photosensitizers.

2.6. Photodynamic Anticancer Activity of the Water-Soluble BODIPY Derivatives

The photodynamic therapeutic potential of synthesized PS agents is contingent on their ability to
generate ROS, particularly 1O2, after light irradiation [55,56]. Hence, we next assessed the toxicity of
the BODIPY dyes BLa, BILa, and BDILa following LED light irradiation (530 nm) for approximately 20
min. Both iodinated-BODIPY dyes, BILa and BDILa induced significant dose-dependent cytotoxic
effects (p < 0.05) in all three cancer cell lines. In the case of HeLa cells (Figure 6a,d), both BILa and
BDILa exhibited toxic effects even at the lowest tested concentration (0.25 µM), and the degree of
cytotoxicity increased with their increasing concentration. HeLa cell viability plummeted to below 10%
and approached 0%, after incubation with 1.0 µM and 2.0 µM of both dyes, respectively. The IC50 for
BILa and BDILa against HeLa cells were estimated to be 0.53 µM and 0.55 µM, respectively. The same
dose-dependent cytotoxicities were observed for MCF-7 cells (Figure 6b,e), in which the toxic effects
of BILa and BDILa were evident at a concentration of 0.5 µM and the induced toxicities increased at
higher concentrations. Such cytotoxicities against MCF-7 cells correspond to an IC50 of 0.56 µM and
0.61 µM for BODIPY dyes BILa and BDILa, respectively.
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As illustrated in Figure 6c, the mono-iodinated BODIPY dye BILa produced relevant toxic effects
(p < 0.05) to Huh7 cells at a concentration of 0.50 µM, while its diiodinated counterpart BDILa
achieved significant toxic effects (p < 0.05) at a lower concentration of 0.25 µM (Figure 6f). Notably,
the photo-killing efficacies of diiodinated-BODIPY BDILa at concentrations above 0.5 µM were over
1.5-fold higher than that of monoiodinated-BODIPY BILa for all tested tumor cells. Moreover, the
calculated IC50 for BILa and BDILa against Huh7 cells were estimated to be 0.60 µM and 0.50 µM,
respectively. This is not surprising, as the additional iodine atom in BDILa enables increased production
of singlet oxygen compared to its monoiodinated counterpart, resulting in more potent photodynamic
therapeutic properties. These PDT effects are consistent with fluorescence and singlet oxygen quantum
yield results for the dyes, as shown in Table 1.
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treatment with BDILa under LED light irradiation at 530 nm. * p < 0.05 compared to control (0 µM).

In contrast, the control BODIPY BLa was incapable of killing the tested tumor cells even in the
presence of LED light (Figure S8), as evidenced by cell viabilities of 95% and above. No significant
change was observed for both HeLa and Huh7 cells after treatment with BLa and subsequent irradiation
with LED light. Although a significant decrease (p < 0.05) in MCF-7 cell viability was observed with
BLa treatment, cell survival rates were still considered high (at least 80%) compared to that of the
iodinated-BODIPY dyes BILa and BDILa. Overall, these findings demonstrated that the synthesized
BODIPY dyes BILa and BDILa were biocompatible and non-toxic to cells in the absence of light, while
incurring cytotoxicity upon LED light irradiation, due to the generation of reactive singlet oxygen
species. The obtained photodynamic therapeutic levels of the synthesized water-soluble BODIPY
derivatives are comparable to other reported PS agents for PDT application, including phtalocyanine-
and porphyrin-based photosensitizers [57–60].

3. Materials and Methods

3.1. Materials

All reagents were obtained from commercial sources. D-lactose, acetic anhydride, N,N-
dimethylformamide (DMF), trichloroacetonitrile, 1,8-diazabicyclo [5.4.0]undec-7-ene (DBU), boron
trifluoride diethyl etherate (BF3·Et2O), propargyl alcohol, sodium metal, Dowex-50 resin (H+ form),
5-bromovaleryl chloride, 2,4-dimethyl pyrrole, triethylamine (TEA), N-iodosuccimide (NIS) were
purchased from Sigma Aldrich (St. Louis, MO, USA). Sodium azide, sodium ascorbate, copper (II)
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sulfate pentahydrate, sodium hydroxide (NaOH), sulfuric acid (H2SO4), sodium hydrogen carbonate
(NaHCO3), magnesium sulfate (MgSO4), and ammonium carbonate [(NH4)2CO3] were procured from
Daejung Chemical (Gyeonggi-do, South Korea) and used without further purification. Ethyl acetate
(EtOAc), dichloromethane (CH2Cl2), tetrahydrofuran (THF), methanol, and other solvents were of
analytical grade and were dried under calcium hydride prior to use, except THF.

