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Identifying rare but significant healthcare events in massive unstructured datasets has become a common task in healthcare data
analytics. However, imbalanced class distribution in many practical datasets greatly hampers the detection of rare events, as
most classification methods implicitly assume an equal occurrence of classes and are designed to maximize the overall
classification accuracy. In this study, we develop a framework for learning healthcare data with imbalanced distribution via
incorporating different rebalancing strategies. The evaluation results showed that the developed framework can significantly
improve the detection accuracy of medical incidents due to look-alike sound-alike (LASA) mix-ups. Specifically, logistic
regression combined with the synthetic minority oversampling technique (SMOTE) produces the best detection results, with a

significant 45.3% increase in recall (recall = 75.7%) compared with pure logistic regression (recall = 52.1%).

1. Introduction

The rapid growth of electronic health records (EHRs) is
generating massive health informatics and bioinformatics
datasets, and more and more crowdsourced medical data
are becoming available. Using statistical data analytics to
detect rare but significant healthcare events in these massive
unstructured dataset, such as medication errors and disease
risk, has the potential to reduce treatment costs, avoid pre-
ventable diseases, and improve care quality in general [1, 2].
One major challenge to effective healthcare data analytics is
highly skewed data class distribution, which is referred to as
the imbalanced classification problem. An imbalanced classi-
fication problem occurs when the classes in a dataset have a
highly unequal number of samples. For example, in a binary
classification, the imbalanced classification problem is pres-
ent when one class has significantly fewer observations than
the other class. The former is usually called a minority class,
and the latter, a majority class. In this study, we develop a

method for detecting relevant healthcare events in datasets
where this data challenge is present.

In some healthcare-related datasets with imbalanced
classification, accurately detecting minority class observa-
tions is of great importance, as they correspond to high-
impact events. For instance, some attempts have been made
to automatically identify medical incident reports. The tar-
geted medical incident reports are usually reports of inci-
dents that have been recognized as common causes of
medication errors that may result in adverse or harmful
patient outcomes [3]. In practice, many datasets of medical
incident reports exhibit imbalanced class distribution. For
example, in an investigation of the classification of two types
of medical incident reports, namely, “clinical management/
inadequate handover” and “clinical management/incorrect
patient,” Ong (2010) [4] found that there were more than
twice as many clinical management/incorrect patient cases
as clinical management/inadequate handover cases. In
another example, Wong (2016) [5] examined the detection
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of look-alike and sound-alike (LASA) mix-up cases from the
medical incident reports and found that only 21% of the
available reports were related to LASA cases.

Conventional statistical learning classifiers typically per-
form poorly in imbalanced datasets, as they implicitly assume
an equal occurrence of all classes and are designed to maxi-
mize the overall classification accuracy. Thus, these classifiers
favor the majority class, resulting in poor accuracy in detect-
ing minority class observations [6, 7]. Many healthcare data
analytics applications have neglected the problem of dataset
imbalance [8], and the effectiveness of classifiers that use
rebalancing strategies to address the detection problem has
rarely been evaluated [9, 10].

Resampling and cost-sensitive learning are state-of-the-
art rebalancing strategies for imbalanced classification. The
resampling schemes include randomly oversampling the
minority class, undersampling the majority class, and some
advanced synthetic sampling methods that attempt to rebal-
ance class distribution at the data level. However, these reba-
lancing strategies have some limitations. For instance, an
unavoidable consequence of undersampling is the loss of
information [11], whereas oversampling through the random
replication of the minority class sample usually creates very
specific rules, leading to overfitting [ 7]. Cost-sensitive learning
considers the costs of misclassified instances and minimizes
the total misclassification cost, attempting to rebalance class
distribution at the algorithm level. As cost-sensitive learning
methods are motivated by the observation that most real
applications do not have a unified cost for misclassification,
the cost matrix needs be manually determined beforehand.

In this study, we develop a framework for analyzing
healthcare data with imbalanced distribution that incorpo-
rates different rebalancing strategies, and we offer guidelines
for choosing appropriate procedures. This learning frame-
work consists of two main stages: selecting base classifiers
and evaluating rebalancing strategies. We examine the effect
of data imbalance on classifier performance and the effective-
ness of various rebalancing strategies. The results of our anal-
ysis of a published study’s dataset show that the developed
framework significantly improves the accuracy in detecting
medical incidents caused by LASA mix-ups. It is worth not-
ing that the framework has a broad range of applications
beyond medical incident reports detection, in datasets with
similar imbalanced data properties.

