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The adverse effects of amphetamine- (AMPH) and methamphetamine- (METH) induced hyperthermia on
vasculature, peripheral organs and peripheral immune system are discussed. Hyperthermia alone does not produce
amphetamine-like neurotoxicity but AMPH and METH exposures that do not produce hyperthermia (�40�C) are
minimally neurotoxic. Hyperthermia likely enhances AMPH and METH neurotoxicity directly through disruption of
protein function, ion channels and enhanced ROS production. Forebrain neurotoxicity can also be indirectly influenced
through the effects of AMPH- and METH- induced hyperthermia on vasculature. The hyperthermia and the
hypertension produced by high doses amphetamines are a primary cause of transient breakdowns in the blood-brain
barrier (BBB) resulting in concomitant regional neurodegeneration and neuroinflammation in laboratory animals. This
BBB breakdown can occur in the amygdala, thalamus, striatum, sensory and motor cortex and hippocampus. Under
these conditions, repetitive seizures greatly enhance neurodegeneration in hippocampus, thalamus and amygdala.
Even when the BBB is less disrupted, AMPH- or METH- induced hyperthermia effects on brain vasculature may play a
role in neurotoxicity. In this case, striatal and cortical vascular function are adversely affected, and even greater ROS,
immune and damage responses are seen in the meninges and cortical surface vasculature. Finally, muscle and liver
damage and elevated cytokines in blood can result when amphetamines produce hyperthermia. Proteins, from
damaged muscle may activate the peripheral immune system and exacerbate liver damage. Liver damage can further
increase cytokine levels, immune system activation and increase ammonia levels. These effects could potentially
enhance vascular damage and neurotoxicity.

Earlier History of Amphetamine- and
Methamphetamine-Induced Hyperthermia

and Neurotoxicity

Introductory remarks
The terms amphetamine (AMPH) and methamphetamine

(METH) neurotoxicity are often used interchangeably in this
review. This is because research from our laboratory has not been
able to identify any appreciable difference in the neurotoxicity
produced in rodent by AMPH compared to METH.1,2 Figure 1

shows the profiles of the temperature changes produced by
either exposure to amphetamines or environmentally-induced
hyperthermia (EIH) that we have observed in our laboratory.
The interactive effects that hyperthermia has with respect to tox-
icity during either AMPH or METH exposures are complex.
Table 1 summarizes the physiological and pathological effects
that can be produced by 1) EIH, 2) AMPH or METH exposures
producing significantly hyperthermic conditions or 3) AMPH or
METH exposures when life-threatening hyperthermia occurs.
Table 2 provides information on the role of selected biochemical
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or physiological effects mediated by hyperthermia that are associ-
ated with AMPH and METH neurotoxicity. The reader can use
these tables as adjunct references where they pertain to what is
being presented in the text.

Striatal dopamine terminal damage
Starting in the early 1960s, clinical reports and research in lab-

oratory animals began to point to the important role that hyper-
thermia had in exacerbating the adverse physiological and lethal
effects induced by AMPH and METH in humans 3-5 and labora-
tory animals.4,6,7 Approximately 10 years later, reports of
METH damaging dopaminergic terminals were published.8-13

However, it wasn’t until the early 1990s that the role of hyper-
thermia in METH and AMPH neurotoxicity began to be eluci-
dated. At that time, the link between dopamine terminal
degeneration in the striatum and pronounced hyperthermia
(�40�C) was reported in both rat 14-16 and mouse.17,18 It is now
clear that when animals remain normothermic during exposures
to very high doses of AMPH or METH, more transient deple-
tions of striatal dopamine (decreases of 40 to 60% in mouse and
45 to 65% in rat) lasting for 1 month or so result along with rare

sporadic occurrences of neurodegeneration in the parietal and
piriform cortex.19-22 Under these normothermic conditions there
is minimal or no neuroimmune response in the striatum. How-
ever, it was noted that pronounced hyperthermia alone would
not produce this neurotoxicity. Under favorable conditions (wak-
ing cycle and in a 23.5�C environment) and with 8 h exposures,
plasma concentrations of AMPH or METH as low as 3 mM are
capable of producing hyperthermia and neurotoxicity.2,23 Fur-
ther research in non-human primates has helped substantiate the
clinical relevance of the hyperthermia in regards to METH pro-
ducing dopamine terminal degeneration.24,25

