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Abstract—Goal: In this study, we address the critical
challenge of fetal brain extraction from MRI sequences.
Fetal MRI has played a crucial role in prenatal neurode-
velopmental studies and in advancing our knowledge of
fetal brain development in-utero. Fetal brain extraction is
a necessary first step in most computational fetal brain
MRI pipelines. However, it poses significant challenges due
to 1) non-standard fetal head positioning, 2) fetal move-
ments during examination, and 3) vastly heterogeneous
appearance of the developing fetal brain and the neig-
hboring fetal and maternal anatomy across gestation, and
with various sequences and scanning conditions. Devel-
opment of a machine learning method to effectively ad-
dress this task requires a large and rich labeled dataset
that has not been previously available. Currently, there
is no method for accurate fetal brain extraction on vari-
ous fetal MRI sequences. Methods: In this work, we first
built a large annotated dataset of approximately 72,000
2D fetal brain MRI images. Our dataset covers the three
common MRI sequences including T2-weighted, diffusion-
weighted, and functional MRI acquired with different scan-
ners. These data include images of normal and pathologi-
cal brains. Using this dataset, we developed and validated
deep learning methods, by exploiting the power of the U-
Net style architectures, the attention mechanism, feature
learning across multiple MRI modalities, and data augmen-
tation for fast, accurate, and generalizable automatic fe-
tal brain extraction. Results: Evaluations on independent
test data, including data available from other centers, show
that our method achieves accurate brain extraction on het-
erogeneous test data acquired with different scanners, on
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pathological brains, and at various gestational stages. Con-
clusions:By leveraging rich information from diverse multi-
modality fetal MRI data, our proposed deep learning so-
lution enables precise delineation of the fetal brain on
various fetal MRI sequences. The robustness of our deep
learning model underscores its potential utility for fetal
brain imaging.

Index Terms—Deep learning, brain extraction, fetal MRI.

Impact Statement— This study introduces a robust deep
learning model for accurate fetal brain extraction from MRI,
enhancing fetal brain imaging across various conditions
and stages.

l. INTRODUCTION

ETAL Magnetic Resonance Imaging (MRI) is a critical tool
F in studying prenatal neurodevelopment due to its superior
soft tissue contrast compared to ultrasound [1]. However, MRI
is very susceptible to motion and fetuses can move significantly
during MRI scans. To mitigate this problem, fast MRI acquisi-
tion techniques are used to obtain stacks of 2D slices [2], [3],
[4]. Brain extraction in these MRI slices is a fundamental step in
various applications, including fetal head motion tracking [5],
slice-level motion correction [6], [7], and slice-to-volume recon-
struction [8], [9], [10], [11], [12], [13], [14], [15], [16]. However,
automated fetal brain extraction remains challenging due to the
variability in brain size, shape, and structure across gestational
age, unpredictable fetal and maternal motion, image distortions,
intensity non-uniformity, and the image contrast that changes in
various fetal MRI sequences such as diffusion-weighted MRI.
As can be seen in the examples presented in Fig. 1, motion
artifacts can significantly degrade the quality of fetal MRI ac-
quisitions. Fetal MRI scans also typically exhibit anisotropic
resolutions across different axes, featuring high in-plane reso-
lution but lower inter-slice resolution. Consequently, achieving
accurate fetal brain extraction from such MR images poses a
significant challenge.

Over the years, various approaches have been proposed to
tackle the challenging task of fetal brain extraction, ranging
from classical image processing techniques to modern machine
learning-based techniques. Classical techniques often rely on
thresholding, region growing, and morphological operations for
fetal brain segmentation [17]. Although these methods may
yield acceptable outcomes in specific scenarios, they often face
difficulties related to intensity variations, image artifacts, and the
intricate anatomical structures inherent to fetal brain imaging.
Classical machine learning techniques have also been explored
for fetal brain extraction in MRI [18]. However, these methods
exhibit limitations in terms of efficiency, accuracy, and their
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Examples of multi-modal in-utero MRI images including T2-weighted, diffusion-weighted, and functional MRI. The first row shows in-plane

views and the second and the third rows show out-of-plane views. These examples highlight some of the factors that make fetal brain extraction
especially challenging such as motion artifacts, anisotropic resolution, heterogeneous contrast, and the highly variable shape and features of the

anatomy based on the gestational age and the position of the fetus.

ability to perform well in diverse settings. Typically, they follow
a two-stage process: first, a technique is applied to detect the
fetal brain or a reference object within the MRI, and then
the extraction phase isolates the fetal brain from the identified
region. One drawback of these approaches is their reliance on
manually crafted features to interpret MR images, which may
not adequately capture the intricate visual patterns present in the
fetal brain and its surrounding tissues [19]. The emergence of
deep learning has brought significant improvements in the field
of medical imaging [20], including fetal brain extraction [21],
[22]. These techniques have demonstrated remarkable perfor-
mance in handling the complexity and variability inherent in
fetal brain MRI scans.

While significant strides have been made in addressing the
complexities of fetal brain extraction through various method-
ologies, the quest for more robust, efficient, and accurate tech-
niques persists. The focus of this study is to leverage the power
of deep learning to further advance the field of fetal brain MRI
extraction, particularly across diverse MRI sequences including
T2-weighted (T2W), diffusion-weighted (DWI), and functional
MRI (fMRI).