2. Background

2.1. Imbalanced Data in Healthcare. The imbalance property
that is common to many real healthcare datasets makes clas-
sification a challenging task. The imbalanced classification
problem in the healthcare domain, where data are often
highly skewed due to individual heterogeneity and diversity,
affects issues such as cancer diagnostics [12, 13], patient
safety informatics [5, 14], and disease risk prediction [15].
Most standard classifiers, such as logistic regression and the
support vector machine, implicitly assume that both classes
are equally common. Additionally, these methods are
designed for maximizing overall classification accuracy. As
a result, they favor the majority class, resulting in poor
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sensitivity toward the minority class [6, 7]. This intuition is
illustrated in Figure 1, which contains a synthetic example
containing a majority class and a minority class. The solid
line (w*) depicts the optimal separator in the underlying dis-
tribution, and the dotted line (@) is the max-margin loss-
minimizing separator generated over the instances. In this
case, the induced separator is clearly skewed toward the
minority class.

The fundamental concern raised by the imbalanced
learning problem is that the performance of most standard
learning algorithms is significantly compromised by imbal-
anced data. Resampling at the data level and cost-sensitive
learning at the algorithm level are common strategies for
addressing imbalanced classification. In the following sec-
tions, we review these strategies and examine their effective-
ness when they are combined with standard classifiers to
detect medical incidents in imbalanced datasets.

2.2. Rebalancing Strategies

2.2.1. Data-Level Approaches. Approaches at the data level,
based on the observation that classifiers learn better from a
balanced distribution than from an imbalanced one, use var-
ious methods for rebalancing the class distribution [4, 16].
The representative scheme is randomly oversampling the
minority class and undersampling the majority class [17,
18] or a combination of both schemes. Some advanced
methods, called synthetic sampling strategies, generate syn-
thetic instances to improve classifiers’ performance.

(1) Oversampling and Undersampling. Due to their simplicity
and computational efficiency, over- and undersampling
methodologies are popular strategies for countering the effect
of imbalanced datasets [19-24]. The oversampling technique
consists of randomly selecting instances from the minority
class with replication and then adding the replications into
the minority class. In this way, the size of the minority class
is enlarged. Let X = {x;} (=1, 2, ..., N) denote the minority
class with N instances. Then, the randomly oversampled
minority class is X, = {x;} (j=1,2,...,N,), where Vx; € X
and N, > N. In contrast, the undersampling scheme ran-
domly removes instances from the majority class, which can
also rebalance the minority and majority classes. Let Z = {z;}
(i=1,2,..., M) denote the majority class with M instances.
Then, the randomly undersampled majority class is Z, = {z;}

(j=1,2,...,M,), where Vz; € Z and M, < M. The random

under- and oversampling methods each have shortcomings.
An unavoidable drawback of undersampling is the loss of
information [11], whereas oversampling, through the ran-
dom replication of the minority class sample, usually creates
very specific rules, leading to model overfitting [7].

(2) Synthetic Sampling. The synthetic minority oversampling
technique (SMOTE) [25] is a typical synthetic sampling
method that has been very successful in various applications
and been the foundation for many variants of the basic syn-
thetic sampling scheme [26]. SMOTE searches k-nearest
minority neighbors of each minority instance (denoted as x;)
and then randomly selects one of the neighbors as the
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FIGURE 1: Bias of a linear separator.

reference point. The synthetic instance is generated by first
multiplying the difference between the feature vector of the
selected neighbor and x; with a random value within the
range [0,1]. Then, the following vector is added to x;:

xnew:xi+(}i_xi)><8’ (1)
where %; is one of the k-nearest neighbors for x; and 8 € [0, 1]
is a random number. In the implementation of SMOTE,
there are two key parameters for controlling the amount of
oversampling of the minority class and undersampling of
the majority classes, that is, & and y. For each case belonging
to the minority class in the original dataset, &/100 new
minority samples will be generated. The parameter y controls
the proportion of cases of the majority class that will be ran-
domly selected for the final “balanced” dataset. This propor-
tion is calculated with respect to the number of newly
generated minority class cases. One potential drawback of
SMOTE is that it generates the same number of synthetic
data samples for each original minority example without
considering neighboring examples, which may increase the
occurrence of overlaps between classes [26].