METH-induced hyperthermia and excessive plasma mem-
brane transporter (DAT) activity appear to be primary factors in
the production of this striatal neurotoxicity.26 However, reactive
metabolites of dopamine,27,28 vesicular monoamine transporter-
2 damage,29 and elevated glutamate levels30-34 have also been
implicated as exacerbating factors in METH toxicity. Increases in
body and brain temperatures during AMPH exposure do appear
to correlate with increased striatal dopamine and amygdala 5HT
levels.15,29,35,36 Finally, the great swelling and loss of Fluoro-
Ruby labeled axons of dopaminergic neurons in the striatum
indicate that they are being destroyed by a “necrotic”-like
effect.37 The exact mechanism of the apparent dopaminergic axo-
nal and terminal destruction is unknown but is not due to classic
apoptosis or necrosis since the loss of dopaminergic neurons in
the substantia nigra is minimal at best (�20%) compared to the
�80% loss of striatal dopamine terminals.38

There are several mechanisms by which hyperthermia could
potentiate AMPH and METH toxicity to dopamine terminals
that have also been implicated in other types of neuronal degen-
eration. METH-induced hyperthermia directly increases ROS
levels in striatum and causes a dramatic increase in ROS-induced
gene expression.39-42 Interestingly, hyperthermia (EIH) alone
produces equivalent increases in genes up-regulated by ROS in
many brain regions.43 Concomitant with large increases in ROS
and heat-shock protein induction is the dysfunction of proteins
due to misfolding produced by pronounced hyperthermia.44,45

Such protein alterations or changes in lipid membranes could
lead to mitochondrial46 and ion channel dysfunction.47-52 The
tremendous increase in DAT activity/ transport produced by
AMPH or METH may be sufficient to produce detectable depo-
larization due to concomitant NaC influx with either AMPH or
METH amphetamine into dopamine terminals and possibly alter
glutamate activity.33,53 These affects will lead to large increases in
sodium into the terminal that will require extensive amounts of
energy to transport it out of the terminal. This alone is not suffi-
cient to produce terminal degeneration without hyperthermia.
However, we postulate that the occurrence of hyperthermia in
the presence of AMPH or METH further compromise ion chan-
nels, mitochondrial function and damage to other import cellular
components by ROS leading to terminal damage and/ or death.

Neuronal degeneration in forebrain
Specialized histological techniques and the knowledge that

hyperthermia during exposures to amphetamines was necessary
for dopamine terminal damage were applied to laboratory animal

Figure 1. The effect of amphetamine (AMPH) on body temperature com-
pared to environmentally-induced hyperthermia (EIH) and normother-
mic controls. The results of one of the more recent studies in the
authors’ laboratory compares the hyperthermia observed during neuro-
toxic exposures to AMPH with that produced by EIH, which is very similar
to heat stroke. The temperature profiles of animals given either 4 doses
of either AMPH (n D 10) or normal saline (normothermic controls n D 9)
s.c. at an environmental temperature of 22.5�C are shown. Their temper-
ature profiles are compared to 2 groups of animals given 4 doses of
saline in an infant incubator held at either 38�C to 39�C (ave. �38.5, n D
6) or 39�C to 40�C (ave. �39.5, n D 4) which induced hyperthermia (EIH).
Animals at the higher incubator temperature became hyperthermic
much more rapidly and as a group had slightly higher peak tempera-
tures. They all had ataxia and hind limb dysfunction for 2 to 8 h after
cooling. The second group of EIH animals at the lower 38.5�C tempera-
ture had a temperature profile almost identical to the AMPH group. The
variability of the body temperatures of the AMPH group and the 38.5�C
EIH group after the 3 h time point was due to cooling on ice to prevent
death. The 39.5�C EIH group was not subjected to any further hyperther-
mia after 4 h since it would have been lethal (previous studies in the
authors’ laboratory).
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research starting in the mid-1990s. These studies resulted in the
identification of brain regions where METH and AMPH pro-
duced cell body/ somatic neurodegeneration. The use of Fluoro-
Jade to label degenerating neurons after AMPH andMETH expo-
sure in histological preparations of forebrain was key for the suc-
cess of these studies in the author’s and other laboratories.54-57