In this work, we propose a deep learning framework to tackle
the challenges posed by fetal brain MRI scans. By capitalizing
on the vast information encoded in diverse fetal MRI data
across multiple modalities, our method aims to surpass the
limitations of conventional techniques and classical machine
learning approaches. This work has two primary objectives.
First, to achieve superior accuracy in fetal brain extraction. Our
goal is to develop methods that work well in the presence of
motion artifacts, intensity variations, and complex anatomical
structures observed in T2w, DWI, and fMRI sequences. Second,
to provide a standardized, efficient, and adaptable solution for
seamless integration into the workflow of clinical practitioners
and researchers working with diverse MRI modalities. To the
best of our knowledge, there is currently no model that can

effectively extract fetal brain from MRI images of varying
contrasts from different sequences.

In the following sections, we will review related research on
fetal brain MRI extraction, explain our framework’s design and
implementation, present the results of our model’s performance,
and discuss the broader implications and future research direc-
tions.

Il. RELATED WORK

Brain extraction refers to computational methods for remov-
ing the skull (skull stripping) and other non-cerebral tissues from
head scans [23]. It is an important step that can significantly
impact all downstream processing and analyses. Accurate skull
stripping is crucial for various downstream tasks in medical
image analysis, such as brain tissue segmentation, volumetric
measurements, and the study of brain development and abnor-
malities [1]. Precise delineation of the fetal brain is essential
for assessing brain growth, detecting developmental delays,
and characterizing structural anomalies, which are critical for
prenatal diagnosis and monitoring. Skull stripping serves as a
critical preprocessing step that enables reliable and accurate
analysis of brain structures and pathologies. In the context of
fetal MRI brain extraction, 2D segmentation techniques are
often preferred over 3D approaches as acquisitions are based on
2D sequences to minimize through-slice motion artifacts. These
acquisitions are often anisotropic in resolution (with relatively
thick slices) and almost always exhibit significant inter-slice
motion artifacts. Such artifacts as well as maternal respiratory
dynamics canresultin errors when 3D segmentation methods are
used [19]. Brain extraction in these MRI slices is a fundamental
step in various fetal MRI applications, including fetal head
motion tracking [5], slice-level motion correction [6], [7], and
slice-to-volume reconstruction [8], [9], [10], [11], [12], [13],
[14], [15], [16].
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In the case of 2D fetal MRI scans, the fetal brain must be
recognized and separated in each slice from a widely variable
set of structures such as the uterus, placenta, amniotic fluid,
maternal tissue and organs, or fetal body and extremities. In 2D
views many of these structures may resemble a sectional view
of a developing fetal brain. Therefore, fetal brain extraction on
the original MRI slices is a challenging task. Although several
studies have addressed fetal brain extraction on 3D reconstructed
fetal brain MRI images, e.g. [24], only a few have tackled the
more difficult task of extracting the fetal brain in each slice of the
original acquisitions [25]. Additionally, most existing models
for fetal brain extraction have focused on a single sequence,
often T2W MRI, which limits their applicability to other MRI
sequences.

To address the fetal brain extraction task, several techniques
employ a preliminary step of localizing the fetal brain to direct
brain extraction. Subsequently, two strategies are presented:
either extracting the fetal brain from the entire field of view or
after a brain localization step. Keraudren et al. [18] pinpointed
the fetal brain region using a Bag-of-Words model combined
with SIFT (Scale-Invariant Feature Transform) features [26].
Subsequently, a combination of a sparse patch-based method
and a conditional random field was used for brain segmenta-
tion from 2D MRI slices. However, these approaches relied
on handcrafted features, which often introduced inaccuracies
in fetal brain extraction due to the inherent heterogeneity be-
tween these features and the subsequent extraction algorithms
[19].

Taimouri et al. [27] proposed a block matching technique
to simultaneously detect a bounding box around the brain and
match the orientation of the brain to a template. Due to a search
in the space of possible orientations, this technique was also
computationally expensive. Tourbier et al. [28] proposed an
atlas-based fetal brain segmentation approach that required a
predefined bounding box around the brain. This method was
also time consuming as it relied on deformable registration to
multiple atlases.

Recent studies have focused mainly on deep learning (DL)
and, in particular, convolutional neural networks (CNNs). In
comparison to conventional methods, deep CNNs can be uti-
lized to learn the features of fetal brain MR images that are
pertinent to the task of fetal brain extraction. The U-Net [29]
style architecture is the baseline model that is commonly used
for medical image segmentation [25], [30].

Louetal. [31] presented a multistage 2D U-Net, DS U-Net, for
fetal brain extraction in T2W MRI. The approach uses a three-
step process, all employing the U-Net architecture [29]. First,
a coarse segmentation is performed to outline a 3D bounding
box around the fetal brain. Next, a more detailed segmentation
is carried out for precise brain extraction. Finally, a refined seg-
mentation is conducted using a local patch strategy. Li et al. [32]
designed a two-step framework using two 2D FCNs (Fully
Convolutional Networks) [33] for fetal brain extraction from
MRI slices. One FCN locates and extracts the region of interest
(ROI) containing the brain, while a deeper FCN further refines
the segmentation. Dudovitch et al. [34] introduced a DL method
with two CNN types: a custom 3D U-Net [35] for bounding box

definition and brain extraction, and a 2D U-Net [29] that refines
segmentation considering adjacent slice results.