All compounds were characterized by 1H- and 13C-NMR spectroscopy on a Bruker AM 250
spectrometer (Billerica, MA, USA) and high-resolution electrospray ionization mass spectrometry
(HR-ESI-MS) on a SYNAPT G2-Si high definition mass spectrometer (Waters, London, United Kingdom).

3.2. Synthesis of Lactose-Modified Water-Soluble BODIPY Derivatives

3.2.1. Synthesis of the BODIPY Core

The BODIPY core was synthesized according to our previously reported procedure [61]. In a
250-mL dry, round-bottomed flask, 5-bromovaleryl chloride (1.14 mL, 8.52 mmol) and 2,4-dimethyl
pyrrole (1.75 mL, 17.04 mmol) were dissolved in dry CH2Cl2 (100 mL) at room temperature and
degassed with a stream of Ar gas for 2 min. The resulting mixture was refluxed for 2 h and the solvents
were then removed in vacuo. The residual mixture was re-dissolved in a mixture of toluene and CH2Cl2
(10:1, v/v), then TEA (4.8 mL) and BF3·Et2O (4.2 mL) were added. After heating at 50 ◦C for 1.5 h, the
solvents were evaporated and the crude product was purified by column chromatography to afford
the BODIPY core as an orange solid (2.12 g, 65% yield).

1H-NMR (300 MHz, CDCl3, δ, ppm): 6.07 (s, 2H), 3.48–3.43 (t, 2H), 3.02–2.96 (t, 2H), 2.52 (s, 6H), 2.43 (s,
6H), 2.08–2.04 (m, 2H), 1.87–1.82 (m, 2H).

3.2.2. Synthesis of Dye 1

The previously synthesized BODIPY core (120 mg, 0.313 mmol) was dissolved in DMF (10 mL)
under Ar gas, followed by the addition of NaN3 (407 mg, 6.2 mmol). The mixture was then stirred at
room temperature for 20 h. The resulting product was extracted with CH2Cl2 and washed successively
with water and brine. The obtained organic phases were combined, dried over MgSO4, filtered and the
solvent removed in vacuo. The crude product was purified by column chromatography to afford the
BODIPY dye 1 as a bright-orange solid (102 mg, 94% yield).

1H-NMR (300MHz, CDCl3, δ, ppm): δ 6.07 (s, 2H), 3.39–3.35 (t, 2H), 3.01–2.95 (t, 2H), 2.52 (s, 6H), 2.42
(s, 6H), 1.78–1.75 (m, 4H).

3.2.3. Synthesis of BODIPY Dyes 2a and 2b

BODIPY dye 2a and 2b were synthesized according to our previously described procedure [62].
A representative procedure is shown for BODIPY dye 2a. Briefly, BODIPY dye 1 (300 mg, 0.87 mmol)
was dissolved in dried CH2Cl2, followed by NIS (117 mg, 0.52 mmol) addition. The mixture was stirred
at room temperature for 2 h and the solvent was then evaporated on a rotary evaporator. The crude
product was purified by column chromatography to afford BODIPY dye 2a as an orange solid (319 mg,
78% yield).

1H-NMR (300MHz, CDCl3, δ, ppm): δ 6.13 (s, 1H), 3.47-3.43 (t, 2H), 3.01–2.97 (t, 2H), 2.60 (s, 3H), 2.53
(s, 3H), 2.46 (s, 3H), 2.43 (s, 3H), 2.08–2.03 (m, 2H), 1.84–1.79 (m, 2H).

The di-iodinated BODIPY Dye 2b was obtained in the same manner as the mono-iodinated
BODIPY dye 2a, except that the NIS equivalents were doubled. The BODIPY dye 2b was obtained as a
red solid (85% yield).

1H-NMR (300MHz, CDCl3, δ, ppm): δ 3.49–3.44 (t, 2H), 3.08–3.03 (t, 2H), 2.62 (s, 6H), 2.50 (s, 6H),
2.10–2.05 (m, 2H), 1.86–1.78 (m, 2H).
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3.2.4. General Procedure for the Preparation of Water-Soluble BODIPY Dyes BLa, BILa, and BDILa

A series of water-soluble BODIPY dyes BLa, BILa, and BDILa was prepared according to our
previously reported procedure [63]. A representative process is described for BLa.

