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Maria E. Johansson§, Thomas Nyström*, Cesare Patrone*1 and Vladimer Darsalia*1
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Synopsis
Type 2 diabetic (T2D) patients often develop early cognitive and sensorimotor impairments. The pathophysiolo-
gical mechanisms behind these problems are largely unknown. Recent studies demonstrate that dysfunctional γ -
aminobutyric acid (GABAergic) neurons are involved in age-related cognitive decline. We hypothesized that similar, but
earlier dysfunction is taking place under T2D in the neocortex and striatum (two brain areas important for cognition
and sensorimotor functions). We also hypothesized that the T2D-induced effects are pharmacologically reversible
by anti-diabetic drugs targeting the glucagon-like peptide-1 receptor (GLP-1R). We determined the effect of T2D on
cortical and striatal GABAergic neurons positive for glutamic acid decarboxylase-67 (GAD67), calbindin (CB), parval-
bumin (PV) and calretinin (CR) by using immunohistochemistry and quantitative microscopy. Young and middle-aged
T2D Goto-Kakizaki (GK) (a model of spontaneous T2D) and Wistar rats were used. Furthermore, we determined
the therapeutic potential of the GLP1-R agonist exendin-4 (Ex-4) by treating middle-aged GK rats for 6 weeks with
0.1 μg/kg Ex-4 twice daily. We show that T2D reduced the density of GAD67-positive neurons in the striatum and of
CB-positive neurons in both striatum and neocortex. T2D also increased the average volume of PV-positive interneur-
ons in the striatum. Ex-4 treatment increased the density of CB-positive neurons in the striatum of GK rats. Our
data demonstrate that T2D negatively affects GAD67 and CB-positive GABAergic neurons in the brain during aging,
potentially identifying some of the pathophysiological mechanisms to explain the increased prevalence of neurological
complications in T2D. We also show a specific, positive effect of Ex-4 on striatal CB-positive neurons, which could be
exploited in therapeutic perspective.
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INTRODUCTION

Over 350 million adults worldwide were living with Type 2 dia-
betes (T2D) in 2015 [1,2]. Adverse changes in the metabolism as-
sociated with T2D can be harmful to many organ systems includ-
ing the nervous system [3,4]. However, although the peripheral
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nervous system complications of T2D have been extensively stud-
ied and characterized [5], less is known about the functional and
anatomical effects of T2D on the central nervous system (CNS).

The most common CNS disorder associated with T2D is
stroke. The risk of stroke is doubled in T2D [6,7] with more
severe neurological impairments and a lesser degree of recovery
than in non-diabetic patients [8]. The exact causes of decreased
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neurological recovery in T2D after stroke are unknown, but could
be linked to pre-existing pathological alterations in the brain at
cellular and structural levels. This hypothesis is also reinforced by
the observation that the likelihood of early development of age-
associated neurological complications, such as different forms
of cognitive impairment and dementias [including Alzheimer’s
diseases (AD)] is dramatically increased in T2D [9–14]. Imaging
studies have also confirmed the negative impact of T2D on the
brain at structural level as shown by detectable cerebral atrophy
in T2D patients [15,16].

Despite the strong association between T2D and CNS com-
plications, the specific brain structures or neuronal cell types that
are affected by T2D have not yet been precisely identified. Fur-
thermore, the majority of preclinical research in the field has
mainly focused on the hippocampus and studied the co-morbid
effects of T2D in animal models of neurodegenerative disorders
such as AD [13,17–19]. However, previous clinical data show
a broad range of additional cognitive and sensorimotor impair-
ments in T2D patients without AD [9]. Furthermore, Parkinson’s
disease (PD) patients show faster development and more severe
motor dysfunction in presence of T2D [20]. Thus, brain areas
other than hippocampus also need to be thoroughly investigated.