Liao et al. [36] showcased a multistage DL model for both
image quality assessment and fetal brain extraction, with mod-
ules that detect and extract the brain using the U-Net and
deformable convolutional layers. Zhang et al. [37] proposed
a confidence-aware cascaded framework with two U-Net [29]
modules, one for localization and another for fine-tuning. The
framework evaluates slice-specific confidence for extraction,
using higher-confidence slices to guide the extraction of lower-
confidence ones. Salehi et al. [21] utilized a 2D U-Net [29]
to efficiently extract the fetal brain from T2W MR images.
Khalili et al. [38] presented a multiscale CNN, influenced by
the architecture from [39], using three parallel 2D convolutional
pathways that analyze 2D patches of different sizes. In a sub-
sequent study, Khalili et al. [40] utilized a 2D CNN based on a
scaled-down U-Net architecture [29] for both fetal and neonatal
T2W MR scans, and a post-processing algorithm from their
previous work [38].

Faghihpirayesh et al. [41] proposed RFBSNet, a U-Net
style [29] architecture designed for real-time fetal brain segmen-
tation, emphasizing speed and accuracy. Rutherford et al. [22]
introduced a CNN model adapted from the U-Net architecture
specifically for fetal brain extraction in fMRIL

While all of the above-referenced studies focused on only
one type of MRI modality, either T2ZW or fMRI; in this study
we aimed to train a model on a pool of heterogeneous data
from diverse MRI modalities including T2W, fMRI, and DWI.
We anticipated that this approach should improve the model’s
performance by 1) enabling the model to recognize features that
are specific to each MRI sequence, and 2) allowing the model
to learn patterns that are common to all modalities. We hypoth-
esized that this holistic training approach would help improve
model robustness in handling varying imaging scenarios and
enhance generalizability in real-world settings.

To build a holistic fetal brain extraction tool for fetal MRI
(Fetal-BET), we built deep learning models based on some of
the best-performing CNN architectures. Specifically, the U-Net,
the nnU-Net (here the dynamic U-Net), and the Attention U-Net.
We critically evaluated the performance of these models on our
heterogeneous test sets. Since none of the previous methods [21],
[22] were designed to segment the brain across multiple MRI
modalities, a direct comparison was not appropriate. Nonethe-
less, we critically evaluated the performance of Fetal-BET on
any specific image type, where we specifically evaluated the
performance gain achieved by feature learning across multiple
MRI modalities and data augmentation. We built and trained
models based on variations of the U-Net that was used in most
of the previous studies.

lll. MATERIALS AND METHODS
A. Data

The data utilized in this study were sourced from fetal
MRIs conducted at Boston Children’s Hospital over a span of
approximately 20 years. These MRI acquisitions encompassed
a range of MRI scanners, including 1.5 T GE, Philips, and
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Siemens, as well as 3 T Siemens scanners, specifically Skyra,
Prisma, and Vida models. The study was approved by the Insti-
tutional Review Board. For all prospective fetal MRIs, written
informed consent was obtained from the participants.

The MRI acquisition protocols typically involved the ac-
quisition of multiple types of images, including T2-weighted
(T2W) 2D half-Fourier single-shot turbo spin echo sequences
with in-plane resolutions ranging from 1 to 1.25 mm and slice
thicknesses between 2 to 4 mm, capturing detailed structural
information. Additionally, diffusion-weighted imaging (DWI)
was acquired with an in-plane resolution of 2 mm and slice
thickness ranging from 2 to 4 mm, enabling the assessment of
water diffusion in fetal brain tissues. Functional MRI (fMRI)
images were also included, featuring an isotropic resolution of
2-3 mm, allowing the study of brain activity and neural circuit
activity development in the developing fetal brain.

Our dataset included a total of 38,038 2D MRI slices (from
100 subjects) for T2W imaging, 22,902 2D MRI slices (from 65
subjects) for DWI, and 4756 2D MRI slices (from 36 subjects)
for fMRI. The fetal scans in this dataset span a wide gestational
agerange, ranging from 22 to 38 weeks, resulting in considerable
variations in brain size and shape—approximately a five-fold
increase in brain volume over this period. Moreover, the dataset
exhibits diversity by encompassing a spectrum of conditions,
including both typical and abnormal brains, various artifacts,
and twin pregnancies. This diversity mirrors the complexities
encountered in real-world fetal MRI imaging, facilitating robust
evaluation and analysis of the developed algorithms. For ground
truth annotations, a skilled annotator meticulously segmented
the fetal brain on each MRI slice.

To ensure proper evaluation, we partitioned the data into
three subsets: training, validation, and testing. This partitioning
was performed on a subject-wise basis such that there was no
overlap between subjects in different subsets. This was necessary
to ensure independent evaluation of our model’s performance.
Additionally, we augmented our test dataset with a separate col-
lection of fetal MRI scans sourced from different scanners and
distinct imaging sites. This supplementary dataset was entirely
excluded from the training phase, ensuring its independence
from our model development process. This was critical to test the
generalization performance of our proposed methods to unseen
data from different sites and scanners. For a comprehensive
overview of the data distribution across these subsets, please
refer to Table 1.

B. Model Architecture

In our study, we investigated three state of the art neural net-
work architectures for medical image segmentation: U-Net [29],
Dynamic U-Net [42], [43], which is an adaptation of the nnU-Net
framework [30], and Attention U-Net [44].