BLa: BODIPY dye 1 (55 mg, 0.16 mmol), lactose propargyl (67 mg, 0.175 mmol), NaAsc (158 mg,
0.797 mol), and CuSO4.5H2O (80 mg, 0.32 mmol) were dissolved in a mixture of THF/water (15/5 mL,
v/v). Then, the resulting mixture was stirred for 24 h at room temperature, extracted with EtOAc
and water three times, and dried over MgSO4. Following filtration and solvent removal on a rotary
evaporator, the crude product was purified by recrystallization from MeOH/diethyl ether to afford a
black-red solid (yield 60 mg, 52% yield).

1H-NMR (300 MHz, CDCl3, δ, ppm): δ 8.05 (s, 1H), 6.14 (s, 2H), 4.52–4.5 (t, 2H), 4.44–4.39 (m, 2H),
3.96–3.94 (m, 2H), 3.84–3.78(m, 4H), 3.76–3.73 (m, 2H), 3.70–3.67 (m, 4H), 3.61–3.58 (t, 2H), 3.05–3.03 (m,
2H), 2.45 (s, 6H), 2.39 (s, 6H), 1.64–1.61 (m, 4H)

13C-NMR (75 MHz, CD3OD, δ, ppm): 155.02, 146.86, 145.43, 142.22, 132.39, 125.46, 122.53, 104.87,
103.47, 80.57, 77.02, 76.1, 74.72, 74.38, 72.37, 70.07, 63.2, 62.26, 61.8, 55.03, 50.29, 32.71, 31.33, 30.7, 28.55,
23.64, 16.4, 14.26

HR-MS-ESI: m/z 748.3154, calcd mass for C32H46N5O11NaBF2 748.3153

BILa: The BODIPY dye BILa was synthesized according to the above-detailed general procedure
to afford the title product as an orange solid (47% yield).

1H-NMR (300 MHz, CDCl3, δ, ppm): δ 8.03 (s, 1H), 6.21 (s, 1H), 4.45–4.43 (t, 2H), 4.4–4.39 (m, 2H),
3.97–3.94 (m, 2H), 3.86–3.81 (m, 4H), 3.75–3.74 (m, 2H), 3.63–3.58 (m, 4H), 3.47–3.46 (t, 2H), 2.88–2.87 (t,
2H), 2.53 (s, 3H), 2.48 (s, 3H), 2.3 (s, 6H), 2.08–2.07 (m, 2H), 1.56–1.55 (m, 2H)

13C-NMR (75 MHz, CD3OD, δ, ppm): 164.92, 157.84, 153.67, 146.95, 145.64, 144.75, 141.76, 133.13,
131.89, 125.53, 124.11, 105.05, 103.47, 80.69, 77.0, 76.49, 76.25, 74.74, 72.47, 70.32, 63.1, 62.46, 61.92, 50.71,
31.65, 31.27, 29.52, 28.59, 18.73, 16.74, 14.8

HR-MS-ESI: m/z 874.2120, calcd mass for C32H45N5O11NaBF2I 874.2119

BDILa: The BODIPY dye BDILa was synthesized according to the above-detailed general procedure
to afford the title product as a red solid (63% yield).

1H-NMR (300 MHz, CDCl3, δ, ppm): δ 8.05 (s, 1H), 4.43–4.41 (t, 2H), 4.38–4.36 (m, 2H), 3.91–3.8 (m, 5H),
3.78–3.76 (m, 2H), 3.7–3.66 (m, 5H), 3.47–3.44 (t, 2H), 3–2.88 (t, 2H), 2.55 (s, 2H), 2.39 (s, 6H), 2.14–2.1
(m, 2H), 1.61–1.59 (m, 2H)

13C-NMR (75 MHz, CD3OD, δ, ppm): 156.35, 147.21, 145.71, 144.12, 132.46, 126.1, 125.53, 105.13, 103.55,
101.87, 98.1, 93.72, 80.63, 77.02, 76.52, 76.28, 74.75, 73.16, 72.62, 71.31, 70.36, 62.47, 61.91, 56.58, 50.3,
32.12, 29.48, 27.8, 23.6, 19.24, 16.35, 14.42