Recent studies of age-related cognitive decline demonstrate
the involvement of dysfunctional γ -aminobutyric acid (GABAer-
gic) interneurons [21] and their increased susceptibility under
metabolic stress [22]. Moreover, studies have reported selective
changes in subtypes of GABAergic interneurons in the hippo-
campus [23] and piriform cortex of diabetic rats [24], two brain
areas involved in memory and olfaction respectively. Whether
similar and/or additional alterations in GABAergic neurons are
present in other brain areas is unknown. To this end, it is particu-
larly interesting whether cognitive and sensorimotor impairments
in T2D could be related to pathological alterations in neocortical
and striatal neuronal circuits since these brain areas regulate these
functions. Approximately 5–10% of the neuronal population in
neocortex and striatum is constituted of GABAergic interneurons,
which exert significant modulatory effects on the normal func-
tioning of these structures [25,26]. A subgroup of interneurons is
characterized by the expression of the calcium-binding proteins
(CaBPs) calbindin (CB)-D 28kD, calretinin (CR) and parvalbu-
min (PV) [27]. In a study by Castillo-Gomez et al. [28] using
the streptozotocin-induced Type 1 diabetic model, the authors
have shown that in the medial prefrontal cortex diabetes reduced
the levels of glutamic acid decarboxylase-67 (GAD67), which
is the principal enzyme responsible for GABA synthesis and
that this reduced expression correlated to depressive-like beha-
viour [28]. Whether similar alterations are induced by T2D and
whether they could be linked to impairment of neocortical and
striatal function is unknown.

From a therapeutic perspective, no option is currently available
to treat CNS neuropathology in T2D. We have recently shown
that T2D decreases the number of CB-positive interneurons in the
piriform cortex of the T2D rat and that this effect can be counter-
acted by the treatment with the glucagon-like peptide-1 receptor
(GLP-1R) agonist exendin-4 (Ex-4) [24]. Ex-4 is a stable syn-
thetic form of GLP-1R that induces glucose-dependent insulin

secretion and inhibits glucagon release in the pancreas [29]. For
these properties, it has been developed for clinical treatment of
T2D [29,30]. Besides its anti-diabetic properties, Ex-4 can cross
the blood brain barrier [31] and preclinical works have demon-
strated neuroprotective efficacy of Ex-4 and other GLP-1R ana-
logues in several neurological disorders (reviewed in [32–34]).
Whether such treatment could prove beneficial against poten-
tial interneuron pathology in the neocortex and the striatum in
T2D has not yet been investigated. Interestingly, a recent work
by Korol et al. [35] showed that GLP-1R activation enhances
GABA-signalling in the hippocampus by pre- and postsynaptic
mechanisms.

The goal of our study was to determine whether T2D affects
neocortical and striatal GABAergic neurons during aging and
to evaluate the therapeutic potential of GLP-1R activation in
reversing the identified alterations. As a model of T2D, we used
the Goto-Kakizaki (GK) rat, which is a non-obese rat model of
T2D derived from the Wistar strain that spontaneously develops
T2D [36] accompanied by common T2D complications often
observed in human patients [37,38].

MATERIALS AND METHODS

Animals and experimental groups
GK rats were used as an experimental model of T2D (see above).
Non-diabetic age-matched Wistar rats were used as controls. The
rats were housed in 12/12h light/dark cycle and were given free
access to food and water. All experiments were conducted in
accordance with the “Guide for the Care and Use of Laboratory
Animals” published by U.S. National Institutes of Health and
approved by the local ethics committee.

Study 1. To evaluate the effect of T2D on CNS GABAergic
neurons during aging, 13-month-old T2D GK (n = 6) and non-
diabetic Wistar (n = 6) rats were used. Young adult (3-month-old)
GK (n = 7) and Wistar (n = 6) rats were used as controls.

Study 2. To determine the therapeutic potential of Ex-4 in
reversing T2D-induced neuropathological changes, we used 9-
month-old GK rats. GK rats were treated with 0.1 μg/kg Ex-4
intraperitoneally (i.p.) twice daily for 6 weeks (n = 8) or vehicle
(n = 10), before killing. Dose and dosing regimen were chosen
to mimic clinical application of Ex-4 treatment.

Monitoring of T2D and treatment effects on
glycaemia
In Study 1, GK and Wistar rats at 3 and 13 months of age had
monitored for fasted (6 h) blood glucose and plasma insulin
levels. Three-month-old GK rats showed slightly, but signific-
antly higher fasting glycaemia as compared with Wistar rats (ap-
proximately 9mM compared with 6mM), whereas 13-month-old
GK rats showed very high levels of hyperglycaemia (approx-
imately 18mM). Plasma insulin levels were significantly lower
in GK rats already at 3 months as compared with age-matched
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Wistar controls (approximately 2μg/l compared with 4μg/l). At
13 months, the insulin levels decreased even further in GK rats
(less than 1μg/l). The glycaemic data of Study 1 are presented
in our recent publication [39]. In Study 2, 9-month-old GK rats
were treated with Ex-4 or vehicle for 6 weeks before killing.
Ex-4 significantly decreased blood glucose (approximately 6mM
compared with 10mM), and increased insulin secretion (approx-
imately 2μg/l compared with 1.5 μg/l). The glycaemic data of
Study 2 have been recently published [24].