2.2.2. Algorithm-Level Approaches. Instead of rebalancing the
class distribution at the data level, some solutions have been
based on biasing the existing classifiers at the algorithm level.
One popular approach is to use a cost-sensitive learning
method [27, 28], which considers the costs of misclassified
instances and minimizes the total misclassification cost.

(1) Cost-Sensitive Learning. Unlike the rebalancing strategy,
cost-sensitive learning does not directly create a balanced
class distribution. Instead, it highlights the imbalanced learn-
ing problem using a cost matrix that describes the cost
of misclassification in a particular scenario. Cost-sensitive
learning is motivated by the observation that most real appli-
cations do not have a unified cost for misclassification [28];
therefore, the cost matrix needs to be determined before-
hand, which is a major limitation. In other words, this
method evaluates the cost associated with misclassifying
observations [29-32]. An illustration of a cost matrix can
be found in Table 1, where C(FN) and C(FP) correspond to
the costs associated with a false negative (FN) and a false pos-
itive (FP), respectively. Specifically, C(FN) > C(FP) defines
an imbalanced classification.

3
TaBLE 1: Cost matrix.
Prediction
Positive Negative
Actual Positive 0 C(FN)
Negative C(FP) 0

The goal of cost-sensitive learning is to choose the classi-
fier with the lowest total cost, that is,

Total cost = C(FN) x FN + C(FP) x FP. (2)

It is worth noting that if a parametric model-based classi-
fier (e.g., logistic regression) is applied, then choosing a clas-
sifier with the lowest total cost can be done by varying the
threshold based on the loss function (cost of false negatives
to false positives) in the training data; this is the empirical
thresholding method [33]. For example, in a logistic regres-
sion, let x € R? denote the d-dimensional vector of explana-
tory variables and let y € Y be the corresponding binary
response (1 for minority and 0 for majority). The basic form
of the posterior probability estimated via a linear function in
x is as follows:

exp ([30 + ,BTx) .

1 +exp (/30 + ﬁTx) )
1

1 +exp (ﬁo + ﬁTx> .

Given the monotone transformation, we have the following:

Pr(y=1|x=x)=

(3)

Pr(y=0|x=x)=

log —11:((;:; ||:::j:)) =B+ /J’Tx. (4)

The predicted log ratio is a hyperplane defined by {x |

[Aio + ﬁTx =0}, where 0 is the tuning threshold for choosing
a classifier with the lowest total cost.

All these methods deal with imbalanced classification by
directly or indirectly rebalancing the class distribution in a
dataset. Various studies have presented (sometimes conflict-
ing) viewpoints on the usefulness of different rebalancing
strategies, and a comprehensive discussion can be found in
[20, 26, 34].

2.3. Framework for Learning Data with Imbalanced
Distribution Using Rebalancing Strategies. In this study, we
develop a framework for learning healthcare data with imbal-
anced distribution by incorporating different rebalancing
strategies and offering guideline procedure. Figure 2 shows
the framework for the entire learning procedure. This frame-
work consists of two stages: selecting a base classifier and
using the base classifier to implement rebalancing strategies.
In the first stage, a base classifier is selected from a set of
candidates by evaluating each classifier’s performance met-
rics (e.g., recall can be used to evaluate whether the training
classifier has correctly classified minority instances). The
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FIGURE 2: Framework of the learning procedure.

candidate classifiers can be either linear or nonlinear
methods for binary classification (e.g., logistic regression
(LR), support vector machine, decision tree, and linear dis-
criminant analysis). In the second stage, rebalancing strate-
gies (including resampling and cost-sensitive learning
methods) can be combined with the base classifier and imple-
mented across a range of parameters. The possible parameter
sets must be designed based on the guidelines for designing
the parameter/threshold of each rebalancing strategy (e.g.,
the oversampling ratio for an oversampling strategy should
be determined based on the imbalance level). Leave-one-
out cross-validation (LOOCV), which is a fair way to prop-
erly estimate model prediction performance, is used to eval-
uate the performance of classifiers in these stages.