U-Net [29] is a standard benchmark in the field of biomedical
image segmentation. It features a symmetrical encoder-decoder
structure, where the encoder extracts hierarchical features from
the input data, and the decoder progressively upsamples and
refines these features to produce the final segmentation map.
U-Net is widely recognized for its adaptability through skip
connections that concatenate feature maps from the encoder to

TABLE |
SUMMARY OF THE FETAL MRI DATA USED IN THIS WORK

Modality/Type Subjects (Stacks, Slices) Resolution (mm)  Scanner
Training

T2W 44 (483, 19083) ~1x1x2 Siemens3T
DWI 41 (492, 14597) ~2x2x2-4 Siemens3T
fMRI 22 (85, 2790) ~2—73 isotropic Siemens3T
Validation

T2W 9 (82, 3236) ~1x1x2 Siemens3T
DWI 9 (108, 3260) ~2x2x2-4 Siemens3T
fMRI 5 (25, 750) ~2—3 isotropic  Siemens3T
Testing

T2W/Typical 18 (143, 5362) ~1x1x2 Siemens3T
T2W/Abnormality 4 (30, 1124) ~1x1x2 Siemens3T
T2W/Artifacts 6 (34, 1238) ~1x1x2 Siemens3T
T2W/Twins 3 (32, 922) ~1x1x2 Siemens3T
T2W 3 (14, 391) ~1x1x2 GELS5T
T2W 5 (84, 2732) ~1x1x2 Phillips1.5T
T2W 3 (28, 947) ~1x1x2 Siemens1.5T
T2W/SiteW 5 (91, 3003) ~1x1x2 Siemens3T
DWI/BO 14 (46, 1312) ~2x2x2-4 Siemens3T
DWI/B1 14 (122, 3733) ~2x2x2-4 Siemens3T
fMRI 9 (38, 1216) ~2—3 isotropic  Siemens3T
fMRI/External 77 (477, 17649) ~ 3 isotropic Siemens3T

‘We used three different MRI sequences including T2-weighted (T2W), diffusion-weighted MRI (DWI), and
functional MRI (fMRI). T2W/Typical refers to most common seen data types in fetal T2W MRIs including
normal and challenging cases. T2W/SiteW involved independent T2W scans acquired at a remote site.
DWI/BO represents the non-diffusion sensitized baseline images in DWI, while DWI/BI refers to the
collection of diffusion-sensitized images. fMRI/External refers to independent fMRI data that we accessed
through Open- Neuro [22].

the decoder, allowing the model to combine multi-scale contex-
tual information with fine-grained details. The adaptability of
U-Net lies in its ability to capture both local and global context
effectively. However, it may struggle with handling intricate
anatomical structures and fine details in certain scenarios due to
its fixed architecture and limited contextual awareness. In Fig. 2,
we illustrate an instance of a U-Net architecture without atten-
tion gates, showcasing its standard structure for segmentation
tasks.

Dynamic U-Net [42], [43] is an adaptation of the nnU-Net
framework [30]. It showcases its capacity to autonomously
customize its architecture according to the input data. Notably,
Dynamic U-Net demonstrates intelligent adaptability in select-
ing optimal parameters such as kernel sizes, strides, and channel
dimensions, all tailored to the specific input image size. This
flexibility is expected to enhance network efficiency and its
ability to seamlessly adapt to diverse datasets.

Attention U-Net [44] enhances the base U-Net by introducing
an attention gate (depicted in Fig. 2) within the decoder section.
The attention gate processes the encoder’s feature map before
concatenation in the decoder block, determining the significance
of regions in the encoder feature map relative to the context
of the preceding decoder block. This determination is facil-
itated by the multiplication of the encoder feature map with
attention gate-computed weights, which range between 0 and 1,
representing the neural network’s focus on specific pixels. The
attention mechanism essentially acts as a gatekeeper, facilitating
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Fig. 2. Architecture of the U-Net with Attention Gates (AG) known as Attention U-Net. The backbone U-Net architecture can be achieved if the AG

units are ignored. In the Attention U-Net, AGs filter the features that are propagated through the skip connections by using the contextual information
of features extracted in coarser scales. This is achieved by adding the decoder output of a coarser scale to the output of every skip connection from
the encoder after 1 x 1 convolutions. The output then passes through ReLU and sigmoid activation functions and is multiplied to the coarser level

decoder input.

the model’s ability to attend to the most salient features, ulti-
mately improving segmentation accuracy by adaptively select-
ing and combining information from various spatial locations.
Fig. 2 presents a detailed visual representation of the Attention
U-Net structure, highlighting the integrated attention modules
and demonstrating how they interact with the traditional U-Net
(bypassing Attention Gate) layers to achieve more discerning
and accurate segmentations.

C. Model Training and Inference

1) Data Processing and Augmentation: First, to establish
uniformity across all three modalities (T2W, DWI, and fMRI)
for training (only), we resampled each slice in two dimensions
to a consistent pixel size of 1 mm and resized them to a uniform
image size of 256 x 256 pixels. This ensured that all prepro-
cessed slice images adhered to the same dimensions, denoted as
(H, W, C), with H=W=256 representing width and height, and
C=1 signifying the number of image channels. Furthermore,
the data is normalized on a per-slice basis by its variance,
ensuring uniform data scaling and facilitating improved model
convergence.