Blood glucose levels were measured in all animals using a
glucometer after 6 h fasting with free access to water. Insulin was
measured by a rat insulin ELISA kit (kindly provided by Crystal
Chem).

Immunohistochemistry
Animals were deeply anesthetized with sodium pentobarbital and
transcardially perfused with 4% paraformaldehyde (PFA). The
brains were extracted and after overnight post-fixation in 4% PFA
put in 25% sucrose in phosphate buffer until they sank. Brains
were cut in 40 μm thick coronal and sagittal sections using one
hemisphere for each plane of sectioning. Nissl substance was
stained by using 0.1% Cresyl Violet acetate (Sigma–Aldrich).
For immunohistochemical staining, the following primary anti-
bodies were used: rabbit anti-Parvalbumin (1:1500, Abcam), rab-
bit anti-Calbindin- D28k (1:1500, Abcam), rabbit anti-Calretinin
(1:1500, Vector Laboratories) and mouse anti-GAD-67 (1:500,
Merck Millipore). Antigen retrieval was performed using cit-
rate buffer or EDTA. Primary antibodies were visualized using
biotin-conjugated secondary antibodies (1:200, Vector Laborat-
ories) after peroxidase substrate reaction (ABC kit, Vector Labor-
atories) as previously described [39]. The same makers were
measured in both Study 1 and 2.

Quantitative analysis
Cells were counted using a computerized setup (NewCast
softwareVisiopharm), connected to Olympus BX51 epifluores-
cent/light microscope (Olympus). The number of Nissl, CB,
CR, PV and GAD67-positive cells were counted on three evenly
spaced (distance 0.5 mm) coronal sections in each animal starting
at 1.2 mm anterior to Bregma (Figure 1A). Separate counts were
made in both the striatum and the cortex. Cortex and striatum
were delineated using the computer-assisted stereology toolbox
on the three sections. Counting was carried out using a counting
frame that moved at evenly spaced intervals (steps) from a ran-
dom starting point (determined by the NewCast software) over
the total delineated area. Counting was perfumed by the investig-
ator blinded to experimental groups. The step length was chosen
so that approximately 100–200 cells in each animal were coun-
ted. The total cell number in the three sections was estimated
using the following formula: Total cell number = (Counted num-
ber × Step area)/Counting frame area. From the estimated total
cell number, the cell density within the sampled brain volume
was determined. The data are presented as the number of cells
per mm3.

The counting of GAD67 + cells, in Study 1, was performed
using sagittal sections due to limited tissue availability; three
evenly spaced sections (distance 0.5 mm) starting at 2.0 mm lat-
eral from midline were used. For the cortical GAD67 counts in
the sagittal sections, the areas between 1.2 mm and 0.2 mm an-
terior from Bregma were used in order to match coronal planes
used for other assessments.

Cell volume estimates were made using the nucleator
technique [40].

Cytokine assay
Serum cytokine levels were measured in rats treated with or
without Ex-4 for 6 weeks. Levels of IL-1β, MCP-1, IL-6, IL-
10 and TNFα were simultaneously measured using the Bio-Plex
Multiplex Cytokine Assay (Bio–Rad Laboratories) according to
the manufacturer’s protocol. Samples below detection limit were
assigned a value corresponding to half of the sensitivity of the
assay (Assay sensitivity: IL-1β, 2pg/ml; MCP-1, 3pg/ml; IL-6,
10 pg/ml and TNFα, 3 pg/ml).

Statistics
Homoscedasticity (homogeneity of variance) was tested by using
Breusch–Pagan test and data plotting. Shapiro–Wilk test and Q–
Q plot were used to test for normal distribution of residuals.
Presence of outliers was analysed using Q–Q plot and Cook’s
distance. In the total data set, three outliers were detected in
different animals and different markers. Final statistical analysis
was made using GraphPad Prism 6.

In Study 1, two-way ANOVA was used to determine whether
diabetes modified the effect of normal aging observed in Wistar
rats. Two-way ANOVA was followed by Tukey’s multiple com-
parisons test to determine the differences between experimental
groups. In the figures, the asterisks indicate significant differences
between age groups within each strain and the hash symbol shows
where the effects of aging were modified by diabetes.