3. Materials and Methods

We carry out a set of experiments to verify the effectiveness of
our developed framework using a practical healthcare imbal-
anced dataset. We present the selected imbalanced binary
classification problem, our experimental design, and the eval-
uation criteria used in this study as follows.

3.1. Case Description: LASA Cases. Medication names that
look alike and sound alike have been recognized as the most
common cause of medication errors [3]. Furthermore, 1.4%
of errors due to LASA drug mix-ups have resulted in adverse
and harmful patient outcomes [35, 36]. The timely and accu-
rate identification of medication errors due to LASA drug
mix-ups would reduce the medical risk to patients. Wong

(2016) [5] used GPSA medical incident reports to construct
classifiers for detecting LASA cases and acknowledged the
challenges arising from the imbalanced classification of
patient safety incident data. In our experiments, we evaluate
our proposed imbalanced classification framework for
detecting LASA cases using Wong’s dataset [5]. The raw
dataset is unstructured, as the medical incident reports are
in free text format. The structured dataset used in the subse-
quent modeling and evaluation is a 227 x 8 dataset with 48
minority cases and 179 majority cases [5]. We thus regard
LASA and non-LASA cases as minority and majority classes,
respectively.

3.2. Base Classifiers. We compare the performance of several
conventional classifiers, including the logistic regression (LR)
[37], support vector machine with linear kernel (L.SVM),
support vector machine with radial kernels (R.SVM) [38],
and decision tree (DT) [39]. Many healthcare applications
have used these classifiers due to their simplicity, interpret-
ability, and computation efficiency [4, 5, 40]. In this study,
we directly apply and validate these methods on the dataset
and select the most effective classifier for detecting LASA
cases as the base classifier. This base classifier is then com-
bined with several rebalancing strategies in the second stage
of the study.

3.3. Experiment Design. We investigate the performance of
classifiers under various rebalancing strategies, including
oversampling, undersampling, SMOTE, and cost-sensitive
learning. As parameter settings usually have a significant
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impact on a classifier’s performance, they are thoroughly
assessed in the implementation. 1) For oversampling, the
oversampling ratio (number of oversampled minority
instances/Number of minority instances) is set within the
interval [1, 5] (ratiol). The interval bounds are set based on
the degree to which the dataset is imbalanced (179/48 = 3.7)
to reach a relatively balanced class distribution. 2) For under-
sampling, the undersampling ratio (number of undersampled
majority instances/Number of majority instances) is set
within the interval [0,1] (ratio2). Similarly, the interval
bounds are set based on the degree to which the dataset is
imbalanced. 3) For SMOTE, there are two related parameters,
aand p, which control the amount of oversampled minority
instances and undersampled majority instances, respectively.
4) For cost-sensitive learning, the parameter threshold tunes
the decision boundary of the classifiers. The detailed param-
eter settings are shown in Table 2.

We use LOOCV to evaluate how well the classifiers
detect LASA cases, as the results of LOOCYV are reproducible
[41]. Five hundred replications are carried out for each set;
the justification is given in the appendix. All the experiments
are implemented in the R v3.3.1 (64-bit) platform using the
“MASS,” “e1071,” “cvTools,” “plyr,” “DMwR,” and “tree”
packages [42].

3.4. Performance Evaluation Criteria. Appropriate evaluation
criteria are crucial for assessing the binary classification
performance of the methods. Common evaluation criteria
include accuracy, recall, precision, specificity, and so on As
the minority class may bias the decision boundary and has
little impact on accuracy [40], we focus on performance
evaluation metrics recall, precision, F-score, and specificity.
The confusion matrix is given in Table 3.