Areas of the somatosensory parietal cortex (vibrissae input) and
limbic system (piriform and amygdala cortex and tenia tecta) were
most sensitive. However, in animals in which the most pro-
nounced (� 41.5�C) and prolonged hyperthermia was produced
by AMPH, neurodegeneration was more extensive in the intrala-
minar regions of the thalamus and striatum.54 Hippocampal
degeneration was minimal unless seizures occurred in animals.
Neurotoxicity in the striatum, neocortex, and limbic regions of
human brain has been reported with METH abuse.58-64 For a
more complete description of how neurotoxic dosing regimens of
AMPH or METH interact with body temperature and seizures to
produce neurodegeneration in various brain regions, see Bowyer
et al. 2008.1 It is still not known the degree to which body temper-
atures must be increased by AMPH or METH to produce dopa-
mine terminal damage and neurodegeneration in humans.

The neurodegeneration observed in AMPH or METH animal
studies65 using lower doses which do not usually produce seizure
activity was restricted to the parietal cortex, and it was significantly

less than that produced by systemic administration of either kainic
or domoic acid (limbic cortex, hippocampus and cortex)66-68 or
3-nitroproprionic acid (striatum and thalamus).69-71 However,
starting in 1998 more pronounced types of neurodegeneration
found in limbic cortex, hippocampus and thalamus were observed
in rats givenmultiple doses of 15 mg/kg AMPH 54 and particularly
mice given single high doses (40 mg/ kg) ofMETH.72 Themost likely
explanation at the time was that these types of AMPH or METH
exposures produced high/ neurotoxic levels of glutamate in the synaptic
cleft or that ion channel dysfunction occurred due toMETH-induced
hyperthermia. However, there are other explanations.

Role of the Brain Vasculature in Neurodegeneration
Produced by AMPH and METH

Overt BBB disruption and vascular leakage
We observed in 1998 that vasculature damage might be

related to some types of AMPH-induced neurodegeneration. In
some instances, exposure to multiple doses of AMPH over an
8 h period could, in conjunction with extreme hyperthermia,
produce perivascular neurodegeneration in the thalamus and hip-
pocampus.54 Subsequently, the studies by Deng et al. 72 indi-
cated that a single very high dose of METH in mice could

Table 1. Effects of hyperthermia alone (EIH) compared to the toxicity of AMPH or METH exposures that are produced when hyperthermia occurs

Exposure Group

Physiological or Pathological Effect EIH AMPH or METH with 40�C
� Body Temp. < 41�C

AMPH or METH with 41.0�C � Body Temp. < 43.0�C

Dopamine Terminal Damage
in Striatum

None 50%< Depletion � 80% 80% < Depletion � 95%

**Parietal Cortex Neurodegeneration None Present but diffuse More prevalent at these body temperature ranges
Limbic Cortex Neurodegeneration minimal Present but diffuse Extensive if seizures occur
Thalamus Neurodegeneration None Present but diffuse More extensive at these body temp. ranges
Hippocampal Neurodegeneration None Minimal in rats but can be *Extensive if motor seizure activity occurs
Convulsions/ Behavioral Seizures **None Convulsions often occur in

mice but not in rats
Convulsions and status epilepticus

BBB disruption Yes Not in rat *but possibly
in mice

*Yes

Choroid Plexus Dysfunction/
Damage

Yes Not determined � EIH

aMAV Dysfunction/ Damage Yes Not determined > EIH
Elevated Serum **Myoglobin Increase< 2-fold 2-fold< Increase< 3-fold 3-fold < Increase< 10-fold
Elevated Serum **Bound

Urea Nitrogen
Increase � 2-fold Increase< 2-fold 2-fold < Increase< 3-fold

Elevated Serum **Alanine
Transaminase

***1-fold< Increase < 10-fold < 2-fold Increase � 4-fold

Blood Glucose � Normal 100 to 150 mg/ dL 60 to 100 mg/ dL 30 to 80 mg/ dL
Peripheral Immune

