Amphetamine- and methamphetamine-induced hyperthermia: Implications of the effects produced in brain vasculature and peripheral organs to forebrain neurotoxicity

John F Bowyer^{1,*} and Joseph P Hanig²

¹Division of Neurotoxicology; National Center for Toxicological Research; U.S. Food and Drug Administration; Jefferson, AR USA; ²Center for Drug Evaluation and Research; U.S. Food & Drug Administration; Silver Spring, MD USA

Keywords: hyperthermia, neurotoxicity, amphetamine, methamphetamine, cerebral vasculature, meninges, blood-brain barrier, immune system

Abbreviations: AMPH, amphetamine; BBB, blood-brain barrier; CBF, cerebral blood flow; CSF, cerebrospinal fluid; EIH, environmentally-induced hyperthermia; LPS, lipopolysaccharides; METH, methamphetamine; MAV, meninges and associated vasculature; ROS, reactive oxidative stress.

The adverse effects of amphetamine- (AMPH) and methamphetamine- (METH) induced hyperthermia on vasculature, peripheral organs and peripheral immune system are discussed. Hyperthermia alone does not produce amphetamine-like neurotoxicity but AMPH and METH exposures that do not produce hyperthermia (>40°C) are minimally neurotoxic. Hyperthermia likely enhances AMPH and METH neurotoxicity directly through disruption of protein function, ion channels and enhanced ROS production. Forebrain neurotoxicity can also be indirectly influenced through the effects of AMPH- and METH- induced hyperthermia on vasculature. The hyperthermia and the hypertension produced by high doses amphetamines are a primary cause of transient breakdowns in the blood-brain barrier (BBB) resulting in concomitant regional neurodegeneration and neuroinflammation in laboratory animals. This BBB breakdown can occur in the amygdala, thalamus, striatum, sensory and motor cortex and hippocampus. Under these conditions, repetitive seizures greatly enhance neurodegeneration in hippocampus, thalamus and amygdala. Even when the BBB is less disrupted, AMPH- or METH- induced hyperthermia effects on brain vasculature may play a role in neurotoxicity. In this case, striatal and cortical vascular function are adversely affected, and even greater ROS, immune and damage responses are seen in the meninges and cortical surface vasculature. Finally, muscle and liver damage and elevated cytokines in blood can result when amphetamines produce hyperthermia. Proteins, from damaged muscle may activate the peripheral immune system and exacerbate liver damage. Liver damage can further increase cytokine levels, immune system activation and increase ammonia levels. These effects could potentially enhance vascular damage and neurotoxicity.

Earlier History of Amphetamine- and Methamphetamine-Induced Hyperthermia and Neurotoxicity

Introductory remarks

The terms amphetamine (AMPH) and methamphetamine (METH) neurotoxicity are often used interchangeably in this review. This is because research from our laboratory has not been able to identify any appreciable difference in the neurotoxicity produced in rodent by AMPH compared to METH.^{1,2} Figure 1

shows the profiles of the temperature changes produced by either exposure to amphetamines or environmentally-induced hyperthermia (EIH) that we have observed in our laboratory. The interactive effects that hyperthermia has with respect to toxicity during either AMPH or METH exposures are complex. **Table 1** summarizes the physiological and pathological effects that can be produced by 1) EIH, 2) AMPH or METH exposures producing significantly hyperthermic conditions or 3) AMPH or METH exposures when life-threatening hyperthermia occurs. **Table 2** provides information on the role of selected biochemical

This is an Open Access article distributed under the terms of the Creative Commons Attribution-Non-Commercial License (http://creativecommons.org/licenses/ by-nc/3.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. The moral rights of the named author(s) have been asserted.

This article not subject to US copyright law.

^{*}Correspondence to: John F Bowyer; Email: john.bowyer@fda.hhs.gov Submitted: 09/29/2014; Revised: 10/22/2014; Accepted: 10/27/2014

bttp://dv.doi.org/10.4161/22220040.2014.092040

http://dx.doi.org/10.4161/23328940.2014.982049

Figure 1. The effect of amphetamine (AMPH) on body temperature compared to environmentally-induced hyperthermia (EIH) and normothermic controls. The results of one of the more recent studies in the authors' laboratory compares the hyperthermia observed during neurotoxic exposures to AMPH with that produced by EIH, which is very similar to heat stroke. The temperature profiles of animals given either 4 doses of either AMPH (n = 10) or normal saline (normothermic controls n = 9) s.c. at an environmental temperature of 22.5°C are shown. Their temperature profiles are compared to 2 groups of animals given 4 doses of saline in an infant incubator held at either 38° C to 39° C (ave. ≈ 38.5 , n = 6) or 39° C to 40° C (ave. ≈ 39.5 , n = 4) which induced hyperthermia (EIH). Animals at the higher incubator temperature became hyperthermic much more rapidly and as a group had slightly higher peak temperatures. They all had ataxia and hind limb dysfunction for 2 to 8 h after cooling. The second group of EIH animals at the lower 38.5°C temperature had a temperature profile almost identical to the AMPH group. The variability of the body temperatures of the AMPH group and the 38.5°C EIH group after the 3 h time point was due to cooling on ice to prevent death. The 39.5°C EIH group was not subjected to any further hyperthermia after 4 h since it would have been lethal (previous studies in the authors' laboratory).

or physiological effects mediated by hyperthermia that are associated with AMPH and METH neurotoxicity. The reader can use these tables as adjunct references where they pertain to what is being presented in the text.

Striatal dopamine terminal damage

Starting in the early 1960s, clinical reports and research in laboratory animals began to point to the important role that hyperthermia had in exacerbating the adverse physiological and lethal effects induced by AMPH and METH in humans ³⁻⁵ and laboratory animals.^{4,6,7} Approximately 10 years later, reports of METH damaging dopaminergic terminals were published.⁸⁻¹³ However, it wasn't until the early 1990s that the role of hyperthermia in METH and AMPH neurotoxicity began to be elucidated. At that time, the link between dopamine terminal degeneration in the striatum and pronounced hyperthermia ($\geq 40^{\circ}$ C) was reported in both rat ¹⁴⁻¹⁶ and mouse.^{17,18} It is now clear that when animals remain normothermic during exposures to very high doses of AMPH or METH, more transient depletions of striatal dopamine (decreases of 40 to 60% in mouse and 45 to 65% in rat) lasting for 1 month or so result along with rare sporadic occurrences of neurodegeneration in the parietal and piriform cortex.¹⁹⁻²² Under these normothermic conditions there is minimal or no neuroimmune response in the striatum. However, it was noted that pronounced hyperthermia alone would not produce this neurotoxicity. Under favorable conditions (waking cycle and in a 23.5°C environment) and with 8 h exposures, plasma concentrations of AMPH or METH as low as 3 μ M are capable of producing hyperthermia and neurotoxicity.^{2,23} Further research in non-human primates has helped substantiate the clinical relevance of the hyperthermia in regards to METH producing dopamine terminal degeneration.^{24,25}

METH-induced hyperthermia and excessive plasma membrane transporter (DAT) activity appear to be primary factors in the production of this striatal neurotoxicity.²⁶ However, reactive metabolites of dopamine,^{27,28} vesicular monoamine transporter-2 damage,²⁹ and elevated glutamate levels³⁰⁻³⁴ have also been implicated as exacerbating factors in METH toxicity. Increases in body and brain temperatures during AMPH exposure do appear to correlate with increased striatal dopamine and amygdala 5HT levels.^{15,29,35,36} Finally, the great swelling and loss of Fluoro-Ruby labeled axons of dopaminergic neurons in the striatum indicate that they are being destroyed by a "necrotic"-like effect.³⁷ The exact mechanism of the apparent dopaminergic axonal and terminal destruction is unknown but is not due to classic apoptosis or necrosis since the loss of dopaminergic neurons in the substantia nigra is minimal at best ($\leq 20\%$) compared to the \geq 80% loss of striatal dopamine terminals.³⁸

There are several mechanisms by which hyperthermia could potentiate AMPH and METH toxicity to dopamine terminals that have also been implicated in other types of neuronal degeneration. METH-induced hyperthermia directly increases ROS levels in striatum and causes a dramatic increase in ROS-induced gene expression.³⁹⁻⁴² Interestingly, hyperthermia (EIH) alone produces equivalent increases in genes up-regulated by ROS in many brain regions.⁴³ Concomitant with large increases in ROS and heat-shock protein induction is the dysfunction of proteins due to misfolding produced by pronounced hyperthermia.44,45 Such protein alterations or changes in lipid membranes could lead to mitochondrial⁴⁶ and ion channel dysfunction.⁴⁷⁻⁵² The tremendous increase in DAT activity/ transport produced by AMPH or METH may be sufficient to produce detectable depolarization due to concomitant Na⁺ influx with either AMPH or METH amphetamine into dopamine terminals and possibly alter glutamate activity.^{33,53} These affects will lead to large increases in sodium into the terminal that will require extensive amounts of energy to transport it out of the terminal. This alone is not sufficient to produce terminal degeneration without hyperthermia. However, we postulate that the occurrence of hyperthermia in the presence of AMPH or METH further compromise ion channels, mitochondrial function and damage to other import cellular components by ROS leading to terminal damage and/ or death.