Second, to bolster the robustness of our method against chal-
lenges that are inherent in fetal MRI, we used a comprehen-
sive set of data augmentation techniques. We designed these
techniques specifically to tackle the challenges that are raised
by the widely variable position, orientation, size, and shape of
the fetal brain and its surrounding structures, as well as the
pronounced effects of fetal movements and maternal breathing
motion. Depending on the sequence type, intermittent fetal and
maternal motion often result in pronounced artifacts that may

include partial or complete signal loss, in-plane blur, ringing,

slice cross-talk, and spin-history artifacts.

In our image augmentation pipeline, we applied a range of
transformations to enhance the diversity of our training dataset.
Specifically, we generated augmented scans using the following
techniques:

1. Spatial Augmentation: This category consisted of five
spatial transformations, including random flips, rotations,
zooming, and affine transformations. For each augmen-
tation technique, we applied these transformations with a
probability of 0.5 or 0.6, resulting in a significant increase
in the variability of the dataset.

. Intensity Augmentation: In this category, we introduced
variations in image intensity through three distinct tech-
niques. Gaussian noise was added with a standard de-
viation of 0.4 and a probability of 0.5. Multiplicative
bias fields were incorporated with a degree of 4 and
coefficients ranging between 0.05 and 0.1, applied with
a probability of 0.6. Gaussian smoothing was performed
with sigma values ranging from 0.5 to 1.0 and a probabil-
ity of 0.4.

These augmentations collectively contributed to a versatile
training dataset, allowing our deep learning models to better
adapt to diverse fetal brain MRI images during training.

2) Training: In the training stage, we initiated the process
by using an independent validation dataset to determine the best
hyperparameters. Subsequently, we trained the models with the
training dataset. All models were trained with a batch size of
8 and input image size fixed at 256 x 256. The learning rate
for each of the compared networks was fine-tuned separately.
For the Attention U-Net, we set a learning rate of 1 x 10~%. We
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conducted training for 300 epochs using Adam optimization [45]
of stochastic gradient descent.

To guide the training process, we utilized a weighted sum of
binary cross-entropy and Dice loss. Specifically, we employed
the batched variant of the Dice loss, where the loss was calculated
over all samples in the batch, as opposed to averaging the Dice
loss for each 2D sample individually. This approach considers
samples in the batch as a pseudo-volume and computes the
loss function over all voxels in the batch [30]. This was done
for improved computations only, as models only worked on
2D slices. Since the original fetal MRI acquisitions were 2D
(slice-based), to minimize the effects of inter-slice motion, no
3D context was used in training, inference, or evaluation. We
used foreground Dice, which measures the overlap between the
predicted and ground truth segmentations. Our loss function was

Liotat = 0.4 X Leg + 0.6 X Lyice ()
Lcg = — Zvi log(u;) + (1 —v;) log(l —u;) (2)
i=1

2 S ieg ukok
Laice(u,v) = =7 e 3)
K| ,;( Dier W+ X er vf

where u is the softmax output of the network and v is a one hot
encoding of the ground truth segmentation map. Both « and v
have shape I x K with ¢ € I being the number of pixels in the
training batch and k£ € K being the classes.

3) Inference: During the inference stage, we apply the same
resampling and normalization procedures as in the training data
(see Section: ITI-C1), ensuring consistency in data preparation.
However, unlike the training dataset, we do not perform resizing
on these datasets. We utilize a sliding window approach with
a window size matching the training patch size (256 x 256),
allowing flexibility in input image sizes. Each consecutive win-
dow overlaps the previous one by half its size, and predictions
within these overlapping regions are averaged to produce the
final prediction. This method ensures consistent and accurate
results across varying input sizes.

4) Implementation: All our experiments and model training
were conducted with NVIDIA RTX A5000 GPUs on a work-
station with 128 GB of system memory. Our implementations
leveraged the PyTorch framework [46] and harnessed the capa-
bilities of the MONAI toolkit [47].

5) Evaluation: We evaluated the performance of all meth-
ods using four key metrics: the Dice Similarity Coefficient
(DSC), Intersection-over-Union (IoU), Average Surface Dis-
tance (ASD), and 95th percentile Hausdorff Distance (HD9S).
DSC and IoU quantify the overall overlap between the predicted
and ground truth segmentations, while ASD and HD95 assess
the spatial accuracy and worst-case scenario, respectively. DSC,
IoU, ASD, and HD95 are defined as [48], [49]:

2|P N R| 2TP
D P = = 4
SCWP.R) = (pIR| ~ 2TP + FP+ FN @
P TP
ToU(P,R) = LOEL 5)

~ |PUR| TP+ FP+FN

1
ASD(P,R) = ———— min_d(p, r)
[S(P)|+ |S(R)] s Tpy TS (R)
+ min d(r,p) (6)
res(r)PESE)
HDY5(P, R) = max(h(P, R), h(R, P)) )

where P is the predicted mask, R is the Reference (ground truth)
mask, TP, FP, and FN are the true positive, false positive, and
false negative rates, respectively, S(P) and S(R) are the surface
points of the predicted and ground truth segmentations, d(p, )
is the Euclidean distance between points p and r, and h(P, R)
is the directed Hausdorff distance from P to R, defined as the
95th percentile of the distances from each point in S(P) to its
nearest point in S(R).