HR-MS-ESI: m/z 1000.1086, calcd mass for C32H44N5O11NaBF2I2 1000.1085

3.3. Measurement of Photophysical Properties

UV absorption spectra were recorded in a 1-cm path length quartz cuvette employing a
double-beam UV-2800 Uv-vis spectrophotometer (Shimadzu, Kyoto, Japan) at room temperature. The
steady-state emission spectra were acquired using a F-4500 steady-state fluorometer (Hitachi, Tokyo,
Japan) with an Xenon arc lamp and a photomultiplier detection system. All spectra were measured at
300–700 nm, in triplicate, and corrected for background intensities by subtracting the spectra of pure
solvent measured under identical conditions.
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3.4. Fluorescence Quantum Yield Measurements

The relative fluorescence quantum yields of BODIPY BLa, BILa, and BDILa were obtained by
comparing the area under the corrected emission spectrum of the samples with that of a standard
solution with a known fluorescence quantum yield. Herein, Rhodamine 6G was used as the reference
standard, which possesses a known quantum yield of 0.94 in methanol [64]. The Φf was calculated
according to Equation (1):

ΦS = ΦR

(
GradS
GradR

)(nS
nR

)2
(1)

where the subscripts S and R represent the tested sample and reference, respectively. In addition,
Grad and n denote the gradient of the filled slope and the refractive index of the test solvent used,
respectively. The solutions were optically diluted to avoid inner filter effects [65].

3.5. Singlet Oxygen Quantum Yield Measurements

The sample quantum yields of singlet oxygen (Φ∆) were studied using 1,3-diphenylisobenzofuran
(DBPF) as a chemical quencher [46]. Briefly, a mixture of each BODIPY dye (absorption ~0.06 at
524 nm in EtOH) and DPBF (absorption ~1.0 at 424 nm in EtOH) was irradiated with a green LED
lamp (λmax = 500 nm). The photooxidation of DPBF was then monitored between 0 and 70 min,
depending on the efficiency of the BODIPY dye. The singlet oxygen quantum yield was calculated
using hematoporphyrin (HP) as the reference, with a yield of 0.53 in ethanol, according to the
following equation:

ΦS
∆ =

kS
kR
×ΦR

∆ (2)

where subscripts S and R represent the sample and reference, respectively, while k represents the slope
of the photodegradation rate.

3.6. Cells and Cell Cultures

The three cancer cell lines, namely human cervix adenocarcinoma (HeLa), human breast
adenocarcinoma (MCF-7), and hepato liver carcinoma (Huh7), were obtained from Korean Cell
Line Bank and maintained according to the provider’s instructions. Briefly, the cell lines were cultured
under standard culture conditions (5% CO2 and 95% air at 37 ◦C) in an RPMI 1640 medium (Gibco,
Carlsbad, CA, USA) supplemented with 10% heat-inactivated fetal bovine serum (FBS) and antibiotic
(100 U/mL penicillin and 100 mg/mL streptomycin) (WELGENE Inc., Gyeongsangbuk-do, Korea).

3.7. Cell Proliferation Assay

HeLa, MCF-7 and Huh7 cells were seeded in 96-well plates (3 × 103 cells/well). The cells were
maintained for 24 h and treated with a range of test compound concentrations (0, 0.25, 0.5, 1.0 and
2.0µM) for 24 h [66,67]. A cell proliferation assay was measured via CellTiter 96® AQueous one solution
cell proliferation assay (Promega, Madison, WI, USA) according to the manufacturer’s instructions.
The absorbance was determined at 490 nm using an enzyme-linked immunosorbent assay (ELISA)
plate reader (Thermo Fisher Scientific, Inc., Waltham, MA, USA).

3.8. Photodynamic Anticancer Activity Assessment

Pre-cultured cancer cells were plated at 3 × 103 cells/well in a 96-well plate and incubated at 37 ◦C
in 5% CO2 for 24 h. The media was then replaced with fresh media and the cells were treated with
various concentrations of BLa, BILa, and BDILa (0, 0.25, 0.5, 1.0 and 2.0 µM) at 37 ◦C in 5% CO2 for 2 h
under dark conditions. Then, the media in all plates were changed to a phenol-red free RPMI 1640
media and the cells were irradiated with a green light-emitting diode (LED), which had a wavelength
of 530 nm (80%, 20 min), as previously described [66,67]. The irradiation power of the LED was
approximately 9 mW. The cells were then incubated for further 24 h post-irradiation with the LED, and
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the viable cells were measured using a CellTiter 96® AQueous One Solution Cell Proliferation Assay
according to the manufacturer’s instruction.