In Study 2, Student’s t test was used. Data are expressed as
mean + / − S.D. P-value less than 0.05 was considered signific-
ant in both studies.

RESULTS

T2D does not affect the total density of neurons
but reduces the density of GAD67-positive cells
in the striatum
To quantify the density of neurons in the cortex and the striatum,
the sections were stained for Nissl substance by Cresyl Violet.
Since Cresyl Violet acetate also stains myelin cells, for neuron
estimation only the cells with clear neuronal morphology were
counted (Figure 1B). There was no change with age in the total
neuronal density in either GK or Wistar rats in neocortex and
striatum (Figures 1C and 1D).
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Figure 1 The effects of T2D on the general neuronal density in the neocortex and the striatum during aging
(A) Representation of the brain sections where the cell quantifications were performed. (B) The representative images
of Nissl staining in the cortex and striatum. White arrowhead indicates an example of a cell with neuronal morphology.
Black arrowhead indicates an example of a cell with glial morphology. The density of neurons in the neocortex (C) and
the striatum (D) respectively. Two-way ANOVA was used to determine whether diabetes modified the effect of normal aging
observed in Wistar rats. Two-way ANOVA was followed by Tukey’s multiple comparison test to determine the differences
between experimental groups; 3 months old (3m), 13 months old (13m).

In the neocortex, GAD67-positive cells were counted in all
layers except layer 4 where intense background staining did not
allow for accurate quantification. The results of the two-way
ANOVA showed no statistically significant interaction between
age and diabetes. However, T2D GK rats showed lower density of
GAD67-positive cells in the neocortex in comparison with Wistar
rats, both at 3 and at 13 months (Figures 2A and 2C) indicating
a strain difference.

The result of the density measurements of GAD67-positive
cells in the striatum was different compared with the neocortex.
There was a significant interaction between age and diabetes in
the striatum by two-way ANOVA analysis (P < 0.001). In Wistar
rats, the density of GAD67-positive neurons was significantly
increased during aging (P < 0.05) (Figures 2B and 2D). The
opposite was observed in T2D GK rats, where the density of
GAD67-positive neurons was significantly reduced during aging
(P < 0.05) (Figures 2B and 2D). These results indicate that the
decreased density of GAD67-positive cells in aged GK rats was
a diabetic and not an aging effect.

T2D reduces the density of CB-positive neurons
in the neocortex and striatum
The assessment of the density of CB-positive neurons showed
a highly significant interaction between age and diabetes in the

two-way ANOVA analysis (P < 0.0001) indicating the effect of
diabetes on this marker. The 13-month-old GK rats showed a
significant decrease in CB-positive cell density in the neocor-
tex (approximately 45% less) compared with 3-month-old GK
rats (P < 0.0001), with a visible decrease in the number of neur-
ites as well (Figures 3A and 3C). On the contrary, the Wistar
rats showed no difference with age in the density of CB-positive
cells (Figures 2A and 2C).

Similarly to neocortex, the test for interaction between age and
diabetes in the striatum showed a significant effect of diabetes
(P < 0.01). The density of CB-positive neurons was reduced in
13-month-old GK rats to approximately 20% of that of 3-month-
old GK rats (P � 0.001) (Figures 3B and 3D). As in the cortex, no
change with age was observed in Wistars (Figures 3B and 3D).

T2D has no effect on the density of CR-positive
neurons in the neocortex and striatum
No significant change in the density of CR-positive interneurons
with aging or diabetes was observed in either T2D GK or Wistar
rats (Figures 4A and 3C) following the two-way ANOVA.

In the striatum, there was a noticeable trend towards the
reduction in CR-positive cell density in 13-month-old GK
rats compared with 3-month-old GK rats (a 32% reduction),
which failed to reach significance after correction for multiple
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Figure 2 The effects of T2D on the density of GAD67 + neurons in the neocortex and the striatum during aging
The density of GAD67 + cells the neocortex (A) and the striatum (B). Representative images of GAD67 immunoreactivity
in the neocortex (C) and the striatum (D). Scale bar on panels (C) and (D) equals 100 μm. Two-way ANOVA was used
to determine whether diabetes modified the effect of normal aging observed in Wistar rats. The hash (#) symbol shows
where the effects of aging were modified by diabetes. ### denotes P < 0.001. Two-way ANOVA was followed by Tukey’s
multiple comparison test to determine the differences between experimental groups. Error bars indicate means +− S.D.;
* denotes P < 0.05; 3 months old (3m), 13 months old (13m).

comparisons (Figures 4B and 4D). There was no change in the
density of CR-positive cells in Wistar rats (Figures 4B and 4D).