System Changes
Yes Yes Yes

Note that this table represents a summary of the findings of the authors’ laboratory or (in a few instances) several other investigators. The damage estimates
shown in the table for the given peak body temperature ranges with AMPH or METH are when these body temperatures are maintained for a duration of
� 3 h or more. Limbic cortex areas evaluated are piriform and the amygdala cortices.
a MAV is an abbreviation for meninges and associated cerebral cortical vasculature (includes all major cortical surface vasculature as well as pial arterioles).
*Damage is seizure dependent and is more prevalent with very high (> 20 mg/ kg) doses of AMPH or METH. It should be noted that overt motor seizures/
convulsions may not be necessary for neurodegeneration but that electrographic signs of epileptoid activity without convulsions is sufficient (from
communications with Dr. Denson Fujikawa).
**Pertains to rat data.
***Effects strain dependent.
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produce a much more pronounced neurodegeneration in the hip-
pocampus and striatum than that observed in previous experi-
ments evaluating METH and AMPH neurotoxicity. We
speculated that vascular damage and repetitive seizures (status
epilepticus) might play a role in such a very high dose effect, and
later experiments bore this out to be true with METH and
AMPH.1,19 These single, very high doses produced a rapid and
pronounced onset of hyperthermia and subsequently status epi-
lepticus resulting in a consistent breakdown of the BBB in the
amygdala, hippocampus and, in some instances, the striatum.
The neurodegeneration that subsequently occurs in these areas
approaches that produced by systemic kainic or domoic acid in
regards to the number (thousands) of degenerating neurons
observable in a 30 to 40 mm coronal sections seen in these
regions.

Others have reported that more moderate doses of METH
and AMPH could produce localized damage to the BBB in sev-
eral brain regions when hyperthermia occurred, and indicated
that hyperthermia induced by EIH (in a 38� to 40�C environ-
ment) alone could also result in BBB disruption and neurotoxic-
ity.73-75 As well, the combination of stress and METH appear to
exacerbate more moderate types of damage to vasculature.76 Our
research involving AMPH and METH has consistently indicated
that dopamine terminal damage could not be produced by EIH
alone.1,14,54 As well, diffuse neurodegeneration (somatic) in areas
of the brain, such as parietal and piriform cortex, were not
observed with EIH. Although studies in our laboratory indicate
that hyperthermia alone (EIH) produces BBB disruption, we
have observed that the pattern of the neurodegeneration and
magnitude that accompanies the disruption is much less than
that seen with AMPH and METH.1 In summary, there is sub-
stantial evidence that, when METH and AMPH produced
extreme hyperthermia, regional BBB breakdowns can occur,
which greatly enhance neurotoxicity. Such a disruption would
likely prevent the regulation of the composition of the extracellu-
lar constituents surrounding neurons in affected regions, which
could enhance seizure activity and neurodegeneration by most
mechanisms proposed to be involved in neurotoxicity (e.g., ROS
and excitotoxicity). It should be noted that the BBB disruption
that occurs after either AMPH or METH are normally rapidly
reversed, within 2 h after the end of hyperthermia (� 40�C),
except in cases where extensive hippocampal neurodegeneration
has occurred.1,19,77

Adverse effects of hyperthermia and amphetamines on
choroid plexus, meninges and cerebral surface vasculature:
a role in the exacerbation of neurotoxicity

One mechanism by which AMPH and METH may exacer-
bate neurodegeneration observed in the cortical regions (e.g.,
parietal or piriform cortex) of rat is through ischemia (decrease
in cerebral blood flow, CBF) produced by vasoconstriction.
This would result from AMPH and METH directly releasing
norepinephrine from the noradrenergic innervation regulating
the a1 noradrenergic receptors on pial arteries,78-80 and the
resulting vasoconstriction reducing CBF in the cortex. The
locus coeruleus is the other major noradrenergic input

associated with brain that directly innervates cortex.81,82 This
input has been shown to play a role in regulating cortical
blood flow,83 and has often been associated with global
decreases in CBF,84-86 which when combined with pial artery
constriction would further increase the likelihood of cortical
ischemia. However, more recent studies indicate that locus
coeruleus input into parietal cortex may actually increase CBF
through a and b noradrenergic receptors COX-2 and
GABAergic cortical neurons and reduce ischemia.87

Thus, the overall net effect of AMPH and METH on CBF
under neurotoxic and vasculotoxic conditions might not be easily
predicted. None the less, one animal study clearly showed that
METH was clearly capable of suppressing CBF during METH
exposure and even after METH levels had subsided.88 Further-
more humans abusing amphetamines can develop cerebral vascu-
lar accidents and have worse outcomes than those not abusing
amphetamines.89-91 Hypoxia lasting 24 h after exposure is also
induced in laboratory animals by high doses (8 mg/ kg i.v.) of
METH 92; however, the degree of hyperthermia and convulsive
activity was not reported. Clearly, AMPH- and METH-induced
vasospasms and the ischemia thus produce would be a factor that
could contribute to cortical neurodegeneration.