Neuronal degeneration in forebrain

Specialized histological techniques and the knowledge that hyperthermia during exposures to amphetamines was necessary for dopamine terminal damage were applied to laboratory animal Table 1. Effects of hyperthermia alone (EIH) compared to the toxicity of AMPH or METH exposures that are produced when hyperthermia occurs

		Exposure Gr	oup
Physiological or Pathological Effect	EIH	AMPH or METH with 40° C \leq Body Temp. $< 41^{\circ}$ C	AMPH or METH with $41.0^{\circ}C \le Body Temp. < 43.0^{\circ}C$
Dopamine Terminal Damage in Striatum	None	50% < Depletion \leq 80%	$80\% < Depletion \le 95\%$
**Parietal Cortex Neurodegeneration	None	Present but diffuse	More prevalent at these body temperature ranges
Limbic Cortex Neurodegeneration	minimal	Present but diffuse	Extensive if seizures occur
Thalamus Neurodegeneration	None	Present but diffuse	More extensive at these body temp. ranges
Hippocampal Neurodegeneration	None	Minimal in rats but can be	*Extensive if motor seizure activity occurs
Convulsions/ Behavioral Seizures	**None	Convulsions often occur in mice but not in rats	Convulsions and status epilepticus
BBB disruption	Yes	Not in rat *but possibly in mice	*Yes
Choroid Plexus Dysfunction/ Damage	Yes	Not determined	≤ EIH
^a MAV Dysfunction/ Damage	Yes	Not determined	> EIH
Elevated Serum **Myoglobin	Increase < 2-fold	2-fold < Increase < 3-fold	3-fold < Increase < 10-fold
Elevated Serum **Bound Urea Nitrogen	Increase \approx 2-fold	Increase < 2-fold	2-fold < Increase < 3-fold
Elevated Serum **Alanine Transaminase	***1-fold < Increase < 10-fold	< 2-fold	Increase \approx 4-fold
Blood Glucose	pprox Normal 100 to 150 mg/ dL	60 to 100 mg/ dL	30 to 80 mg/ dL
Peripheral Immune System Changes	Yes	Yes	Yes

Note that this table represents a summary of the findings of the authors' laboratory or (in a few instances) several other investigators. The damage estimates shown in the table for the given peak body temperature ranges with AMPH or METH are when these body temperatures are maintained for a duration of \approx 3 h or more. Limbic cortex areas evaluated are piriform and the amygdala cortices.

^a MAV is an abbreviation for meninges and associated cerebral cortical vasculature (includes all major cortical surface vasculature as well as pial arterioles). *Damage is seizure dependent and is more prevalent with very high (> 20 mg/ kg) doses of AMPH or METH. It should be noted that overt motor seizures/ convulsions may not be necessary for neurodegeneration but that electrographic signs of epileptoid activity without convulsions is sufficient (from communications with Dr. Denson Fujikawa).

**Pertains to rat data.

***Effects strain dependent.

research starting in the mid-1990s. These studies resulted in the identification of brain regions where METH and AMPH produced cell body/ somatic neurodegeneration. The use of Fluoro-Jade to label degenerating neurons after AMPH and METH exposure in histological preparations of forebrain was key for the success of these studies in the author's and other laboratories.⁵⁴⁻⁵⁷ Areas of the somatosensory parietal cortex (vibrissae input) and limbic system (piriform and amygdala cortex and tenia tecta) were most sensitive. However, in animals in which the most pronounced (\geq 41.5°C) and prolonged hyperthermia was produced by AMPH, neurodegeneration was more extensive in the intralaminar regions of the thalamus and striatum.⁵⁴ Hippocampal degeneration was minimal unless seizures occurred in animals. Neurotoxicity in the striatum, neocortex, and limbic regions of human brain has been reported with METH abuse.⁵⁸⁻⁶⁴ For a more complete description of how neurotoxic dosing regimens of AMPH or METH interact with body temperature and seizures to produce neurodegeneration in various brain regions, see Bowyer et al. 2008.¹ It is still not known the degree to which body temperatures must be increased by AMPH or METH to produce dopamine terminal damage and neurodegeneration in humans.

The neurodegeneration observed in AMPH or METH animal studies⁶⁵ using lower doses which do not usually produce seizure activity was restricted to the parietal cortex, and it was significantly

less than that produced by systemic administration of either kainic or domoic acid (limbic cortex, hippocampus and cortex)⁶⁶⁻⁶⁸ or 3-nitroproprionic acid (striatum and thalamus).⁶⁹⁻⁷¹ However, starting in 1998 more pronounced types of neurodegeneration found in limbic cortex, hippocampus and thalamus were observed in rats given multiple doses of 15 mg/kg AMPH ⁵⁴ and particularly mice given single high doses (40 mg/ kg) of METH.⁷² The most likely explanation at the time was that these types of AMPH or METH exposures produced high/ neurotoxic levels of glutamate in the synaptic cleft or that ion channel dysfunction occurred due to METH-induced hyperthermia. However, there are other explanations.

Role of the Brain Vasculature in Neurodegeneration Produced by AMPH and METH

Overt BBB disruption and vascular leakage

We observed in 1998 that vasculature damage might be related to some types of AMPH-induced neurodegeneration. In some instances, exposure to multiple doses of AMPH over an 8 h period could, in conjunction with extreme hyperthermia, produce perivascular neurodegeneration in the thalamus and hippocampus.⁵⁴ Subsequently, the studies by Deng et al. ⁷² indicated that a single very high dose of METH in mice could

		Adverse Biochemical or Phy	rsiological Effects Associat	ted with Amphetamine or	Methamphetamine Ne	eurotoxicity	
Brain Region and Effect	Reactive Oxidative Stress	Elevated Extracellular Glutamate	Hyperactivity of Dopamine Transporter	Blood-Brain Barrier Disruption	Significant Seizure Activity	Meninges and Associated Vasculature	Neuro- inflammation
↓Striatal Dopamine Axons/ Terminals	Strong Supporting Data	Significant Supporting Data	Strong Supporting Data	Not Necessary	Not Necessary	Not Necessary	**Not Necessary?
Striatal Neurodegeneration	Supporting Data	Supporting Data	*Indirect	Sparse Supporting Data	Unknown	Not Necessary	Unknown
Parietal Neurodegeneration	Supporting Data	Supporting Data	*Indirect	Not Necessary	Not Necessary	Some Supporting Data	Unknown
Piriform Neurodegeneration	Some Supporting Data	Indirect Supporting Data	*Indirect	Supporting Data	Supporting Data	Some Supporting Data	Unknown
Thalamic Neurodegeneration	Some Supporting Data	Unknown	*Indirect	Supporting Data	Not Necessary	Unknown	Unknown
Amygdala Neurodegeneration	Some Supporting Data	Indirect Supporting Data	*Indirect	Supporting Data	Supporting Data	Unknown	Unknown
Hippocampal Neurodegeneration	Some Supporting Data	Indirect Supporting Data	*Indirect	Supporting Data	Significant Supporting Data	Unknown	Unknown
All the adverse biochem	ical or physiological effects	listed are temperature depende	nt or greatly exacerbated by	v hvperthermia. The neurot	oxicities listed are those	e that have been charg	cterized histoloai-

Table 2. The role of selected biochemical or physiological effects mediated by hyperthermia that are associated with AMPH and METH neurotoxicity

All the adverse biochemical or physiological effects listed are temperature dependent or greauy ومعرية ومعرفة من منهزية والمعرفة ومعرفة والمعرفة والمع

^aDopamine plasma membrane (a.k.a. DAT, *Slc6a*)

*Almost all of the hyperthermic and neurotoxic effects of AMPH and METH are either directly or indirectly due to very high synaptic extracellular levels of dopamine or norepinephrine. **See text for clarification. produce a much more pronounced neurodegeneration in the hippocampus and striatum than that observed in previous experiments evaluating METH and AMPH neurotoxicity. We speculated that vascular damage and repetitive seizures (status epilepticus) might play a role in such a very high dose effect, and later experiments bore this out to be true with METH and AMPH.^{1,19} These single, very high doses produced a rapid and pronounced onset of hyperthermia and subsequently status epilepticus resulting in a consistent breakdown of the BBB in the amygdala, hippocampus and, in some instances, the striatum. The neurodegeneration that subsequently occurs in these areas approaches that produced by systemic kainic or domoic acid in regards to the number (thousands) of degenerating neurons observable in a 30 to 40 μ m coronal sections seen in these regions.