T2D has no effect on the density of PV-positive
neurons in the neocortex and striatum
We recorded no significant difference in the density of PV-
positive neurons in the neocortex of GK compared with Wistar
rats in either age group (Figures 5A and 5C).

In the striatum, the results of the two-way ANOVA showed
no statistically significant interaction between age and diabetes.
However, there was a notable trend (P = 0.09) towards the reduc-
tion in the density of PV-positive neurons in 13-month-old GK
rats in comparison with 3-month-old GK rats (16% reduction)
although this did not reach statistical significance (Figures 5B
and 5D).

The volume of parvalbumin positive neurons in the
striatum was increase in GK rats
In the neocortex, no significant change in the volume of PV-
positive interneurons with aging or diabetes was observed in
either T2D GK or Wistar rats (Figures 6A and 6C) following the
two-way ANOVA. However, the average PV-positive cell volume
in the 13-month-old Wistar showed a strong trend towards an
increase in comparison with 3-month-old Wistars (Figures 6A
and 6C).

A similar trend was observed in the striatum of Wistar rats (Fig-
ure 6B). In T2D GK rats, the average PV-positive cell volume
increase in the striatum was much more pronounced (approx-
imately 30% increase) and statistically significant (P < 0.01)
(Figure 6B). Because both strains showed similar patterns of
PV-positive cell volume growth during aging, no statistically sig-
nificant interaction between age and diabetes was detected by
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Figure 3 The effects of T2D on the density of CB-positive cells in the neocortex and the striatum during aging
The density of CB-positive neurons in the neocortex (A) and the striatum (B). The representative images of CB immunore-
activity in the neocortex (C) and the striatum (D). Scale bar on panels (C) and (D) equals 100 μm and 40 μm respectively.
Two-way ANOVA was used to determine whether diabetes modified the effect of normal aging observed in Wistar rats. The
hash (#) symbol shows where the effects of aging were modified by diabetes. ## denotes P < 0.01, ####P < 0.0001.
Two-way ANOVA was followed by Tukey’s multiple comparison test to determine the differences between experimental
groups. Error bars indicate means +− S.D.; *** denotes P < 0.001, ****P < 0.0001; 3 months old (3m), 13 months old
(13m).

two-way ANOVA, despite the fact that in GK the difference was
significant.

Ex-4 partially counteracted the effect of T2D in the
striatum
The treatment with Ex-4 had no effect on the number of GAD67,
CR and PV-positive cells in either striatum or neocortex (results
not shown).

Ex-4 dramatically increased the density of CB-positive cells
in the striatum (90% increase) of GK rats (P < 0.01) (Figures 7A
and 7B). In neocortex, no effect of Ex-4 treatment on CB-positive
neurons was recorded (results not shown).

Although increased inflammation in GK rats has been shown
[41,42], potential anti-inflammatory effect of Ex-4 in these rats

has not been previously investigated. To determine whether the
positive effect of Ex-4 on CB-positive cells in the striatum could
be related to decreased inflammation in Ex-4 treated rats, we
analysed serum cytokines levels. However, we could not detect
significant differences between GK rats treated with Ex-4 and
vehicle (Table 1).

DISCUSSION

The aim of the present study was to determine the effect of T2D
on GABAergic neurons in the neocortex and the striatum during
aging and whether GLP-1R activation could prevent/reverse the
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Figure 4 The effect of T2D on the density of CR-positive neurons in the neocortex and the striatum during aging
The density of CR-positive neurons in the neocortex (A) and the striatum (B). The representative images of CR immun-
oreactivity. Scale bar on panels (C) and (D) equals 100 μm. Two-way ANOVA was used to determine whether diabetes
modified the effect of normal aging observed in Wistar rats. Two-way ANOVA was followed by Tukey’s multiple comparison
test to determine the differences between experimental groups; 3 months old (3m), 13 months old (13m).

Table 1 Serum cytokine levels after Ex-4 treatment for 6 weeks
Samples, below detection limit, were assigned a value corresponding to half of the
sensitivity of the assay. Numbers of samples below detection limit IL-1β, 4/19; MCP-1,
0/19; IL-6, 15/19; IL-10, 0/19 and TNFα, 8/19. Data expressed as mean +− S.D.,
pg/ml.