There is indication at the mRNA transcript level that regula-
tion of vascular tone, and possibly damage, in the striatum and
parietal cortex is somewhat altered by more moderate neurotoxic
exposures to AMPH and METH (those not producing repetitive
seizures or BBB leakage).43,93 The slight (<2-fold) increases in
mRNA for endothelial nitric oxide synthase (Nos3) and endothe-
lin 1 (Edn1) would be expected if ischemia or vascular endothe-
lial damage was occurring. The increase in Nos3 may be a
response mechanism to produce more nitric oxide and reverse
any maladaptive vasoconstriction present. The insult produced
by either AMPH or EIH to vasculature present in the choroid
plexus and the meninges and associated cerebral vasculature
(MAV) appears to be significantly greater.43,93 This effect could
be reflected in humans by the interaction of METH abuse and
the development of meningitis, which has been reported.94

Also, there are many more pronounced increases in genes
related to the immune system and inflammation in the choroid
plexus and MAV (even more so) after AMPH or EIH. The gene
expression changes in the MAV indicate that the lingering effects
of AMPH damage coincide and may induce the vasospasms and
prolonged decrease in CBF in the cortex discussed in the previous
paragraph. Large increases in lipopolysaccharide (LPS) binding
protein mRNA (Lbp) are observed in the choroid plexus and
MAV at 1 day after AMPH but not EIH. Lbp increases are not
seen in the parietal cortex and striatum after AMPH. Thus, in
MAV and choroid plexus, Lbp increases are a unique immune
response, which may be related to vascular damage to the
MAV.43 LPS binding protein is an important part of the innate
immune response, is a biomarker for sepsis and has been reported
to bind LPS from bacteria.95,96 Whether the dramatic increase of
Lbp in MAV after neurotoxic exposures to AMPH indicates an
increased presence of bacteria (presages sepsis?) or activation of
the innate immune system by other mechanisms remains to be
determined.
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In regards to the choroid plexus, previous studies indicate
that AMPH does not appear to affect it, with regards to vas-
cular and secretory cell damage, but that EIH is very detri-
mental to the choroid plexus.97,98 Data from our laboratory
showed a greater effect of AMPH on the choroid plexus then
that reported by others.43 Differences seen between the physi-
ological effects of AMPH in our study with those reported in
the earlier study, may explain the greater adverse effects. That
is, more prolonged neurotoxic exposure to AMPH produced
both severe hyperthermia and hypertension which was not
observed in the earlier study with a single dose of AMPH.98

In addition, adverse effects produced by hyperthermia alone
(EIH) are likely as great, or greater, than AMPH.43 Damage
to the vascular and secretory cells present in the choroid
plexus in a previous study involving hyperthermia or hyper-
tension have resulted in neurotoxicity involving some neuro-
degeneration.97 However, our findings over the years have
found that extreme, even to a greater degree than that pro-
duced by AMPH or METH; hyperthermia alone (EIH) does
not produce the histological signs of neurodegeneration
resembling AMPH or METH neurotoxicity.

Indirect Adverse Effects on Vasculature Due
to the Muscle, Liver in Kidney Damage Produced

by Hyperthermia and Amphetamines

The linkage between amphetamines and rhabdomyolosis,
which produces muscle damage, goes back over 40 years.99-102

Also, the correlation between the magnitude of hyperthermia,
serum myoglobin levels (resulting from muscle damage) and neu-
rotoxicity produced by AMPH is very strong 103 as is the correla-
tion between myoglobin and kidney damage.104,105 However,
this is not proof that myoglobin levels are necessarily a causative
effect in AMPH neurotoxicity. An equivalent hyperthermia pro-
duced by EIH resulted in a lesser non-statistically significant
increase in myoglobin. When hemoglobin is released during
hemolysis it can cause vascular toxicity.106,107 One would suspect
that myoglobin, which like hemoglobin is heme containing and
binds oxygen, may also be vasculotoxic. However, there is sur-
prisingly little in the literature regarding the relationship between
myoglobin in the circulating blood and toxicity to vasculature
endothelium.