. TP
Precision= ——,
TP + FP
TP
Recall = ————,
TP + EN )
precision recall
F-score=2- ————,
precision + recall
™N
Specificity = ———.
pecifticity N+ TN

In assessing information retrieval, recall denotes the per-
centage of retrieved objects that are relevant; in the context of
imbalanced classification, that is the percentage of correctly
classified minority instances. Precision denotes the percent-
age of relevant objects that are identified for retrieval. F-score
represents a harmonic mean between recall and precision.
Specificity denotes the percentage of correctly classified
majority instances. In many detection tasks, recall is the
primary measure, as identifying rare but significant cases in
massive unstructured healthcare datasets is our major con-
cern. As there is always a tradeoff between recall and specific-
ity, indiscriminately improving recall can result in a
significant amount of false alarms, reflected in low specificity
scores and poor overall classification accuracy. Therefore, in
this study, the overall classification accuracy is controlled by

TABLE 2: Parameter settings for algorithms

(a)

A.1 Random oversampling + LR

Settings for ratiol

ratiol 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
A.2 Random undersampling + LR

Settings for ratio2

ratio2 1/1.5 1/2.0 1/25 1/3.0 1/3.5 1/40 1/45 1/5.0

(b)

A3 SMOTE +LR

Settings for a and y

a 400 300 200 100 200 100 100
y 100 100 100 100 200 200 300

(0

A4 Cost-sensitive learning + LR
Settings for threshold

threshold 05 025 0 -025 -05 -1 -15 =2

TaBLE 3: Confusion matrix.

Condition positive ~Condition negative

Test outcome positive  True positive (TP)  False positive (FP)

Test outcome negative False negative (FN) True negative (TN)

specifying accuracy above 80% to avoid bias when applying
rebalancing strategies.

4. Results

4.1. Selection of Base Classifier. As shown in Table 4, all the
conventional classifiers achieve good overall classification
accuracy (above 80%). Among these classifiers, LR performs
best in detecting LASA cases (recall = 0.521), which are our
cases of interest. LR is also superior to other classifiers in
terms of the synthesized measure (F — score = 0.595). These
results are consistent with the conclusion in [5]. We thus
select LR as the base classifier. However, it should be noted
that the capability of LR for detecting LRSA cases is still
unsatisfactory, due to the challenges associated with an
imbalanced dataset.

4.2. Performance of Classifiers with Different Rebalancing
Strategies. In this subsection, we investigate the effectiveness
of the proposed rebalancing strategies. As described in the
previous subsection, we adopt LR as the base classifier.

4.2.1. Experiment Results: Data-Level Approach. We examine
the effectiveness of combining LR with various rebalancing
strategies. Figure 3 compares the effectiveness of different
data-level approaches for detecting LASA cases. As LASA
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TABLE 4: Performance of conventional classifiers.
LR LSVM DT R.SVM
Recall 0.521 0.479 0.375 0.396
Precision 0.694 0.767 0.750 0.792
F-score 0.595 0.590 0.500 0.528
Accuracy 0.850 0.859 0.841 0.850

cases are the minority class in the target dataset, the recall
value indicates the method’s accuracy. As shown in
Figure 3, recall increases as the oversampling or undersam-
pling ratio increases. In other words, the accuracy in the
detection of LASA cases can be improved by making the class
distribution more balanced, either by enlarging the size of the
minority class or reducing the size of the majority class. How-
ever, there is always a tradeoff between recall and specificity/
precision; the specificity/precision decreases as the recall
grows. Compared with LR alone, LR in conjunction with
resampling strategies gives a superior performance.

We then compare the classifiers with the best perfor-
mance, all of which achieve an overall classification accuracy
within the interval [0.82, 0.85], as shown in Table 5. Specifi-
cally, LR combined with oversampling improves the recall
and F-score by 40.50 and 8.40%, respectively, under the
setting ratiol =3.5; LR combined with undersampling
improves the recall by 6.53% and decreases the F-score by
3.36%, respectively, under the setting ratio2 = 1/1.5; and LR
combined with SMOTE outperforms all of the classifiers,
improving recall and F-score by 45.30% and 11.76%, respec-
tively, under the settings & =200 and p=100. As can be
seen from the results, recall can be significantly improved
with only a slight sacrifice (around 1.5%) in overall classifi-
cation accuracy.

To evaluate the robustness of the three approaches, we
plot their receiver-operating characteristic (ROC) curves,
that is, true positive rate (sensitivity) against false positive
rate (1 — specificity), as shown in Figure 4. The blue dashed
line in each plot describes the performance of a “completely
random guess” for the class of observation (i.e., the no-
discrimination line from coordinates (0,0) to (1,1)), and the
red line describes the ROC curve of the base classifier (pure
logistic regression) for comparison purposes. A good classifi-
cation method should yield points in the upper region or
near the coordinate (0,1). As shown in Figure 4, all of the
plots of the true positive rate against the false positive rate
are above the no-discrimination line, indicating that LR com-
bined with resampling strategies effectively reduces the
effects of the two-class classification problem. The ROC
curve of LR combined with SMOTE is closer to coordinate
(0,1) than the ROC curve of the pure LR, indicating its supe-
rior ability to detect LASA cases.