Others have reported that more moderate doses of METH and AMPH could produce localized damage to the BBB in several brain regions when hyperthermia occurred, and indicated that hyperthermia induced by EIH (in a 38° to 40°C environment) alone could also result in BBB disruption and neurotoxicity.⁷³⁻⁷⁵ As well, the combination of stress and METH appear to exacerbate more moderate types of damage to vasculature.⁷⁶ Our research involving AMPH and METH has consistently indicated that dopamine terminal damage could not be produced by EIH alone.^{1,14,54} As well, diffuse neurodegeneration (somatic) in areas of the brain, such as parietal and piriform cortex, were not observed with EIH. Although studies in our laboratory indicate that hyperthermia alone (EIH) produces BBB disruption, we have observed that the pattern of the neurodegeneration and magnitude that accompanies the disruption is much less than that seen with AMPH and METH.¹ In summary, there is substantial evidence that, when METH and AMPH produced extreme hyperthermia, regional BBB breakdowns can occur, which greatly enhance neurotoxicity. Such a disruption would likely prevent the regulation of the composition of the extracellular constituents surrounding neurons in affected regions, which could enhance seizure activity and neurodegeneration by most mechanisms proposed to be involved in neurotoxicity (e.g., ROS and excitotoxicity). It should be noted that the BBB disruption that occurs after either AMPH or METH are normally rapidly reversed, within 2 h after the end of hyperthermia ($\leq 40^{\circ}$ C), except in cases where extensive hippocampal neurodegeneration has occurred. 1,19,77

Adverse effects of hyperthermia and amphetamines on choroid plexus, meninges and cerebral surface vasculature: a role in the exacerbation of neurotoxicity

One mechanism by which AMPH and METH may exacerbate neurodegeneration observed in the cortical regions (e.g., parietal or piriform cortex) of rat is through ischemia (decrease in cerebral blood flow, CBF) produced by vasoconstriction. This would result from AMPH and METH directly releasing norepinephrine from the noradrenergic innervation regulating the α 1 noradrenergic receptors on pial arteries,⁷⁸⁻⁸⁰ and the resulting vasoconstriction reducing CBF in the cortex. The locus coeruleus is the other major noradrenergic input associated with brain that directly innervates cortex.^{81,82} This input has been shown to play a role in regulating cortical blood flow,⁸³ and has often been associated with global decreases in CBF,⁸⁴⁻⁸⁶ which when combined with pial artery constriction would further increase the likelihood of cortical ischemia. However, more recent studies indicate that locus coeruleus input into parietal cortex may actually increase CBF through α and β noradrenergic receptors COX-2 and GABAergic cortical neurons and reduce ischemia.⁸⁷

Thus, the overall net effect of AMPH and METH on CBF under neurotoxic and vasculotoxic conditions might not be easily predicted. None the less, one animal study clearly showed that METH was clearly capable of suppressing CBF during METH exposure and even after METH levels had subsided.⁸⁸ Furthermore humans abusing amphetamines can develop cerebral vascular accidents and have worse outcomes than those not abusing amphetamines.⁸⁹⁻⁹¹ Hypoxia lasting 24 h after exposure is also induced in laboratory animals by high doses (8 mg/ kg i.v.) of METH ⁹²; however, the degree of hyperthermia and convulsive activity was not reported. Clearly, AMPH- and METH-induced vasospasms and the ischemia thus produce would be a factor that could contribute to cortical neurodegeneration.

There is indication at the mRNA transcript level that regulation of vascular tone, and possibly damage, in the striatum and parietal cortex is somewhat altered by more moderate neurotoxic exposures to AMPH and METH (those not producing repetitive seizures or BBB leakage).^{43,93} The slight (<2-fold) increases in mRNA for endothelial nitric oxide synthase (*Nos3*) and endothelin 1 (*Edn1*) would be expected if ischemia or vascular endothelial damage was occurring. The increase in *Nos3* may be a response mechanism to produce more nitric oxide and reverse any maladaptive vasoconstriction present. The insult produced by either AMPH or EIH to vasculature present in the choroid plexus and the meninges and associated cerebral vasculature (MAV) appears to be significantly greater.^{43,93} This effect could be reflected in humans by the interaction of METH abuse and the development of meningitis, which has been reported.⁹⁴

Also, there are many more pronounced increases in genes related to the immune system and inflammation in the choroid plexus and MAV (even more so) after AMPH or EIH. The gene expression changes in the MAV indicate that the lingering effects of AMPH damage coincide and may induce the vasospasms and prolonged decrease in CBF in the cortex discussed in the previous paragraph. Large increases in lipopolysaccharide (LPS) binding protein mRNA (Lbp) are observed in the choroid plexus and MAV at 1 day after AMPH but not EIH. Lbp increases are not seen in the parietal cortex and striatum after AMPH. Thus, in MAV and choroid plexus, *Lbp* increases are a unique immune response, which may be related to vascular damage to the MAV.⁴³ LPS binding protein is an important part of the innate immune response, is a biomarker for sepsis and has been reported to bind LPS from bacteria.^{95,96} Whether the dramatic increase of Lbp in MAV after neurotoxic exposures to AMPH indicates an increased presence of bacteria (presages sepsis?) or activation of the innate immune system by other mechanisms remains to be determined.

In regards to the choroid plexus, previous studies indicate that AMPH does not appear to affect it, with regards to vascular and secretory cell damage, but that EIH is very detri-mental to the choroid plexus.^{97,98} Data from our laboratory showed a greater effect of AMPH on the choroid plexus then that reported by others.⁴³ Differences seen between the physiological effects of AMPH in our study with those reported in the earlier study, may explain the greater adverse effects. That is, more prolonged neurotoxic exposure to AMPH produced both severe hyperthermia and hypertension which was not observed in the earlier study with a single dose of AMPH.⁹⁸ In addition, adverse effects produced by hyperthermia alone (EIH) are likely as great, or greater, than AMPH.⁴³ Damage to the vascular and secretory cells present in the choroid plexus in a previous study involving hyperthermia or hypertension have resulted in neurotoxicity involving some neurodegeneration.⁹⁷ However, our findings over the years have found that extreme, even to a greater degree than that produced by AMPH or METH; hyperthermia alone (EIH) does not produce the histological signs of neurodegeneration resembling AMPH or METH neurotoxicity.

Indirect Adverse Effects on Vasculature Due to the Muscle, Liver in Kidney Damage Produced by Hyperthermia and Amphetamines

The linkage between amphetamines and rhabdomyolosis, which produces muscle damage, goes back over 40 years.⁹⁹⁻¹⁰² Also, the correlation between the magnitude of hyperthermia, serum myoglobin levels (resulting from muscle damage) and neurotoxicity produced by AMPH is very strong ¹⁰³ as is the correlation between myoglobin and kidney damage.^{104,105} However, this is not proof that myoglobin levels are necessarily a causative effect in AMPH neurotoxicity. An equivalent hyperthermia produced by EIH resulted in a lesser non-statistically significant increase in myoglobin. When hemoglobin is released during hemolysis it can cause vascular toxicity.^{106,107} One would suspect that myoglobin, which like hemoglobin is heme containing and binds oxygen, may also be vasculotoxic. However, there is surprisingly little in the literature regarding the relationship between myoglobin in the circulating blood and toxicity to vasculature endothelium.

Also, there is some correlation between neurotoxic AMPH exposures with respect to blood nitrogen (BUN) but EIH can also produce similar significant increases in BUN indicating it is necessarily dependent on exposure to neurotoxic doses of AMPH.¹⁰³ The muscle damage produced by neurotoxic doses of AMPH, when hyperthermia occurs, also results in increased circulating concentrations of other enzymes such as creatine kinase.¹⁰³ Both the creatine kinase and myoglobin increases (5- to 6-fold control) were more pronounced than BUN levels (2- to 3-fold control). Although the increase in myoglobin and creatine kinase in blood could be due to renal damage, we found no evidence of renal damage histologically. Therefore, it is a plausible that significant increases in many types of muscle-related proteins, in addition to myoglobin and

creatine kinase, appear in blood when amphetamine produces pronounced hyperthermia. Thus, we speculate that some vascular damage could be produced in the MAV, choroid plexus and the remaining brain vasculature as a result of proteins released by muscle during neurotoxic exposures to amphetamines. The exact mechanism by which this vascular damage may occur through musclederived serum proteins has yet to be explored.

Neurotoxic doses of METH can produce liver necrosis and elevate blood levels of ammonia.¹⁰⁸ However, this is very likely due to hyperthermia since very high doses have been reported not to produce histopathology when conducted under normothermic conditions. When histopathology and adverse liver enzyme changes present in blood serum are compared, EIH and neurotoxic exposures to AMPH have similar adverse effects.^{103,109} Furthermore, liver necrosis is not necessary for either dopamine terminal damage or neurodegeneration but lesser perturbations in liver function still may exacerbate such processes.¹⁰³ Finally, although AMPH can significantly elevate liver-specific alanine transaminase, and ammonia, in some strains of Sprague-Dawley rats,¹⁰⁸ it minimally elevates this enzyme in other strains when AMPH produces neurotoxicity.¹⁰³ One mechanism by which AMPH disruption of liver function may influence neurotoxicity is through liver glycogen depletion.¹⁰³ This glycogen depletion may be behind the low blood glucose levels (70 to 40 mg/ dL) that normally occur as a result of neurotoxic exposures to AMPH and always precede body tremors and death (levels lower than 25 mg/ dL) (Bowyer, unpublished data).

Amphetamine and Hyperthermia Activation of the Circulating Immune System and Neurotoxicity

Neuroinflammation is a primary factor in neurological diseases such as multiple sclerosis.¹¹⁰⁻¹¹³ Neuroimmune system dysfunction more recently has also been implicated to varying extents in the pathogenesis of Alzheimer's as well as being a hindrance to treating the disease.¹¹⁴⁻¹¹⁷ Also, neuroinflammation has been implicated in Parkinson's disease.¹¹⁸⁻¹²⁰ Neuroinflammation (microglial activation and astrocytosis) is known to occur in brain regions where terminal damage and neurodegeneration is found when METH and/ or AMPH produce pronounced hyperthermia.^{18,54,121-126} On the other hand, hyperthermia alone (EIH) produces minimal or no neuroinflammation in these brain regions. The importance of these effects in humans has been exemplified by the exacerbation of HIV neuropathology and drug addiction.¹²⁷⁻¹²⁹ However, the research to date has not supported that neuroinflammation exacerbates the neurotoxicity to dopaminergic terminals produced by amphetamines but that neuroinflammation instead results secondarily to neurotoxicity.^{123,130} Little research information is available as to whether neuroinflammation exacerbates the neurodegeneration seen in the various brain regions produced by AMPH or METH.