Also, there is some correlation between neurotoxic AMPH
exposures with respect to blood nitrogen (BUN) but EIH can also
produce similar significant increases in BUN indicating it is neces-
sarily dependent on exposure to neurotoxic doses of AMPH.103

The muscle damage produced by neurotoxic doses of AMPH,
when hyperthermia occurs, also results in increased circulating con-
centrations of other enzymes such as creatine kinase.103 Both the
creatine kinase and myoglobin increases (5- to 6-fold control) were
more pronounced than BUN levels (2- to 3-fold control). Although
the increase inmyoglobin and creatine kinase in blood could be due
to renal damage, we found no evidence of renal damage histologi-
cally. Therefore, it is a plausible that significant increases in many
types of muscle-related proteins, in addition to myoglobin and

creatine kinase, appear in blood when amphetamine produces pro-
nounced hyperthermia. Thus, we speculate that some vascular
damage could be produced in the MAV, choroid plexus and the
remaining brain vasculature as a result of proteins released by mus-
cle during neurotoxic exposures to amphetamines. The exact mech-
anism by which this vascular damage may occur through muscle-
derived serum proteins has yet to be explored.

Neurotoxic doses of METH can produce liver necrosis and
elevate blood levels of ammonia.108 However, this is very likely
due to hyperthermia since very high doses have been reported
not to produce histopathology when conducted under normo-
thermic conditions. When histopathology and adverse liver
enzyme changes present in blood serum are compared, EIH and
neurotoxic exposures to AMPH have similar adverse
effects.103,109 Furthermore, liver necrosis is not necessary for
either dopamine terminal damage or neurodegeneration but
lesser perturbations in liver function still may exacerbate such
processes.103 Finally, although AMPH can significantly elevate
liver-specific alanine transaminase, and ammonia, in some strains
of Sprague-Dawley rats,108 it minimally elevates this enzyme in
other strains when AMPH produces neurotoxicity.103 One mech-
anism by which AMPH disruption of liver function may influ-
ence neurotoxicity is through liver glycogen depletion.103 This
glycogen depletion may be behind the low blood glucose levels
(70 to 40 mg/ dL) that normally occur as a result of neurotoxic
exposures to AMPH and always precede body tremors and death
(levels lower than 25 mg/ dL) (Bowyer, unpublished data).

Amphetamine and Hyperthermia Activation of
the Circulating Immune System and Neurotoxicity

Neuroinflammation is a primary factor in neurological dis-
eases such as multiple sclerosis.110-113 Neuroimmune system dys-
function more recently has also been implicated to varying
extents in the pathogenesis of Alzheimer’s as well as being a hin-
drance to treating the disease.114-117 Also, neuroinflammation
has been implicated in Parkinson’s disease.118-120 Neuroinflam-
mation (microglial activation and astrocytosis) is known to occur
in brain regions where terminal damage and neurodegeneration
is found when METH and/ or AMPH produce pronounced
hyperthermia.18,54,121-126 On the other hand, hyperthermia alone
(EIH) produces minimal or no neuroinflammation in these brain
regions. The importance of these effects in humans has been
exemplified by the exacerbation of HIV neuropathology and
drug addiction.127-129 However, the research to date has not sup-
ported that neuroinflammation exacerbates the neurotoxicity to
dopaminergic terminals produced by amphetamines but that
neuroinflammation instead results secondarily to neurotoxic-
ity.123,130 Little research information is available as to whether
neuroinflammation exacerbates the neurodegeneration seen in
the various brain regions produced by AMPH or METH.