4.2.2. Experiment Results: Algorithm-Level Approach. We also
apply the cost-sensitive learning method to the detection of
LASA cases. Again, LR is used as a base classifier. Figure 5
shows the classification results under various parameter set-
tings. A smaller threshold value indicates that the decision
boundary is more biased toward the majority class, that is,
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the non-LASA class, which increases the probability that an
unknown case will be identified as a LASA case. As can be
seen from Figure 5, as the threshold approaches the majority
class, the recall increases and the precision decreases. The
algorithm achieves the best performance when the threshold
is —1; at this level, the recall and F-score are 14.21% and
2.93% higher, respectively, than when only the base classifier
is used.

5. Discussion

5.1. Key Findings. In this study, we develop a framework for
analyzing imbalanced data using rebalancing strategies. We
test the effectiveness of various rebalancing strategies on a
medical incident reports dataset. We conduct a comparative
analysis of techniques for automatically detecting LASA cases
(an imbalanced classification problem) using classifiers com-
bined with different rebalancing strategies, including both
data- and algorithm-level approaches. As there is always a
tradeoff between recall and specificity, indiscriminately
improving recall can result in a significant number of false
alarms, reflected in low specificity and poor overall classifica-
tion accuracy. The methods developed in this study maintain
the overall classification accuracy at an acceptable level (acc
uracy > 80%) by applying rebalancing strategies.

The results show that data-level approaches, including
oversampling, undersampling, and SMOTE, are better for
detecting LASA cases than algorithm-level approaches, per-
haps due to the uncertainty and inconsistency of the cost
matrix in training and testing the dataset. Among the data-
level approaches, combining the base classifier with SMOTE,
achieves the best performance; it improves the detection
accuracy of LASA cases by 43.2% compared with the base
classifier alone, without much loss of overall classification
accuracy. There are two explanations for this result. (1) As
discussed in [11], an unavoidable consequence of undersam-
pling is a loss of information. As our dataset contains only
227 cases, randomly undersampling the majority class can
result in incomplete information, which affects decision
boundary learning. This explains why a random oversam-
pling strategy generally performs better than a random
undersampling strategy on small datasets. (2) Oversampling
through the random replication of the minority class sample
usually creates very specific rules, leading to model overfit-
ting [7]. With replication, the decision region for the minor-
ity class can become smaller and more specific. In contrast,
SMOTE builds larger decision regions that contain nearby
minority class points, resulting in a higher recall. Figure 6
summarizes the changes in accuracy and recall of the differ-
ent classifiers with their best performance. Taking the base
classifier as a reference, it can be observed that in all the
tested rebalancing strategies, the increase in recall is signifi-
cantly higher than the decrease in overall detection accuracy.
Specifically, the base classifier combined with SMOTE
achieves the greatest increase in recall (45.3%) and the smal-
lest decrease (1.5%) in accuracy.

It should be noted that there is no universal solution
for all problems. Although SMOTE outperforms other
rebalancing strategies for our dataset, it may have a higher
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Base classifier Oversampling ratiol =3.5 Undersampling ratio2=1/1.5 SMOTE a =200, y = 100
(% increase over LR) (%increase over LR) (% increase over LR)
Recall 0.521 0.732 (40.50%) 0.555 (6.53%) 0.757 (45.30%)
Precision 0.694 0.577 (~16.86%) 0.598 (—13.83%) 0.597 (—13.98%)
F-score 0.595 0.645 (8.40%) 0.575 (-3.36%) 0.665 (11.76%)
Overall classification accuracy 0.850 0.829 (—2.47%) 0.826 (—2.82%)