Group IL-1β MCP-1 IL-6 IL-10 TNFα

PBS (n = 11) 6.4 +− 5.0 2058 +− 424 4.6 +− 1.2 58 +− 30 11.4 +− 11.2

Ex-4 (n = 8) 6.6 +− 5.9 1987 +− 753 5.2 +− 1.0 63 +− 31 16.0 +− 23.4

identified T2D effect. We show that T2D reduced the density
of GAD67-positive neurons in the striatum and of CB-positive
neurons in both neocortex and the striatum. In addition, PV-
positive neuron volume was significantly increased in GK rats,
although it could not be statistically determined whether this
effect was related to T2D. Finally, chronic GLP-1R activation by
Ex-4 recovered the decrease in CB-positive neuronal density in
the striatum.

The pathophysiological mechanisms behind the harmful ef-
fects of T2D in the brain are yet to be identified. The char-
acteristic hallmarks of T2D such as insulin resistance, hyper-
glycaemia, oxidative stress and inflammation are likely involved
[13,43–46]. Additionally, several studies have shown that T2D
can induce cerebral microvascular disease, which may also lead
to neuronal damage [14,47]. All these factors may be linked
to brain damage, impaired cognitive function and increased
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Figure 5 The effect of T2D on the density of PV-positive neurons in the neocortex and the striatum during aging
The density of PV-positive neurons in the neocortex (A) and the striatum (B). The representative images of PV immunore-
activity. Scale bar on panels (C) and (D) equals 100 μm. Two-way ANOVA was used to determine whether diabetes modified
the effect of normal aging observed in Wistar rats. Two-way ANOVA was followed by Tukey’s multiple comparison test to
determine the differences between experimental groups; 3 months old (3m), 13 months old (13m).

neurodegenerative processes in T2D. However, most of the re-
search in the field has focused on AD and hippocampus. Thus,
which specific brain structures and neuronal cell types are af-
fected by T2D needs to be further studied. The strong association
of T2D with early cognitive decline and sensorimotor problems
led us to hypothesize that T2D can induce pathophysiological
changes in specific neural cells and brain areas responsible for
these functions. In order to test this hypothesis, we quantitatively
evaluated the neuronal composition of the neocortex and the stri-
atum with focus on GABAergic neurons, which play an essential
role in the inhibitory modulation of the neuronal activity of these
areas [25–27,48,49].

The potential link between metabolism and GABA signalling
was already suggested in the 80s by Palovcik et al. [50] and more
recent research has shown that metabolic hormones modulate the
GABA signalling in different types of neurons [35].

We found significantly lower density of GAD67-positive neur-
ons in the neocortex of GK rats compared with Wistars at both 3-

and 13-months. Aging did not modulate the density of GAD67-
positive neurons in the neocortex of either rat strain (Figure 2A).
Although the earlier involvement of T2D in reducing the density
of GAD67-positive neurons in GK rats cannot be fully dismissed,
it is unlikely, considering the fact that the density did not changed
further at 13 months. It is more plausible that the differences
between GK and Wistar rats are determined by the strain and not
by the T2D.

In the striatum, we recorded a statistically significant age-
dependent increase in the density of GAD67-positive cells in
Wistars and decrease in GK rats with aging (Figure 2B). Increase
in GAD67 immunoreactivity in the non-diabetic striatum indic-
ates increased GABA production that has been previously ob-
served in aged rats and suggested to be a characteristic feature of
normal aging [51]. Thus, the reduced GAD67 immunoreactivity
in the striatum of middle-aged T2D GK rats could point towards
an abnormal decrease in striatal GABA levels and impairment
of inhibitory modulation of striatal neuronal activity in these
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Figure 6 The effect of T2D on the average soma volume of PV-positive neurons in the neocortex and the striatum during
aging
The average soma volume of PV-positive neurons in the neocortex (A) and the striatum (B). The representative images
of PV immunoreactivity. Scale bar on panels (C) and (D) equals 30 μm. Two-way ANOVA was used to determine whether
diabetes modified the effect of normal aging observed in Wistar rats. Two-way ANOVA was followed by Tukey’s multiple
comparison test to determine the differences between experimental groups. Error bars indicate means +− S.D.; * denotes
P < 0.05; 3 months old (3m), 13 months old (13m).