Neurotoxic exposures to AMPH produce greater immune responses in the MAV than other brain regions and choroid plexus.^{43,93} Hyperthermia has a significantly lesser effect on the expression of genes related to inflammation in MAV. Somewhat

unexpectedly, the immune response in the choroid plexus to AMPH was much less than the MAV and was not that different from the immune response produced by EIH. In the case of the MAV, AMPH produces increases in the transcripts for the cell determinant protein Cd14 and Lbp, which are genes relatively specific for microglia.⁴³ It is not yet known whether this translates into an increase in the number of macrophages present or an increased expression within individual macrophages. Additionally, it is not known whether the changes are occurring in the unique macrophages resident on the meningeal surfaces or are circulatory macrophages adhering to the endothelial cells in the lumen in damage areas of the vasculature in the MAV. It remains to be determined whether or not the increased immune response in MAV evoked by AMPH influences neurodegeneration within the underlying cortex.

Less is known about how neurotoxic exposures to amphetamines and hyperthermia affect the immune response tissues outside the brain and whether these changes influence the neurotoxic effects of amphetamines but information is emerging.¹³¹ Initial published results and ongoing studies indicate that the significant immune responses in the circulating blood evoked by neurotoxic exposures to AMPH and hyperthermia alone (EIH) are often pronounced just prior to the onset of neurotoxicity to at least 1 day after exposure¹⁰³ (elevated protein levels IL-6, IL-10; and mRNA for IL-1b, Cd8a, Cxcr2, Itgam, and Tnfrsf1a unpublished data in GEO, NCBI; data file GSE29733). Tumor necrosis factor α levels were elevated 2-fold compared to control 1 day post AMPH. AMPH was observed to produce significantly higher levels of myoglobin in the serum than EIH indicating a greater damage to muscle. The release of proteins from muscle could well serve as damage associated molecular proteins (DAMPs) and activate the immune system.^{132,133} DAMPs appear to play an important role in the inflammation process in pancreatitis.¹³⁴ It is interesting to note that AMPH, but not EIH, can trigger a tremendous increase in the expression of mRNA (Reg3a and Reg3b, biomarkers for pancreatic inflammation) in the MAV (but not blood, cortex, striatum or choroid plexus).⁴³ It is not known how the cell types expressing these genes are affecting meningeal function and whether it exacerbates cortical neurodegeneration.

Activation of the immune system could also occur through damage to the liver which can be produced by hyperthermia (EIH) as well as AMPH.¹⁰³ Regardless of how the immune response evoked by amphetamines in the circulating blood occurs, almost nothing is known as to how this alters the neurotoxic effect in the brain. There are reports that activating the immune system with LPS can exacerbate damage to dopaminer-gic systems by neurotoxins but this does not appear always to be the case with amphetamines.¹³⁵ It is not known whether this is the case for other regions of the brain, such as parietal cortex, thalamus and hippocampus, where amphetamines can produce neurodegeneration. Finally, very little is known as to whether activation of the immune response in circulating blood and the

References

periphery plays a part in the transient psychosis that can occur with the abuse or prolonged use of amphetamines.¹³⁶⁻¹³⁸

Summary

In animal models that evaluate the neurotoxicity of AMPH and METH, it is quite clear that hyperthermia is one of the essential components necessary for the production of histological signs of dopamine terminal damage and neurodegeneration in cortex, striatum, thalamus and hippocampus. When animals remain normothermic during AMPH or METH exposure, only transient depletions of striatal dopamine occur (1 month or less) along with rare sporadic occurrences of neurodegeneration in the parietal and piriform cortex. The dopamine terminal damage and neurodegeneration that occur when amphetamines produce hyperthermia are likely due, in part, directly to hyperthermia increasing ROS, protein misfolding/ dysfunction and altering ion channel permeability in the affected neurons. Hyperthermia can also indirectly enhance neurodegeneration produced by amphetamines through the triggering of repetitive seizure activity. The generation of repetitive seizures and status epilepticus that can be produced by AMPH or METH is likely due to a breakdown in the BBB in the amygdala and hippocampus. Growing information also implicates that hyperthermia during exposure to amphetamines may affect the neurodegeneration produced indirectly through MAV dysfunction (vasospasm and ischemia) and damage to the choroid plexus (adverse effects on CSF function). Finally, it is possible that muscle and liver damage that are exacerbated by hyperthermia play significant roles in the neurotoxicity of amphetamines through releasing cellular proteins and other toxic substances into the circulation and/ or activation of the systemic immune system which might subsequently exacerbate neuroinflammation.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Supplemental Material

Supplemental data for this article can be accessed on the publisher's website.

Disclaimer

The findings and conclusions in this article have not been formally disseminated by the Food and Drug Administration and should not be construed to represent any Agency determination or policy.

Acad Sci 2008; 1139:127-39; PMID:18991857; http://dx.doi.org/10.1196/annals.1432.005

 Levi MS, Divine B, Hanig JP, Doerge DR, Vanlandingham MM, George NI, Twaddle NC, Bowyer JF. A comparison of methylphenidate-, amphetamine-, and methamphetamine-induced hyperthermia and neurotoxicity in male Sprague-Dawley rats during the waking (lights off) cycle. Neurotoxicol Teratol 2012; 34:253-62; PMID:22289608; http://dx.doi.org/ 10.1016/j.ntt.2012.01.007

Bowyer JF, Thomas MT, Schmued LC, Ali SF. Brain region-specific neurodegenerative profiles showing the relative importance of amphetamine dose, hyperthermia, seizures and the blood-brain barrier. Ann NY

- Kalant H, Kalant OJ. Death in amphetamine users: causes and rates. Can Med Assoc J 1975; 112:299-304; PMID:1089034
- Zalis EG, Lundberg GD, Knutson RA. The pathophysiology of acute amphetamine poisoning with pathologic correlation. J Pharmacol Exp Ther 1967; 158:115-27; PMID:6054070
- Zalis EG, Parmley LF, Jr. Fatal Amphetamine Poisoning. Arch Intern Med 1963; 112:822-6; PMID:14056847; http://dx.doi.org/10.1001/ archinte.1963.03860060060004
- Davis WM, Bedford JA, Buelke JL, Guinn MM, Hatoum HT, Waters IW, Wilson MC, Braude MC. Acute toxicity and gross behavioral effects of amphetamine, four methoxyamphetamines, and mescaline in rodents, dogs, and monkeys. Toxicol Appl Pharmacol 1978; 45:49-62; PMID:99845; http://dx.doi.org/ 10.1016/0041-008X(78)90027-3
- Davis WM, Hatoum HT, Waters IW. Interactions of catecholaminergic receptor blockers with lethal doses of amphetamine or substituted amphetamines in mice. Res Commun Chem Pathol Pharmacol 1978; 21:27-36; PMID:687391
- Lewander T. Urinary excretion and tissue levels of catecholamines during chronic amphetamine intoxication. Psychopharmacologia 1968; 13:394-407; PMID:5706269; http://dx.doi.org/10.1007/ BF00404954
- Fibiger HC, Mogeer EG. Effect of acute and chronic methamphetamine treatment on tyrosine hydroxylase activity in brain and adrenal medulla. Eur J Pharmacol 1971; 16:176-80; PMID:4405780; http://dx.doi.org/ 10.1016/0014-2999(71)90008-2
- Koda LY, Gibb JW. Adrenal and striatal tyrosine hydroxylase activity after methamphetamine. J Pharmacol Exp Ther 1973; 185:42-8; PMID:4144311
- Buening MK, Gibb JW. Influence of methamphetamine and neuroleptic drugs on tyrosine hydroxylase activity. Eur J Pharmacol 1974; 26:30-4; PMID:4151642; http://dx.doi.org/10.1016/0014-2999(74)90070-3
- Ellinwood EH Jr, Escalante O. Behavior and histopathological findings during chronic methedrine intoxication. Biol Psych 1970; 2:27-39; PMID:5414902
- Seiden LS, Fischman MW, Schuster CR. Long-term methamphetamine induced changes in brain catecholamines in tolerant rhesus monkeys. Drug Alcohol Depend 1976; 1:215-9; PMID:828106; http://dx. doi.org/10.1016/0376-8716(76)90030-2
- Bowyer JF, Davies DL, Schmued L, Broening HW, Newport GD, Slikker W Jr, Holson RR. Further studies of the role of hyperthermia in methamphetamine neurotoxicity. J Pharmacol Exp Ther 1994; 268:1571-80; PMID:8138969
- Bowyer JF, Gough B, Slikker W Jr, Lipe GW, Newport GD, Holson RR. Effects of a cold environment or age on methamphetamine-induced dopamine release in the caudate putamen of female rats. Pharmacol, Biochem, Behav 1993; 44:87-98; PMID:8094252; http://dx.doi.org/10.1016/0091-3057(93)90284-Z
- Bowyer JF, Tank AW, Newport GD, Slikker W Jr, Ali SF, Holson RR. The influence of environmental temperature on the transient effects of methamphetamine on dopamine levels and dopamine release in rat striatum. J Pharmacol Exp Ther 1992; 260:817-24; PMID:1346646
- Miller DB, O'Callaghan JP. Environment-, drug- and stress-induced alterations in body temperature affect the neurotoxicity of substituted amphetamines in the C57BL6J mouse. J Pharmacol Exp Ther 1994; 270:752-60; PMID:8071868
- O'Callaghan JP, Miller DB. Neurotoxicity profiles of substituted amphetamines in the C57BL6J mouse. J Pharmacol Exp Ther 1994; 270:741-51
- 19. Bowyer JF, Ali S. High doses of methamphetamine that cause disruption of the blood-brain barrier in

limbic regions produce extensive neuronal degeneration in mouse hippocampus. Synapse 2006; 60:521-32; PMID:16952162; http://dx.doi.org/10.1002/ syn.20324