IV. RESULTS

In this section, we first present the results of training the three
models, i.e., the U-Net, the dynamic U-Net (DynU-Net), and
the attention U-Net (AttU-Net) on all sequences. We compared
the performance of the three models on the different test sets
that we built. Next, we conducted ablation studies to evaluate
the relative impact of our proposed feature learning across
multiple MRI modalities and data augmentation strategies. To
this end, we compared the best model performance with models
trained on each individual sequence, as well as models trained
without data augmentation. Specifically, we assessed how our
best model trained on all sequences performed compared to
models trained on each sequence individually. This comparative
analysis provides insights into the impact of training across
multiple MRI modalities and data augmentation, demonstrating
how they increase the robustness and generalizability of deep
learning models.

Table IT provides a detailed breakdown of Dice and IoU scores
for each of the considered architectures and sequences when
evaluated on an independent test dataset. In this experiment,
all models were trained on a diverse dataset encompassing all
three sequences (T2W, DWI, and fMRI). Overall, the results
show that the standard U-Net and Attention U-Net models are
very accurate in extracting the fetal brain in all MRI sequences.
Notably, U-Net and Attention U-Net achieved a DSC of 95.72%
and 95.70% and an IoU of 92.06% and 92.03% for the T2W
sequence respectively, demonstrating their effectiveness in fe-
tal brain extraction on this sequence. For the DWI sequence,
Attention U-Net achieved a DSC of 93.27% and an IoU of
87.64%, whereas U-Net achieved a DSC of 92.58% and an
IoU of 86.66%, showcasing Attention U-Net’s robustness across
diverse MRI sequences. In the case of fMRI, the Attention
U-Net model yielded a DSC of 95.25% and an IoU of 90.99%,
underlining its capability to handle complex functional MRI
data. While the dynamic U-Net also delivered commendable
results, with slightly lower DSC and IoU scores, this could be
attributed to its inherent sensitivity to dynamic changes in the
input data. The dynamic U-Net adapts its architecture to the
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TABLE Il
AVERAGE DICE (DICE), AVERAGE lOU, AND INFERENCE TIME ON TEST DATA FOR DIFFERENT MODELS

T2W DWI fMRI Inference Time
Data Dice (%) ToU (%) Dice (%) ToU (%) Dice (%) ToU (%) (ms)
U-Net [29] 95.72+4.24 | 92.06+6.93 | 92.58+5.83 | 86.66+8.78 | 95.054+2.27 | 90.66+3.96 8.18+0.74
DynUNet [30] | 93.07£8.31 | 88.01£12.56 | 92.36+4.63 | 86.14+7.54 | 93.124+4.18 | 87.40+6.89 10.49+0.72
AttU-Net [50] | 95.70+£4.28 | 92.03+6.97 | 93.27+4.11 | 87.64+6.69 | 95.25+1.77 | 90.99+3.16 11.48+1.11
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[ Dynamic U-Net

Type

Type

I Attention U-Net

Boxplots of Dice Similarity Coefficient (DSC) and Intersection-over-Union (loU) for different sequences (T2-weighted (T2W), diffusion-

weighted (DWI), and functional MRI (fMRI)), T2W data characteristics (Typical, Abnormalities, Artifacts, and Twins pregnancies), and model
architectures (U-Net, Dynamic U-Net, and Attention U-Net). Higher DSC and loU values indicate greater segmentation accuracy. The U-Net and
Attention U-Net models achieved higher median Dice scores overall compared to the Dynamic U-Net model. The asterisks displayed on the top left
plot serve as visual indicators of the statistical significance associated with the differences observed between the groups using a paired t-test. The
asterisks displayed on the first plot serve as visual indicators of the statistical significance associated with the differences observed between the
groups. Significance levels: (ns) p > 0.05, (*) 0.01 < p < 0.05, (**) 0.001 < p < 0.01, (***) 0.0001 < p < 0.001, (****) p < 0.0001.

input size dynamically, which might lead to minor fluctuations
in performance [42].

Fig. 3 shows the boxplots that provide an illustration of the
distribution and variability of the DSC and IoU scores across
the different test datasets for each of the trained models. The
first column of boxplots in Fig. 3 represents results obtained
on all T2W, DWI, and fMRI test data. The second column
offers a detailed analysis of the performance of the three models
on the T2W images including typical fetal brains, abnormal
cases, images with artifacts, and twin pregnancies. The boxplots
provide insights into the adaptability of the trained models to
varying T2W data scenarios. In the third column, we focused on
the evaluation of the DWI sequences, specifically considering
B0 and B1 data.

We used paired t-tests to assess the statistical significance of
the difference between the performance of different models. For
comparing U-Net with Attention U-Net, the p-value for T2W,
DWI, and fMRI were, respectively, 8.585¢ — 01, 2.643e¢ — 04,
and 2.250e — 01. For comparing Dynamic U-Net and Atten-
tion U-Net, the p-values were 2.957e — 08, 5.301e — 06, and
8.494e — 04, respectively. The asterisks displayed on the top
left plot serve as visual indicators of the statistical significance

associated with the differences observed between the groups.
(ns) indicate no significant difference (p-value > 0.05). (x) sug-
gests moderate significance (0.01 < p-value < 0.05). () sig-
nify high significance (0.001 < p-value < 0.01). (* * *) repre-
sent very high significance (0.0001 < p-value < 0.001). ( * *3x)
indicate extremely high significance (p-value < 0.0001).