Neurotoxic exposures to AMPH produce greater immune
responses in the MAV than other brain regions and choroid
plexus.43,93 Hyperthermia has a significantly lesser effect on the
expression of genes related to inflammation in MAV. Somewhat
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unexpectedly, the immune response in the choroid plexus to
AMPH was much less than the MAV and was not that different
from the immune response produced by EIH. In the case of the
MAV, AMPH produces increases in the transcripts for the cell
determinant protein Cd14 and Lbp, which are genes relatively spe-
cific for microglia.43 It is not yet known whether this translates into
an increase in the number of macrophages present or an increased
expression within individual macrophages. Additionally, it is not
known whether the changes are occurring in the unique macro-
phages resident on the meningeal surfaces or are circulatory macro-
phages adhering to the endothelial cells in the lumen in damage
areas of the vasculature in the MAV. It remains to be determined
whether or not the increased immune response in MAV evoked by
AMPH influences neurodegeneration within the underlying cortex.

Less is known about how neurotoxic exposures to amphet-
amines and hyperthermia affect the immune response tissues out-
side the brain and whether these changes influence the neurotoxic
effects of amphetamines but information is emerging.131 Initial
published results and ongoing studies indicate that the significant
immune responses in the circulating blood evoked by neurotoxic
exposures to AMPH and hyperthermia alone (EIH) are often
pronounced just prior to the onset of neurotoxicity to at least
1 day after exposure103 (elevated protein levels IL-6, IL-10; and
mRNA for IL-1b, Cd8a, Cxcr2, Itgam, and Tnfrsf1a unpublished
data in GEO, NCBI; data file GSE29733). Tumor necrosis fac-
tor a levels were elevated 2-fold compared to control 1 day post
AMPH. AMPH was observed to produce significantly higher lev-
els of myoglobin in the serum than EIH indicating a greater dam-
age to muscle. The release of proteins from muscle could well
serve as damage associated molecular proteins (DAMPs) and acti-
vate the immune system.132,133 DAMPs appear to play an impor-
tant role in the inflammation process in pancreatitis.134 It is
interesting to note that AMPH, but not EIH, can trigger a tre-
mendous increase in the expression of mRNA (Reg3a and Reg3b,
biomarkers for pancreatic inflammation) in the MAV (but not
blood, cortex, striatum or choroid plexus).43 It is not known how
the cell types expressing these genes are affecting meningeal func-
tion and whether it exacerbates cortical neurodegeneration.

Activation of the immune system could also occur through
damage to the liver which can be produced by hyperthermia
(EIH) as well as AMPH.103 Regardless of how the immune
response evoked by amphetamines in the circulating blood
occurs, almost nothing is known as to how this alters the neuro-
toxic effect in the brain. There are reports that activating the
immune system with LPS can exacerbate damage to dopaminer-
gic systems by neurotoxins but this does not appear always to be
the case with amphetamines.135 It is not known whether this is
the case for other regions of the brain, such as parietal cortex,
thalamus and hippocampus, where amphetamines can produce
neurodegeneration. Finally, very little is known as to whether
activation of the immune response in circulating blood and the

periphery plays a part in the transient psychosis that can occur
with the abuse or prolonged use of amphetamines.136-138

Summary

In animal models that evaluate the neurotoxicity of AMPH
and METH, it is quite clear that hyperthermia is one of the
essential components necessary for the production of histological
signs of dopamine terminal damage and neurodegeneration in
cortex, striatum, thalamus and hippocampus. When animals
remain normothermic during AMPH or METH exposure, only
transient depletions of striatal dopamine occur (1 month or less)
along with rare sporadic occurrences of neurodegeneration in the
parietal and piriform cortex. The dopamine terminal damage
and neurodegeneration that occur when amphetamines produce
hyperthermia are likely due, in part, directly to hyperthermia
increasing ROS, protein misfolding/ dysfunction and altering
ion channel permeability in the affected neurons. Hyperthermia
can also indirectly enhance neurodegeneration produced by
amphetamines through the triggering of repetitive seizure activ-
ity. The generation of repetitive seizures and status epilepticus
that can be produced by AMPH or METH is likely due to a
breakdown in the BBB in the amygdala and hippocampus.
Growing information also implicates that hyperthermia during
exposure to amphetamines may affect the neurodegeneration
produced indirectly through MAV dysfunction (vasospasm and
ischemia) and damage to the choroid plexus (adverse effects on
CSF function). Finally, it is possible that muscle and liver dam-
age that are exacerbated by hyperthermia play significant roles in
the neurotoxicity of amphetamines through releasing cellular
proteins and other toxic substances into the circulation and/ or
activation of the systemic immune system which might subse-
quently exacerbate neuroinflammation.
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