- Bowyer JF, Harris AJ, Delongchamp RR, Jakab RL, Miller DB, Little AR, O'Callaghan JP. Selective changes in gene expression in cortical regions sensitive to amphetamine during the neurodegenerative process. Neurotoxicology 2004; 25:555-72; PMID:15183010; http://dx.doi.org/10.1016/j. neuro.2003.08.005
- Bowyer JF, Holson RR, Miller DB, O'Callaghan JP. Phenobarbital and dizocilpine can block methamphetamine-induced neurotoxicity in mice by mechanisms that are independent of thermoregulation. Brain Res 2001; 919:179-83; PMID:11689178; http://dx.doi. org/10.1016/S0006-8993(01)03051-7
- 22. Bowyer JF, Pogge AR, Delongchamp RR, O'Callaghan JP, Patel KM, Vrana KE, Freeman WM. A threshold neurotoxic amphetamine exposure inhibits parietal cortex expression of synaptic plasticityrelated genes. Neuroscience 2007; 144:66-76; PMID:17049170; http://dx.doi.org/10.1016/j. neuroscience.2006.08.076
- Clausing P, Gough B, Holson RR, Slikker W Jr, Bowyer JF. Amphetamine levels in brain microdialysate, caudateputamen, substantia nigra and plasma after dosage that produces either behavioral or neurotoxic effects. J Pharmacol Exp Ther 1995; 274:614-21; PMID:7636721
- Ricaurte GA, McCann UD. Recognition and management of complications of new recreational drug use. Lancet 2005; 365:2137-45; PMID:15964451; http:// dx.doi.org/10.1016/S0140-6736(05)66737-2
- Yuan J, Hatzidimitriou G, Suthar P, Mueller M, McCann U, Ricaurte G. Relationship between temperature, dopaminergic neurotoxicity, and plasma drug concentrations in methamphetamine-treated squirrel monkeys. J Pharmacol Exp Ther 2006; 316:1210-8; PMID:16293712; http://dx.doi.org/ 10.1124/jper.105.096503
- Yuan J, Darvas M, Sotak B, Hatzidimitriou G, McCann UD, Palmiter RD, Ricaurte GA. Dopamine is not essential for the development of methamphetamine-induced neurotoxicity. J Neurochem 2010; 114:1135-42; PMID:20533999
- Berman SB, Hastings TG. Inhibition of glutamate transport in synaptosomes by dopamine oxidation and reactive oxygen species. J Neurochem 1997; 69:1185-95; PMID:9282942; http://dx.doi.org/ 10.1046/j.1471-4159.1997.69031185.x
- LaVoie MJ, Hastings TG. Dopamine quinone formation and protein modification associated with the striatal neurotoxicity of methamphetamine: evidence against a role for extracellular dopamine. J Neurosci: Off J Soc Neurosci 1999; 19:1484-91; PMID:9952424
- Volz TJ, Farnsworth SJ, Rowley SD, Hanson GR, Fleckenstein AE. Age-dependent differences in dopamine transporter and vesicular monoamine transporter-2 function and their implications for methamphetamine neurotoxicity. Synapse 2009; 63:147-51; PMID:19021208; http://dx.doi.org/ 10.1002/syn.20580
- Brown JM, Quinton MS, Yamamoto BK. Methamphetamine-induced inhibition of mitochondrial complex II: roles of glutamate and peroxynitrite. J Neurochem 2005; 95:429-36; PMID:16086684; http://dx.doi.org/10.1111/j.1471-4159.2005.03379.x
- Nash JF, Yamamoto BK. Methamphetamine neurotoxicity and striatal glutamate release: comparison to 3,4-methylenedioxymethamphetamine. Brain Res 1992; 581:237-43; PMID:1356579; http://dx.doi. org/10.1016/0006-8993(92)90713-J
- Sonsalla PK, Nicklas WJ, Heikkila RE. Role for excitatory amino acids in methamphetamine-induced nigrostriatal dopaminergic toxicity. Science 1989; 243:398-400; PMID:2563176; http://dx.doi.org/ 10.1126/science.2563176

- Underhill SM, Wheeler DS, Li M, Watts SD, Ingram SL, Amara SG. Amphetamine modulates excitatory neurotransmission through endocytosis of the glutamate transporter EAAT3 in dopamine neurons. Neuron 2014; 83:404-16; PMID:25033183; http://dx. doi.org/10.1016/j.neuron.2014.05.043
- 34. Northrop NA, Smith LP, Yamamoto BK, Eyerman DJ. Regulation of glutamate release by alpha7 nicotinic receptors: differential role in methamphetamineinduced damage to dopaminergic and serotonergic terminals. J Pharmacol Exp Ther 2011; 336:900-7; PMID:21159748; http://dx.doi.org/10.1124/ jpet.110.177287
- 35. Clausing P, Bowyer JF. Time course of brain temperature and caudateputamen microdialysate levels of amphetamine and dopamine in rats after multiple doses of d-amphetamine. Ann New York Acad Sci 1999; 890:495-504; PMID:10668455; http://dx.doi. org/10.1111/j.1749-6632.1999.tb08031.x
- 36. Tor-Agbidye J, Yamamoto B, Bowyer JF. Seizure activity and hyperthermia potentiate the increases in dopamine and serotonin extracellular levels in the amygdala during exposure to d-amphetamine. Toxicol Sci 2001; 60:103-11; PMID:11222877; http://dx.doi. org/10.1093/toxsci/60.1.103
- Bowyer JF, Schmued LC. Fluoro-Ruby labeling prior to an amphetamine neurotoxic insult shows a definitive massive loss of dopaminergic terminals and axons in the caudate-putamen. Brain Res 2006; 1075:236-9; PMID:16458862; http://dx.doi.org/10.1016/j. brainres.2005.12.062
- Bowyer JF, Frame LT, Clausing P, Nagamoto-Combs K, Osterhout CA, Sterling CR, Tank AW. Long-term effects of amphetamine neurotoxicity on tyrosine hydroxylase mRNA and protein in aged rats. J Pharmacol Exp Ther 1998; 286:1074-85; PMID:9694971
- Cadet JL, Krasnova IN, Jayanthi S, Lyles J. Neurotoxicity of substituted amphetamines: molecular and cellular mechanisms. Neurotoxicity Res 2007; 11:183-202; PMID:17449459; http://dx.doi.org/10.1007/ BF03033567
- Krasnova IN, Ladenheim B, Jayanthi S, Oyler J, Moran TH, Huestis MA, Cadet JL. Amphetamineinduced toxicity in dopamine terminals in CD-1 and C57BL6J mice: complex roles for oxygen-based species and temperature regulation. Neuroscience 2001; 107:265-74; PMID:11731100; http://dx.doi.org/ 10.1016/S0306-4522(01)00351-7
- Cadet JL, Brannock C. Free radicals and the pathobiology of brain dopamine systems. Neurochem Int 1998; 32:117-31; PMID:9542724; http://dx.doi.org/ 10.1016/S0197-0186(97)00031-4
- Imam SZ, el-Yazal J, Newport GD, Itzhak Y, Cadet JL, Slikker W Jr, Ali SF. Methamphetamine-induced dopaminergic neurotoxicity: role of peroxynitrite and neuroprotective role of antioxidants and peroxynitrite decomposition catalysts. Ann New York Acad Sci 2001; 939:366-80; PMID:11462792; http://dx.doi. org/10.1111/j.1749-6632.2001.tb03646.x
- Bowyer JF, Patterson TA, Saini UT, Hanig JP, Thomas M, Camacho L, George NI, Chen JJ. Comparison of the global gene expression of choroid plexus and meninges and associated vasculature under control conditions and after pronounced hyperthermia or amphetamine toxicity. BMC Genomics 2013; 14:147; PMID:23497014; http://dx.doi.org/ 10.1186/1471-2164-14-147
- Lindquist S, Craig EA. The heat-shock proteins. Ann Rev Genet 1988; 22:631-77; PMID:2853609; http:// dx.doi.org/10.1146/annurev.ge.22.120188.003215
- Li GC, Mivechi NF, Weitzel G. Heat shock proteins, thermotolerance, and their relevance to clinical hyperthermia. Int J Hyperther: Off J Eur Soc Hyperther Oncol, North Am Hyperther Group 1995; 11:459-88; PMID:7594802; http://dx.doi.org/10.3109/ 02656739509022483
- 46. Wang Z, Cai F, Chen X, Luo M, Hu L, Lu Y. The role of mitochondria-derived reactive oxygen species

in hyperthermia-induced platelet apoptosis. PloS One 2013; 8:e75044; PMID:24023970; http://dx.doi.org/ 10.1371/journal.pone.0075044