Table III presents the average ASD and HD95 values along
with their standard deviations for the U-Net, Dynamic U-Net,
and Attention U-Net models on the T2W, DWI, and fMRI test
datasets. The Attention U-Net model achieved the lowest ASD
and HD95 values across all three MRI sequences, demonstrating
its superior segmentation accuracy compared to the other mod-
els. The U-Net model also performed well, with slightly higher
ASD and HD95 values than the Attention U-Net. The Dynamic
U-Net model generally exhibited higher ASD and HD95 values,
indicating lower segmentation accuracy.

Fig. 4 shows the boxplots illustrating the distribution of ASD
and HD95 values for different MRI sequences (T2W, DWI, and
fMRI), T2W data characteristics (typical, abnormalities, arti-
facts, and twins pregnancies), and model architectures (U-Net,
Dynamic U-Net, and Attention U-Net). The U-Net and Attention
U-Net models generally achieved lower ASD and HD95 values
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TABLE Ill
AVERAGE SURFACE DISTANCE (ASD) AND 95TH PERCENTILE HAUSDORFF DISTANCE (HD95) FOR DIFFERENT MODELS
T2W DWI fMRI
Data ASD HD95 ASD HD95 ASD HD95
U-Net [29] 1.16+2.72 | 7.25+20.35 | 0.88+0.76 | 2.80+3.71 | 0.62+0.49 | 2.03+£1.87
DynUNet [30] | 3.08+7.18 | 16.73£33.51 | 1.134+0.97 | 4.12+4.87 | 1.05+£0.93 | 4.10£3.84
AttU-Net [50] | 0.87+2.16 | 5.59+18.28 | 0.824+0.71 | 2.73+4.28 | 0.51+0.28 | 1.76+1.48
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Boxplots of Average Surface Distance (ASD) and 95th percentile Hausdorff Distance (HD95) for different MRI sequences (T2-weighted

(T2W), diffusion-weighted (DWI), and functional MRI (fMRI)), T2W data characteristics (Typical, Abnormalities, Artifacts, and Twins pregnancies),
and model architectures (U-Net, Dynamic U-Net, and Attention U-Net). Lower ASD and HD95 values indicate better segmentation accuracy.
The U-Net and Attention U-Net models generally achieved lower ASD and HD95 values compared to the Dynamic U-Net model. However, the
HD95 values were relatively high for some cases, particularly in the T2W images, likely due to the presence of missed or misaligned slices
caused by motion artifacts. The asterisks displayed on the top left plot serve as visual indicators of the statistical significance associated with the
differences observed between the groups using a paired t-test. Significance levels: (ns) p > 0.05, (*) 0.01 < p < 0.05, (**) 0.001 < p < 0.01, (**)

0.0001 < p < 0.001, (****) p < 0.0001.

compared to the Dynamic U-Net model, indicating better seg-
mentation accuracy. However, the HD95 values were relatively
high for some cases, particularly in the T2W images. This can
be attributed to the presence of missed or misaligned slices
caused by motion artifacts, which are more common in T2W
acquisitions compared to DWI and fMRI. These artifacts can
introduce discrepancies between the ground truth and predicted
segmentations, leading to higher HD95 values. Additionally, the
HDO5 metric is sensitive to outliers and can be greatly affected
by even a small number of misaligned or missing slices, as it
represents the 95th percentile of the Hausdorff distances between
the two segmentations. In contrast, the ASD metric provides an
average measure of surface distance, making it more robust to
such outliers.

In the ablation studies we focused on gauging the effectiveness
of 1) our models trained on multiple sequences when compared
to models trained on each sequence separately, and 2) our image
augmentation strategies. The DSC and IoU plots on the left
side of Fig. 5 illustrate the results of our ablation studies on
the test sets of every sequence (T2W, DWI, fMRI). Each box
plot represents the performance distribution of models trained

on individual sequences (Attention U-Net, Single Aug), a model
trained on all sequences but without data augmentation (At-
tention U-Net, All, No Aug), and our final model (Attention
U-Net, All, Aug), which used all the sequences along with
our data augmentation for training. The results show that our
final model, Attention U-Net (All, Aug), performed significantly
better than Attention U-Net without data augmentation (All,
No Aug) for all of the sequences, and performed significantly
better than Attention U-Net (Single, Aug) for the DWI and fMRI
sequences.

The DSC and IoU plots on the right side of Fig. 5 show the
results on set-aside test sets from different scanners. Since no
images from those scanners or sites were included in the training
dataset, this served as a test of the generalization performance of
the models for data from new domains. Overall, the results show
that our final model, which exploited feature learning across
multiple MRI modalities and data augmentation, performed
significantly better than its counterparts that did not use these
strategies. The results in Fig. 5 vividly display how the aggre-
gated model outperformed its counterparts across various test
datasets, underscoring the advantages of feature learning across



FAGHIHPIRAYESH et al.: FETAL-BET: BRAIN EXTRACTION TOOL FOR FETAL MRI 559

ns ook *
1
1.1 —
ook ok .
[ [ —
1.0
n ? i
0.9 i i v
i i i
g 0.8 ' ‘
o i !
0.7 . * .
s
.
0.6
0.5
0.4
T2W DWI fMRI
1.0
0.9
0.8 '
0.7
2
2
0.6
3
. .
0.5
.
:
.
0.4
'
0.3
T2W DWI fMRI
MRI Sequence
I Attention U-Net (Single, Aug)
Fig. 5.

I Attention U-Net (All, No Aug)

Fokkok

]

Fokokk

1

0.8

0.7

0.6

0.5

‘.