0.837 (-1.53%)

computation cost. Due to the considerable growth in the
size of the training dataset caused by the addition of synthetic
samples, the training time for the resulting balanced data
would be relatively higher than that for the original data.
Again, as the size of our dataset is not massive, the increased
computation cost is negligible. However, the overall decision-

making procedure would be time costly for datasets with huge
sizes and high dimensionality. In addition, algorithm-level
approaches such as the cost-sensitive method may outper-
form data-level approaches if the cost matrices for training
and testing the data are empirically known. It is important
to evaluate the performance of different rebalancing strategies
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under the condition of no prior knowledge of data scale and  big health data offer a promising and practical research direc-

cost matrices. tion [43]. Detecting rare but significant healthcare events
Nowadays, more and more crowdsourced medical data  through statistical data analytics may reduce treatment costs,
are becoming available due to the fast growth in health-  avoid preventable diseases, and improve care quality in gen-

related applications. As a result, techniques for analyzing  eral. One typical application is classifying medical incident
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reports. Classifying incident reports at a granular level, iden-
tifying specific incident reports related to major adverse
events, and discovering vital information hidden in the
reports are all crucially important steps for improving patient
safety. In general, the overall procedure for identifying med-
ical incident reports involves structuring the unstructured
text data using text mining to extract key terms [44, 45]
and then constructing classifiers on the structured dataset
for detecting specific medical incident reports. However,
the imbalanced data property of incident report datasets
makes such detection a challenging task.

Classifying imbalanced datasets has been recognized as a
common problem in healthcare data analytics applications,
such as cancer diagnostics, medical incident reports detec-
tion, and disease risk prediction. Typically, in these applica-
tions, correctly detecting minority class instances is crucial,
as they correspond to high-impact events. However, the
imbalance property of these datasets makes this a challenging
task. Most standard classifiers, such as logistic regression and
support vector machine, implicitly assume the equal occur-
rence of both classes, and these methods are designed for
maximizing the overall classification accuracy. As a result,
they favor the majority class, resulting in poor sensitivity
toward the minority class. The findings in this study may
help improve the detection of medical incidents caused by
LASA drug mix-ups in imbalanced datasets and may eventu-
ally eliminate the need for manual identification of similar
mediation-related harmful incidents. It is worth noting that
the rebalancing strategies discussed in this study are not lim-
ited to medical incident report detection; they have a broad
range of applications involving classification of datasets with
similar imbalanced data properties.

5.2. Future Directions. In this study, we examine a two-class
imbalanced classification problem using a simple illustrative
example. The developed framework is potentially useful for
multiclass classification problems, that is, when there are
multiple classes of unequally distributed size. However, it
would be difficult to learn the informed boundaries between

1.
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FIGURE 7: Performance evaluation of increasing numbers of
replications.
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FIGURE 8: Execution time versus replications.

classes in this scenario, as one has to find equilibrium between
class size and detection significance when implementing
rebalancing strategies. In the future, we will investigate the
multiclass imbalanced classification problem in healthcare
data analytics applications, such as the automatic detection
of multiple types of medical incident reports. We also plan
to develop an R package incorporating the imbalanced classi-
fication framework, which should considerably benefit both
researchers and practitioners faced with the imbalanced clas-
sification problem in healthcare data analytics.

6. Conclusion

Detecting rare but significant healthcare events in massive
unstructured datasets is now a common task in healthcare
data analytics. This study is the first systematic attempt to
identify rare events in unstructured healthcare datasets that
have imbalanced distribution. We develop a classification
framework that incorporates various rebalancing strategies
for healthcare data analytics and provide some guidelines
for tackling similar problems.

Appendix
Parameter Settings for Algorithms

The sampling schemes should be repeated to obtain unbiased
evaluation results. To estimate the least number of sampling
replications necessary (rep) and assess the experiment scale,
we execute the algorithm “Random oversampling + LR” (rat
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iol =5) with an increasing number of replications. Figure 7
displays the averaged evaluation result with an increasing
number of replications. As can be seen, the result tends to
be stable when the number of replications approaches 100.
It is worth noting that the execution time grows linearly as
the replication increases, which can be observed in Figure 8.
In the implementation, the number of replications is fixed
at 500 to ensure a reliable evaluation.

Abbreviations
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SMOTE: Synthetic minority oversampling technique
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L.SVM: Support vector machine with linear kernel
R.SVM:  Support vector machine with radial kernel
DT: Decision tree

ROC: Receiver operating characteristic

EHRs:  Electronic health records.
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