- Howells J, Czesnik D, Trevillion L, Burke D. Excitability and the safety margin in human axons during hyperthermia. J Physiol 2013; 591:3063-80; PMID:23613528; http://dx.doi.org/10.1113/ jphysiol.2012.249060
- Thomas EA, Hawkins RJ, Richards KL, Xu R, Gazina EV, Petrou S. Heat opens axon initial segment sodium channels: a febrile seizure mechanism? Ann Neurol 2009; 66:219-26; PMID:19743470; http:// dx.doi.org/10.1002/ana.21712
- Ouardouz M, Lema P, Awad PN, Di Cristo G, Carmant L. N-methyl-D-aspartate, hyperpolarization-activated cation current (Ih) and gamma-aminobutyric acid conductances govern the risk of epileptogenesis following febrile seizures in rat hippocampus. Eur J Neurosci 2010; 31:1252-60; PMID:20345922; http://dx.doi.org/10.1111/j.1460-9568.2010.07159.x
- Mashimo T, Ohmori I, Ouchida M, Ohno Y, Tsurumi T, Miki T, Wakamori M, Ishihara S, Yoshida T, Takizawa A, et al. A missense mutation of the gene encoding voltage-dependent sodium channel (Nav1.1) confers susceptibility to febrile seizures in ratts. J Neurosci: Off J Soc Neurosci 2010; 30:5744-53; PMID:20410126; http://dx.doi.org/10.1523/ JNEUROSCI.3360-09.2010
- Brederson JD, Kym PR, Szallasi A. Targeting TRP channels for pain relief. Eur J Pharmacol 2013; 716:61-76; PMID:23500195; http://dx.doi.org/ 10.1016/j.ejphar.2013.03.003
- Hunt RF, Hortopan GA, Gillespie A, Baraban SC. A novel zebrafish model of hyperthermia-induced seizures reveals a role for TRPV4 channels and NMDAtype glutamate receptors. Exp Neurol 2012; 237:199-206; PMID:22735490; http://dx.doi.org/10.1016/j. expneurol.2012.06.013
- Sonders MS, Zhu SJ, Zahniser NR, Kavanaugh MP, Amara SG. Multiple ionic conductances of the human dopamine transporter: the actions of dopamine and psychostimulants. J Neurosci: Off J Soc Neurosci 1997; 17:960-74; PMID:8994051
- Bowyer JF, Peterson SL, Rountree RL, Tor-Agbidye J, Wang GJ. Neuronal degeneration in rat forebrain resulting from D-amphetamine-induced convulsions is dependent on seizure severity and age. Brain Res 1998; 809:77-90; PMID:9795148; http://dx.doi.org/ 10.1016/S0006-8993(98)00846-4
- Schmued LC, Bowyer JF. Methamphetamine exposure can produce neuronal degeneration in mouse hippocampal remnants. Brain Res 1997; 759:135-40; PMID:9219871; http://dx.doi.org/10.1016/S0006-8993(97)00173-X
- Schmued LC, Stowers CC, Scallet AC, Xu L. Fluoro-Jade C results in ultra high resolution and contrast labeling of degenerating neurons. Brain Res 2005; 1035:24-31; PMID:15713273; http://dx.doi.org/ 10.1016/j.brainres.2004.11.054
- Eisch AJ, Schmued LC, Marshall JF. Characterizing cortical neuron injury with Fluoro-Jade labeling after a neurotoxic regimen of methamphetamine. Synapse 1998; 30:329-33; PMID:9776136; http://dx.doi.org/ 10.1002/(SICI)1098-2396(199811)30:3%3c329:: AID-SYN10%3e3.0.CO;2-V
- Sekine Y, Ouchi Y, Sugihara G, Takei N, Yoshikawa E, Nakamura K, Iwata Y, Tsuchiya KJ, Suda S, Suzuki K, et al. Methamphetamine causes microglial activation in the brains of human abusers. J Neurosci: Off J Soc Neurosci 2008; 28:5756-61; PMID:18509037; http://dx.doi.org/10.1523/JNEUROSCI.1179-08.2008
- Thompson PM, Hayashi KM, Simon SL, Geaga JA, Hong MS, Sui Y, Lee JY, Toga AW, Ling W, London ED. Structural abnormalities in the brains of human subjects who use methamphetamine. J Neurosci: Off J Soc Neurosci 2004; 24:6028-36; PMID:15229250;

http://dx.doi.org/10.1523/JNEUROSCI.0713-04.2004

- 60. McCann UD, Kuwabara H, Kumar A, Palermo M, Abbey R, Brasic J, Ye W, Alexander M, Dannals RF, Wong DF, et al. Persistent cognitive and dopamine transporter deficits in abstinent methamphetamine users. Synapse 2008; 62:91-100; PMID:17992686; http://dx.doi.org/10.1002/syn.20471
- Bartzokis G, Beckson M, Lu PH, Edwards N, Rapoport R, Wiseman E, Bridge P. Age-related brain volume reductions in amphetamine and cocaine addicts and normal controls: implications for addiction research. Psychiatry Res 2000; 98:93-102; PMID:10762735; http://dx.doi.org/10.1016/S0925-4927(99)00052-9
- Ernst T, Chang L, Leonido-Yee M, Speck O. Evidence for long-term neurotoxicity associated with methamphetamine abuse: a 1H MRS study. Neurology 2000; 54:1344-9; PMID:10746608; http://dx. doi.org/10.1212/WNL.54.6.1344
- Volkow ND, Chang L, Wang GJ, Fowler JS, Franceschi D, Sedler MJ, Gatley SJ, Hitzemann R, Ding YS, Wong C, et al. Higher cortical and lower subcortical metabolism in detoxified methamphetamine abusers. Am J Psychiat 2001; 158:383-9; PMID:11229978; http://dx.doi.org/ 10.1176/appi.ajp.158.3.383
- 64. Volkow ND, Chang L, Wang GJ, Fowler JS, Leonido-Yee M, Franceschi D, Sedler MJ, Gatley SJ, Hitzemann R, Ding YS, et al. Association of dopamine transporter reduction with psychomotor impairment in methamphetamine abusers. Am J Psychiat 2001; 158:377-82; PMID:11229977; http://dx.doi.org/ 10.1176/appi.ajp.158.3.377
- Commins DL, Seiden LS. alpha-Methyltyrosine blocks methylamphetamine-induced degeneration in the rat somatosensory cortex. Brain Res 1986; 365:15-20; PMID:3947981; http://dx.doi.org/ 10.1016/0006-8993(86)90717-1
- Olney JW. Kainic acid and other excitotoxins: a comparative analysis. Adv Biochem Psychopharmacol 1981; 27:375-84; PMID:7004119
- Olney JW. Excitotoxin-mediated neuron death in youth and old age. Prog Brain Res 1990; 86:37-51; PMID:1982368; http://dx.doi.org/10.1016/S0079-6123(08)63165-9
- Scallet AC, Schmued LC, Johannessen JN. Neurohistochemical biomarkers of the marine neurotoxicant, domoic acid. Neurotoxicol Teratol 2005; 27:745-52; PMID:16203121; http://dx.doi.org/10.1016/j. ntt.2005.06.018
- 69. Beal MF, Brouillet E, Jenkins BG, Ferrante RJ, Kowall NW, Miller JM, Storey E, Srivastava R, Rosen BR, Hyman BT. Neurochemical and histologic characterization of striatal excitotoxic lesions produced by the mitochondrial toxin 3-nitropropionic acid. J Neurosci: Off J Soc Neurosci 1993; 13:4181-92; PMID:7692009
- Coles CJ, Edmondson DE, Singer TP. Inactivation of succinate dehydrogenase by 3-nitropropionate. J Biol Chem 1979; 254:5161-7; PMID:447637
- Hamilton BF, Gould DH. Nature and distribution of brain lesions in rats intoxicated with 3-nitropropionic acid: a type of hypoxic (energy deficient) brain damage. Acta Neuropathol 1987; 72:286-97; PMID: 3564909; http://dx.doi.org/10.1007/BF00691103
- Deng X, Wang Y, Chou J, Cadet JL. Methamphetamine causes widespread apoptosis in the mouse brain: evidence from using an improved TUNEL histochemical method. Brain Res Mol Brain Res 2001; 93:64-9; PMID:11532339; http://dx.doi.org/ 10.1016/S0169-328X(01)00184-X
- Kiyatkin EA, Brown PL, Sharma HS. Brain edema and breakdown of the blood-brain barrier during methamphetamine intoxication: critical role of brain hyperthermia. Eur J Neurosci 2007; 26:1242-53; PMID:17767502; http://dx.doi.org/10.1111/j.1460-9568.2007.05741.x