Figure 7 Effect of GLP-1R activation of on the density of CB-positive neurons in the striatum of middle-aged GK rat
The number of CB-positive cell in middle-aged T2D GK rats after 6 weeks of PBS or Ex-4 treatment (A). The representative
images of CB immunoreactivity (B). Scale bar on panel (B) equals 100 μm. Student’s t test was used. The differences
were considered significant at P < 0.05. Error bars indicate means +− S.D.; ** denote P < 0.01.
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animals, which in turn could be speculatively linked to early
sensorimotor complications in T2D or delayed recovery after
stroke [52].

A significant portion of GABAergic interneurons is character-
ized by the expression of the CaBPs CB, CR and PV. These pro-
teins are involved in calcium buffering and transport, are closely
regulated along aging and disease and may play crucial role in
maintaining the health of the CNS [53].

The density of CB-positive neurons in the neocortex and stri-
atum was significantly reduced in the middle-aged GK rats com-
pared with young GK or Wistars of both age groups (Figures 3A
and 3B). Interestingly, we have recently reported decreased num-
ber of CB-positive neurons in the piriform cortex of middle-
aged GK rats [24]. Besides reduced cell density (approximately
50% compared with young), a clear reduction (visual observation
without quantification) in neurite branching was also evident in
the neocortex of middle-aged T2D GK rats (Figures 3A–3C). CB
expression in neocortex is localized in inhibitory interneurons,
namely in “bursting interneurons” (also expressing PV) [49,54],
which play an important role in temporal coordination of pyr-
amidal cell output [54]. Reduced CB expression and neurite
branching in middle-aged T2D GK rat neocortex could indicate
impaired modulation of cortical excitatory circuits, thus lead-
ing to early cognitive decline and sensorimotor complications
in T2D.

Oppositely to the neocortex, the majority of striatal CB-
positive neurons are not interneurons but medium-size spiny
neurons [55]. These neurons are mostly localized in the matrix
compartment and project to the substantia nigra pars reticulata
[56], thus being involved in the activity modulation of dopam-
inergic neurons. Such reduction in CB-positive neuronal density
in the striatum of GK rats (Figures 3B–3D) could be indicative
of disrupted calcium homoeostasis in the T2D striatum, that in
turn could impair the normal functioning of these cells and po-
tentially affect normal neurological functioning. Indeed, reduced
CB mRNA has been reported in several brain structures along
aging as well as in a variety of neurodegenerative conditions
[57–60]. We can speculate that reduction in CB expression in
the striatal matrix compartment projection neurons is indicative
of pathological changes that could lead to early impairment of
the basal ganglia motor loop in T2D, thus potentially explaining
faster development and more severe motor dysfunction observed
in PD patients with prior T2D [20].

We did not record statistically significant T2D-related changes
during aging in the density of CR- or PV-positive cells in either
neocortex or the striatum (Figures 4A and 5B, and Figures 5A and
5B respectively). However, a trend towards the reduction in both
of these interneuron subtypes was evident in middle-aged GK
rats, especially in the striatum (Figures 4B and 5B). These results
suggest that CR and PV interneurons could be more resistant
than CB-positive neurons to the effects induced by T2D and that
only a longer exposure to the diabetic disease could also affect
these neuronal populations. One limitation of the present study is
that we did not have older groups of rats (for instance 24 months
old) where additional effects induced by T2D could have been
detected.

We measured the average cell volume of PV-positive
neurons in the neocortex and the striatum. The cell size
of neurons has been suggested to positively correlate with the
neuronal connections and the target area size [61,62]. The aver-
age size of PV-positive neurons in the neocortex of middle-aged
Wistar rats was increased by approximately 20% (not statistic-
ally significant trend) in comparison with young Wistars, an effect
that was not observed in T2D GK rats (Figure 6A). PV-positive
interneurons are fast-spiking neurons that demand high energy
for normal functioning and play an important role in cortical
information processing [48]. A trend towards increased soma
volume in normal aging could indicate more network connec-
tions and/or increased activity, which are likely inhibited under
T2D.

In the striatum, a similar trend towards the increase in the
average PV interneuron volume was observed in Wistars with
aging. However, in GK rats this increase was significant (Fig-
ure 6B). PV-positive interneurons are involved in the activity
synchronization of striatal projection neurons [63]. Considering
the decrease in GABA (GAD67) (Figure 2B) in the striatum of
middle-aged GK rats, which could indicate the reduction in over-
all inhibitory activity in that structure, we could speculate that
the increase in PV-interneuron size could indicate an increased
connectivity or inhibitory activity of PV-interneurons as a com-
pensatory mechanism to balance the likely overall decrease in
GABAergic inhibitory signalling under T2D. Because similar
patterns of PV-interneuron volume growth were also observed
in the striatum of non-diabetic Wistars, a statistically signific-
ant interaction between age and diabetes was not detected by
two-way ANOVA. However, it is plausible that PV-interneuron
volume growth is a part of normal aging process, which is further
amplified by the T2D.