0.4

T2W-Gel 5T T2W-Phillips1.5T =~ T2W-Siemens1.5T T2W-Siemens3T-SiteW  fMRI-External

il

0.9

0.8

0.7

0.6

0.5

0.4

0.3 *
T2W-Siemens1.5T T2W-Siemens3T-SiteW  fMRI-External
Type

T2W-Gel 5T T2W-Phillips1.5T

I Attention U-Net (All, Aug)

Boxplots of Dice similarity coefficient (DSC) and Intersection-over-Union (loU) for different MRI sequences (T2-weighted (T2W), diffusion-

weighted (DWI), and functional MRI (fMRI)), comparing the extraction performance of different Attention U-Net model architectures ((Single, Aug):
trained on a single sequence (corresponding) with augmentation, (All, No Aug): trained on all sequences with no augmentation, and (All, Aug):
trained on all sequences with augmentation). Left plots show the results on our test data and right plots show the results on our out-of-distribution
test data. The best result is achieved by Attention U-Net trained on all sequences with augmentation. This indicates that leveraging multiple
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multiple MRI modalities and data augmentation in improving
generalization.

Figs. 6 and 7 provide sample representative outcomes of our
trained model (Fetal-BET) on a variety of test data including
images of twins and brains with abnormalities on T2w images
as well as DWI and fMRI scans.

V. DISCUSSION

Our findings underscore the effectiveness of our approach
in fetal brain extraction. In particular, our experiments with
three powerful deep convolutional neural network architectures
trained with multiple sequences and comprehensive data aug-
mentation strategies demonstrate that we can achieve accurate

automatic fetal brain extraction. Both U-Net and the Attention
U-Net models exhibited high DSC and IoU scores, particularly
on T2W images, with Attention U-Net showcasing robust gener-
alizability across various MRI contrasts and outperforming the
other two models on DWI and fMRI. Importantly, our ablation
study results, as depicted in Fig. 5, highlight the advantage of
training across multiple MRI modalities and data augmentation.
The model trained on the amalgamation of all three sequences
consistently outperformed models trained individually on each
sequence when tested on that specific sequence alone. In several
instances, this difference was statistically significant, particu-
larly in achieving higher DSC scores for the more challenging
sequences, i.e., DWI and fMRI, when compared to models
trained on a single modality.
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Representative examples of segmentations produced by dif-
ferent models (U-Net, DynU-Net, AttU-Net) on DWI and fMRI test slices.

ferent models (U-Net, DynU-Net, AttU-Net) on T2w slices. On each
image, the blue curve shows the outline of the reference brain mask
drawn manually by an experienced annotator, while the red curve shows
the contour of the segmentation mask predicted by the deep learning
method.

The blue curves show the outline of the reference (ground truth) brain
mask, while the red curve shows the contour of the mask predicted by
the deep learning method.
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While our deep learning models have demonstrated promising
results in fetal brain extraction, there are certain limitations to
consider. One important limitation is the potential challenge
in handling rare pathological cases that may not be well-
represented in the training data. Although we have included a
diverse range of pathologies in our dataset, there may be some
rare or complex cases that the models have not encountered
during training, which could affect their performance in such
scenarios. Another limitation is the need for further validation on
larger, multi-center datasets to assess the generalizability of our
models across different populations, scanner types, and imaging
protocols. While we have evaluated our models on data from
multiple scanners and sites, a more extensive validation would
provide additional insights into their robustness and potential
for clinical adoption. Moreover, the training and inference of
deep learning models often require significant computational
resources, which may be a consideration for widespread im-
plementation in clinical settings with limited infrastructure.
Future work could explore techniques for model compression
and optimization to improve computational efficiency without
compromising performance.

In summary, our study addresses the complex task of fetal
brain extraction in fetal MRI analysis. We have developed an
innovative solution using deep learning techniques, attention
mechanisms, feature learning across multiple MRI modalities,
and data augmentation. Crucially, we have created a substantial
and diverse dataset that includes various MRI sequences and
pathological cases, significantly contributing to the advance-
ment of our approach. Through rigorous evaluation, we demon-
strated the reliability and robustness of our method, achieving ac-
curate fetal brain extraction across different scanning conditions,
stages of pregnancy, and brain conditions. Despite the limitations
discussed above, the adaptability and precision of our deep
learning model hold significant promise for the field of fetal brain
imaging and analysis. By overcoming long-standing challenges
in fetal brain extraction, our work has the potential to improve au-
tomatic workflows for quantitative fetal MRI analysis, including,
for example, image reconstruction and segmentation. Therefore,
it has the potential to profoundly impact clinical practices and
advance our understanding of prenatal brain development and
developmental disorders, ultimately improving the quality of
prenatal care and diagnostics.

VI. CONCLUSION

In conclusion, our study presents a comprehensive evaluation
of fetal brain extraction techniques using a range of MRI se-
quences. We have demonstrated the efficacy of both U-Net and
Attention U-Net architectures, with Attention U-Net excelling,
particularly in challenging sequences like DWI and fMRI. The
advantages of learning across multiple MRI modalities and
augmentation training were clearly evident, with the aggregated
model consistently outperforming individual sequence models.
As we move forward, further research may explore fine-tuning
these models for specific clinical applications and expanding
the dataset to encompass even more variations. The promising
results obtained in this study provide a strong foundation for

future advancements in the field of fetal brain extraction, ulti-
mately benefiting both healthcare professionals and expectant
parents in ensuring the well-being of unborn children.
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