- 74. Sharma HS, Ali SF. Alterations in blood-brain barrier function by morphine and methamphetamine. Ann New York Acad Sci 2006; 1074:198-224; PMID: 17105918; http://dx.doi.org/10.1196/annals.1369.020
- Sharma HS, Sjoquist PO, Ali SF. Drugs of abuseinduced hyperthermia, blood-brain barrier dysfunction and neurotoxicity: neuroprotective effects of a new antioxidant compound H-29051. Curr Pharm Des 2007; 13:1903-23; PMID:17584116; http://dx. doi.org/10.2174/138161207780858375
- Northrop NA, Yamamoto BK. Persistent neuroinflammatory effects of serial exposure to stress and methamphetamine on the blood-brain barrier. J Neuroimmune Pharmacol: Off J Soc NeuroImmune Pharmacol 2012; 7:951-68; PMID:22833424; http://dx. doi.org/10.1007/s11481-012-9391-y
- Bowyer JF, Tranter KM, Sarkar S, Raymick J, Hanig JP, Schmued LC. Systemic administration of fluorogold for the histological assessment of vascular structure, integrity and damage. Curr Neurovasc Res 2014; 11:31-47; PMID:24274907; http://dx.doi.org/ 10.2174/1567202610666131124235011
- Burnstock G. Neurogenic control of cerebral circulation. Cephalalgia 1985; 5 Suppl 2):25-33; PMID:2410133
- Hamel E. Perivascular nerves and the regulation of cerebrovascular tone. J Appl Physiol 2006; 100:1059-64; PMID:16467392; http://dx.doi.org/10.1152/ japplphysiol.00954.2005
- Kulik T, Kusano Y, Aronhime S, Sandler AL, Winn HR. Regulation of cerebral vasculature in normal and ischemic brain. Neuropharmacology 2008; 55:281-8; PMID:18541276; http://dx.doi.org/10.1016/j. neuropharm.2008.04.017
- Foote SL, Aston-Jones G, Bloom FE. Impulse activity of locus coeruleus neurons in awake rats and monkeys is a function of sensory stimulation and arousal. Proc Nat Acad Sci U S A 1980; 77:3033-7; PMID: 6771765; http://dx.doi.org/10.1073/pnas.77.5.3033
- Foote SL, Bloom FE, Aston-Jones G. Nucleus locus ceruleus: new evidence of anatomical and physiological specificity. Physiol Rev 1983; 63:844-914; PMID:6308694
- Cohen Z, Molinatti G, Hamel E. Astroglial and vascular interactions of noradrenaline terminals in the rat cerebral cortex. J Cereb Blood Flow Metab: Off J Int Soc Cereb Blood Flow Metab 1997; 17:894-904; PMID:9290587; http://dx.doi.org/10.1097/ 00004647-199708000-00008
- de la Torre JC. Evidence for central innervation of intracerebral blood vessels: local cerebral blood flow measurements and histofluorescence analysis by the sucrose-phosphate-glyoxylic acid (SPG) method. Neuroscience 1976; 1:455-7; PMID:11370237; http://dx.doi.org/10.1016/0306-4522(76)90096-8
- Goadsby PJ, Duckworth JW. Low frequency stimulation of the locus coeruleus reduces regional cerebral blood flow in the spinalized cat. Brain Res 1989; 476:71-7; PMID:2914215; http://dx.doi.org/ 10.1016/0006-8993(89)91537-0
- Raichle ME, Hartman BK, Eichling JO, Sharpe LG. Central noradrenergic regulation of cerebral blood flow and vascular permeability. Proc Nat Acad Sci U S A 1975; 72:3726-30; PMID:810805; http://dx.doi. org/10.1073/pnas.72.9.3726
- Toussay X, Basu K, Lacoste B, Hamel E. Locus coeruleus stimulation recruits a broad cortical neuronal network and increases cortical perfusion. J Neurosci: Off J Soc Neurosci 2013; 33:3390-401; PMID:23426667; http://dx.doi.org/10.1523/JNEUROSCI.3346-12.2013
- Polesskaya O, Silva J, Sanfilippo C, Desrosiers T, Sun A, Shen J, Feng C, Polesskiy A, Deane R, Zlokovic B, et al. Methamphetamine causes sustained depression in cerebral blood flow. Brain Res 2011; 1373:91-100; PMID:21156163; http://dx.doi.org/10.1016/j. brainres.2010.12.017

- Moon K, Albuquerque FC, Mitkov M, Ducruet AF, Wilson DA, Crowley RW, Nakaji P, McDougall CG. Methamphetamine use is an independent predictor of poor outcome after aneurysmal subarachnoid hemorrhage. J Neurointerventional Surg 2014; PMID:24780822; http://dx.doi.org/10.1136/ neurintsurg-2014-011161
- Beadell NC, Thompson EM, Delashaw JB, Cetas JS. The deleterious effects of methamphetamine use on initial presentation and clinical outcomes in aneurysmal subarachnoid hemorrhage. J Neurosurg 2012; 117:781-6; PMID:22920957; http://dx.doi.org/ 10.3171/2012.7.JNS12396
- Kousik SM, Graves SM, Napier TC, Zhao C, Carvey PM. Methamphetamine-induced vascular changes lead to striatal hypoxia and dopamine reduction. Neuroreport 2011; 22:923-8; PMID:21979424; http:// dx.doi.org/10.1097/WNR.0b013e32834d0bc8
- Weaver J, Yang Y, Purvis R, Weatherwax T, Rosen GM, Liu KJ. In vivo evidence of methamphetamine induced attenuation of brain tissue oxygenation as measured by EPR oximetry. Toxicol Appl Pharmacol 2014; 275:73-8; PMID:24412707; http://dx.doi.org/ 10.1016/j.taap.2013.12.023
- Thomas M, George NI, Patterson TA, Bowyer JF. Amphetamine and environmentally induced hyperthermia differentially alter the expression of genes regulating vascular tone and angiogenesis in the meninges and associated vasculature. Synapse 2009; 63:881-94; PMID:19582783; http://dx.doi.org/ 10.1002/syn.20661
- Heninger M, Collins KA. Acute bacterial meningitis with coincident methamphetamine use: a case report and review of the literature. J Forensic Sci 2013; 58:1088-91; PMID:23601243; http://dx.doi.org/ 10.1111/1556-4029.12176
- Park BS, Lee JO. Recognition of lipopolysaccharide pattern by TLR4 complexes. Exp Mol Med 2013; 45: e66; PMID:24310172; http://dx.doi.org/10.1038/ emm.2013.97
- Schumann RR. Old and new findings on lipopolysaccharide-binding protein: a soluble pattern-recognition molecule. Biochem Soc Trans 2011; 39:989-93; PMID:21787335; http://dx.doi.org/10.1042/ BST0390989
- Sharma HS, Johanson CE. Blood-cerebrospinal fluid barrier in hyperthermia. Prog Brain Res 2007; 162:459-78; PMID:17645933; http://dx.doi.org/ 10.1016/S0079-6123(06)62023-2
- Murphy VA, Johanson CE. Adrenergic-induced enhancement of brain barrier system permeability to small nonelectrolytes: choroid plexus versus cerebral capillaries. J Cereb Blood Flow Metab: Off J Int Soc Cereb Blood Flow Metab 1985; 5:401-12; PMID: 3928638; http://dx.doi.org/10.1038/jcbfm.1985.55
- Penn AS, Rowland LP, Fraser DW. Drugs, coma, and myoglobinuria. Arch Neurol 1972; 26:336-43; PMID:5015592; http://dx.doi.org/10.1001/archneur. 1972.00490100066006
- Kendrick WC, Hull AR, Knochel JP. Rhabdomyolysis and shock after intravenous amphetamine administration. Ann Internal Med 1977; 86:381-7; PMID:848798; http://dx.doi.org/10.7326/0003-4819-86-4-381
- 101. Chan P, Chen JH, Lee MH, Deng JF. Fatal and nonfatal methamphetamine intoxication in the intensive care unit. J Toxicol Clin Toxicol 1994; 32:147-55; PMID:8145354; http://dx.doi.org/10.3109/ 15563659409000444
- 102. Sperling LS, Horowitz JL. Methamphetamineinduced choreoathetosis and rhabdomyolysis. Ann Internal Med 1994; 121:986; PMID:7978734; http:// dx.doi.org/10.7326/0003-4819-121-12-199412150-00019
- Levi MS, Patton RE, Hanig JP, Tranter KM, George NI, James LP, Davis KJ, Bowyer JF. Serum myoglobin, but not lipopolysaccharides, is predictive of AMPH-induced striatal neurotoxicity.

Neurotoxicology PMID:23608161; neuro.2013.04.003 2013; 37C:40-50; http://dx.doi.org/10.1016/j.