In order to clarify whether the observed reduction in GAD67-
(Figure 2B) and CB-positive neuronal density (Figures 3A and
3B) was caused by cell loss or reduction in protein expression,
we quantified the general density of neurons in the neocortex
and the striatum by using Nissl staining and stereology meth-
ods. We did not detect any changes in the total neuronal density
either with age or with T2D (Figures 1B and 1C), indicating
that no significant neuronal loss has been induced by T2D. At
the first glance, this observation seems to contradict our previ-
ous work, where we saw 5–7% decrease in the total number of
NeuN-positive neurons in the neocortex of middle-aged, T2D
GK rats. This decrease in NeuN-positive neurons was accom-
panied by reduced or abnormal NeuN expression in the neurons
of the neocortex [39]. NeuN is a product of Fox-3 gene and has
been suggested to play a role in neural cell differentiation and
development [64], although its functions in mature neurons is
unknown. In a recent work, we have reported the reversal of ab-
normal NeuN expression in the neurons of the piriform cortex by
pharmacological GLP-1R activation [24]. Considering these re-
cently published data and the fact that we did not detect changes
in neuronal density based on Nissl staining in that study, it is
likely that T2D does not induce neuronal loss as measured by
NeuN counting, but may rather reduce NeuN expression leading
to reduced neuronal counts based on this marker. The absence
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of significant neuronal loss of the neocortex and the striatum in
T2D is further suggested by no detectable differences in the num-
ber of TUNEL and cleaved caspase-3 positive cells between GK
and Wistar rats in both young and middle-aged rats (results not
shown).

We have recently shown the positive effect of GLP-1R ac-
tivation on the number of CB-positive neurons in the piriform
cortex of middle-aged T2D GK rats [24]. Similarly, the GLP-1R
activation by Ex-4 increased the density of CB-positive neurons
in the striatum, but not in the neocortex of GK rats (Figure 7).
As indicated above, CB-positive cells are typically GABAer-
gic interneurons in the neocortex whereas mostly medium-sized
projection neurons in the striatum. Thus, our data indicate that
GLP-1R activation specifically counteracts the effects of T2D
on CB-expression in the striatal projection neurons but not in
neocortical interneurons. Striatum plays an important role in mo-
tor control and is affected in neurodegenerative diseases such
as PD, Huntington’s disease (HD) and stroke. Several studies
have shown the beneficial effects of GLP-1R activation on motor
function in animal models of PD [65–67], HD [68] and improved
outcome after stroke [69]. In addition, a previous study showed
clinical improvements in PD patients treated with Ex-4 [70].
Thus, the increase in CB expression in the striatum after GLP-1R
activation could represent one of the contributing mechanisms
in the neuroprotective efficacy mediated by GLP-1R activation.
Indeed, neuroprotection by up-regulated CB has been previously
demonstrated in animal models of stroke [71].

Previous studies suggest that peripheral inflammation is in-
creased in GK rats [41,42,72] and that GLP-1R activation can
decrease inflammation in humans with T2D [41]. Given this back-
ground, we sought to investigate whether the beneficial effect on
CB-positive neurons by GLP-1R activation could be due to de-
creased inflammation. We did not find any evidence for Ex-4 to
influence cytokine levels. However, it should be kept in mind that
in the present study we analysed serum samples and this might
not reflect the cytokine levels locally in the brain.

In conclusion, our results show that T2D specifically affects
the neocortex and the striatum on different neuronal populations
that include GABAergic interneurons and CB-positive neurons.
It is likely that these T2D-induced changes may have negative
influence on the normal functioning of the GABAergic inhibitory
system in these structures. If so, the identified effects could play
a role in the early development of cognitive and sensorimotor
impairments in T2D patients, as well as in the decreased recovery
following brain injuries such as stroke. The efficacy data showing
that GLP-1R activation can strongly counteract the T2D-induced
CB down-regulation in the striatum provides new knowledge
about the specific cellular targets of this class of T2D drugs in the
CNS. Whether this finding could have therapeutic implications
for the treatment of CNS complications in T2D, where striatal
function is involved, remains to be investigated.
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