3.9. Cellular Uptake by Flow Cytometry

To investigate the cellular uptake of the samples by HeLa, MCF-7 and Huh7 cells, flow cytometry
was performed. Briefly, each cell line was seeded at 1 × 105 cells/well in a 6-well plate and incubated at
37 ◦C in 5% CO2 for 24 h. The incubated cells were then treated with the test samples (2.0 µM). After 2
h, the cells were collected and analyzed using an FC500 flow cytometer (Beckman coulter, CA, USA).

3.10. Theoretical Calculations

The molecular structures of the BODIPY derivatives were optimized using density functional
theory (DFT), CAM-B3LYP function and 6-31G(d,p) basis set (LanL2DZ basis for I atoms) in a
stepwise manner, and then the electronic states of the BODIPY derivatives were calculated using
time-dependent DFT (TD-DFT) with the CAM-B3LYP function and 6-31G(d,p) basis set (LanL2DZ
basis for I atoms), adding the water solvent environment, on a supercomputer to obtain information
regarding excited states.

3.11. Statistical Analysis

All data were expressed as the mean ± standard deviation and compared by one-way analysis
of variance (ANOVA), followed by the Tukey’s multiple comparison test, using a Prism GraphPad
6 software (San Diego, CA, USA). A p value of < 0.05 was considered statistically significant in
all analyses.

4. Conclusions

In summary, we prepared a series of water-soluble BODIPY derivatives bearing a lactose moiety
via a facile and efficient copper iodide (CuI) catalyzed azide-alkyne cycloaddition (CuAAC) click
reaction. The photophysical and biological properties of the synthesized BODIPY derivatives were
extensively investigated and the dyes were tested as photosensitizers in photodynamic therapy. The
incorporation of a heavy iodine atom onto the BODIPY core facilitated the efficient generation of
single oxygen species. Moreover, the synthesized BODIPY-based PS agents exhibited no toxicity to the
three tested cancer cell lines (HeLa, Huh7, and MCF-7), in the absence of light irradiation. Relative
to the dye BLa, the halogenated BODIPY derivatives BILa and BDILa exhibited superior cytotoxic
effects against the tested cancer cell lines after LED light irradiation, demonstrating their capacities as
potent photosensitizers for PDT applications. The synthesized dyes were also effectively internalized
by the tested cell lines, particularly by Huh7 cells. Such effective cellular uptake is attributable to
carbohydrate-mediated recognition processes and interactions between the targeting biomolecule
lactose, and overexpressed specific receptors on the tumor cells. The study presented herein offers an
important contribution in the field of cancer treatment, by providing a simple and reliant synthetic
route for generating water-soluble BODIPY-based photosensitizers with excellent biocompatibilities,
adequate tumor-targeting abilities, high cellular transfection capacities, and effective photodynamic
therapeutic capabilities.

Supplementary Materials: The following are available online at http://www.mdpi.com/1420-3049/25/15/3340/s1,
Figure S1: Time-dependent absorption spectra of the DPBF in EtOH solution with BLa after LED light excitation at
500 nm. Figure S2: (a) Normalized decay curves of the absorption density at λex = 424 nm for the DPBF in the
presence of the BILa and BDILa against HP (normalized by the absorbance intensity at t = 0 min). (b) linearly
fitted degradation rates for the DPBF in the presence of the test samples and HP. Figure S3: Cell survival rates of
Huh7 cells after treatment with (a) BLa, (b) BILa, and (c) BDILa under dark conditions. Figure S4: Cell survival
rates of HeLa cells after treatment with (a) BLa, (b) BILa, and (c) BDILa under dark conditions. Figure S5: Cell
survival rates of MCF-7 cells after treatment with (a) BLa, (b) BILa, and (c) BDILa under dark conditions. Figure S6:
The FACS analysis of the BODIPY dyes BLa, BILa, and BDILa in Hela cells. Figure S7: The FACS analysis of the

http://www.mdpi.com/1420-3049/25/15/3340/s1
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BODIPY dyes BLa, BILa, and BDILa in MCF-7 cells. Figure S8: Cell survival rates of (a) HeLa, (b) MCF-7, and (c)
Huh7 cells after treatment with BLa under LED light irradiation at 530 nm.
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