- 104. Ishigami A, Tokunaga I, Gotohda T, Kubo S. Immunohistochemical study of myoglobin and oxidative injury-related markers in the kidney of methamphetamine abusers. Legal Med 2003; 5:42-8; PMID:12935649; http://dx.doi.org/10.1016/S1344-6223(03)00005-1
- Holt S, Moore K. Pathogenesis of renal failure in rhabdomyolysis: the role of myoglobin. Exp Nephrol 2000; 8:72-6; PMID:10729745; http://dx.doi.org/ 10.1159/000020651
- 106. Reeder BJ. The redox activity of hemoglobins: from physiologic functions to pathologic mechanisms. Antioxidants Redox Signaling 2010; 13:1087-123; PMID:20170402; http://dx.doi.org/10.1089/ ars.2009.2974
- 107. Vinchi F, Tolosano E. Therapeutic approaches to limit hemolysis-driven endothelial dysfunction: scavenging free heme to preserve vasculature homeostasis. Oxidative Med Cell Longevity 2013; 2013:396527; PMID:23781294; http://dx.doi.org/10.1155/2013/ 396527
- Halpin LE, Yamamoto BK. Peripheral ammonia as a mediator of methamphetamine neurotoxicity. J Neurosci: Off J Soc Neurosci 2012; 32:13155-63; PMID:22993432; http://dx.doi.org/10.1523/ JNEUROSCI.2530-12.2012
- Maruta T, Nihira M, Tomita Y. [Histopathological study on acute poisoning of methamphetamine, morphine or cocaine]. Nihon Arukoru Yakubutsu Igakkai zasshi = JPN J Alcohol Stud Drug Depen 1997; 32:122-38; PMID:9168637
- 110. Zhao S, Li F, Leak RK, Chen J, Hu X. Regulation of neuroinflammation through programed death-1programed death ligand signaling in neurological disorders. Front Cell Neurosci 2014; 8:271; PMID:25232304; http://dx.doi.org/10.3389/ fncel.2014.00271
- 111. Jons D, Sundstrom P, Andersen O. Targeting Epstein-Barr virus infection as an intervention against multiple sclerosis. Acta Neurologica Scandinavica 2014; PMID:25208981; http://dx.doi.org/10.1111/ anc.12294
- 112. Sperlagh B, Illes P. P2'7 receptor: an emerging target in central nervous system diseases. Trends Pharmacol Sci 2014; 35:537-47; PMID:25223574; http://dx. doi.org/10.1016/j.tips.2014.08.002
- 113. Ben-Nun A, Kaushansky N, Kawakami N, Krishnamoorthy G, Berer K, Liblau R, Hohlfeld R, Wekerle H. From classic to spontaneous and humanized models of multiple sclerosis: impact on understanding pathogenesis and drug development. J Autoimmun 2014; S0896-8411:00101-2; PMID:25175979; http://dx.doi.org/10.1016/j.jaut.2014.06.004
- Fuller JP, Stavenhagen JB, Teeling JL. New roles for Fc receptors in neurodegeneration-the impact on Immunotherapy for Alzheimer's Disease. Front Neurosci 2014; 8:235; PMID:25191216
- Mosher KI, Wyss-Coray T. Microglial dysfunction in brain aging and Alzheimer's disease. Biochem Pharmacol 2014; 88:594-604; PMID:24445162; http:// dx.doi.org/10.1016/j.bcp.2014.01.008
- Canton J, Neculai D, Grinstein S. Scavenger receptors in homeostasis and immunity. Nat Rev Immunol 2013; 13:621-34; PMID:23928573; http://dx.doi. org/10.1038/nri3515
- 117. Needham E, Zandi MS. Recent advances in the neuroimmunology of cell-surface CNS autoantibody syndromes, Alzheimer's disease, traumatic brain injury and schizophrenia. J Neurol 2014; 261:2037-42; PMID:25182699; http://dx.doi.org/10.1007/s00415-014-7473-x
- Kannarkat GT, Boss JM, Tansey MG. The role of innate and adaptive immunity in Parkinson's disease. J Parkinson's Dis 2013; 3:493-514;

PMID:24275605; http://dx.doi.org/10.3233/ JPD-130250

- Rodrigues MC, Sanberg PR, Cruz LE, Garbuzova-Davis S. The innate and adaptive immunological aspects in neurodegenerative diseases. J Neuroimmunol 2014; 269:1-8; PMID:24161471; http://dx.doi. org/10.1016/j.jneuroim.2013.09.020
- Greggio E, Civiero L, Bisaglia M, Bubacco L. Parkinson's disease and immune system: is the culprit LRRKing in the periphery? J Neuroinflammation 2012; 9:94; PMID:22594666; http://dx.doi.org/ 10.1186/1742-2094-9-94
- 121. Hess A, Desiderio C, McAuliffe WG. Acute neuropathological changes in the caudate nucleus caused by MPTP and methamphetamine: immunohistochemical studies. J Neurocytol 1990; 19:338-42; PMID: 1975269; http://dx.doi.org/10.1007/BF01188403
- 122. JP OC, DB M. Neurotoxic effects of substituted amphetamines in rats and mice. In: Massaro EJ, ed. Handbook of Neurotoxicology. Totowa: Humana Press Inc, 2002; 269-301.
- O'Callaghan JP, Sriram K, Miller DB. Defining "neuroinflammation". Ann New York Acad Sci 2008; 1139:318-30; PMID:18991877; http://dx.doi.org/ 10.1196/annals.1432.032
- 124. Sriram K, Miller DB, O'Callaghan JP. Minocycline attenuates microglial activation but fails to mitigate striatal dopaminergic neurotoxicity: role of tumor necrosis factor-alpha. J Neurochem 2006; 96:706-18; PMID:16405514; http://dx.doi.org/10.1111/j.1471-4159.2005.03566.x
- 125. Thomas DM, Kuhn DM. MK-801 and dextromethorphan block microglial activation and protect against methamphetamine-induced neurotoxicity. Brain Res 2005; 1050:190-8; PMID:15987631; http://dx.doi.org/10.1016/j.brainres.2005.05.049
- 126. Thomas DM, Walker PD, Benjamins JA, Geddes TJ, Kuhn DM. Methamphetamine neurotoxicity in dopamine nerve endings of the striatum is associated with microglial activation. J Pharmacol Exp Ther 2004; 311:1-7; PMID:15163680; http://dx.doi.org/ 10.1124/jper.104.070961
- 127. Mahajan SD, Hu Z, Reynolds JL, Aalinkeel R, Schwartz SA, Nair MP. Methamphetamine modulates gene expression patterns in monocyte derived mature dendritic cells: implications for HIV-1 pathogenesis. Mol Diagn Ther 2006; 10:257-69; PMID:16884330; http://dx.doi.org/10.1007/BF03256465
- 128. Mahajan SD, Aalinkeel R, Sykes DE, Reynolds JL, Bindukumar B, Fernandez SF, Chawda R, Shanahan TC, Schwartz SA. Tight junction regulation by morphine and HIV-1 tat modulates blood-brain barrier permeability. J Clin Immunol 2008; 28:528-41; PMID:18574677; http://dx.doi.org/10.1007/s10875-008-9208-1
- 129. Mahajan SD, Aalinkeel R, Sykes DE, Reynolds JL, Bindukumar B, Adal A, Qi M, Toh J, Xu G, Prasad PN, et al. Methamphetamine alters blood brain barrier permeability via the modulation of tight junction expression: implication for HIV-1 neuropathogenesis in the context of drug abuse. Brain Res 2008; 1203:133-48; PMID:18329007; http://dx.doi.org/ 10.1016/j.brainres.2008.01.093
- O'Callaghan JP, Kelly KA, VanGilder RL, Sofroniew MV, Miller DB. Early activation of STAT3 regulates reactive astrogliosis induced by diverse forms of neurotoxicity. PloS One 2014; 9:e102003; PMID:Can't; http://dx.doi.org/10.1371/journal.pone.0102003
- Peerzada H, Gandhi JA, Guimaraes AJ, Nosanchuk JD, Martinez LR. Methamphetamine administration modifies leukocyte proliferation and cytokine production in murine tissues. Immunobiology 2013; 218:1063-8; PMID:23518444; http://dx.doi.org/ 10.1016/j.imbio.2013.02.001
- 132. Hirsiger S, Simmen HP, Werner CM, Wanner GA, Rittirsch D. Danger signals activating the immune response after trauma. Mediat Inflamm 2012;

2012:315941; PMID:22778496; http://dx.doi.org/ 10.1155/2012/315941

- 133. Tang D, Kang R, Coyne CB, Zeh HJ, Lotze MT. PAMPs and DAMPs: signal 0s that spur autophagy and immunity. Immunol Rev 2012; 249:158-75; PMID:22889221; http://dx.doi.org/10.1111/j.1600-065X.2012.01146.x
- Kang R, Lotze MT, Zeh HJ, Billiar TR, Tang D. Cell death and DAMPs in acute pancreatitis. Mol Med 2014; PMID:25105302; http://dx.doi.org/10.2119/ molmed.2014.00117
- 135. Lai YT, Tsai YP, Cherng CG, Ke JJ, Ho MC, Tsai CW, Yu L. Lipopolysaccharide mitagates

methamphetamine-induced striatal dopamine depletion via modulating local TNF-alpha and dopamine transporter expression. J Neural Trans 2009; 116:405-15; PMID:19271121; http://dx.doi.org/ 10.1007/s00702-009-0204-2

- 136. Bramness JG, Gundersen OH, Guterstam J, Rognli EB, Konstenius M, Loberg EM, Medhus S, Tanum L, Franck J. Amphetamine-induced psychosis–a separate diagnostic entity or primary psychosis triggered in the vulnerable? BMC Psychiat 2012; 12:221; PMID:23216941; http://dx.doi.org/10.1186/1471-244X-12-221
- 137. Cortese S, Holtmann M, Banaschewski T, Buitelaar J, Coghill D, Danckaerts M, Dittmann RW, Graham J, Taylor E, Sergeant J, et al. Practitioner review: current best practice in the management of adverse events during treatment with ADHD medications in children and adolescents. J Child Psychol Psychiat Allied Disciplines 2013; 54:227-46; PMID:23294014; http://dx. doi.org/10.1111/jcpp.12036
- Degenhardt L, Hall W. Extent of illicit drug use and dependence, and their contribution to the global burden of disease. Lancet 2012; 379:55-70; PMID:22225671; http://dx.doi.org/10.1016/S0140-6736(11)61138-0