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There is evidence that psoriatic arthritis is closely linked to angiogenesis. Morphological changes described in blood vessels of
psoriatic arthritis joints suggest the presence of a dysregulated angiogenesis resulting in the formation of immature vessels. Even if
the reason of this inefficient angiogenesis is still unclear, an imbalance between angiogenic and antiangiogenic factors is probably
responsible for inducing a dysregulated angiogenesis in psoriatic arthritis, which seems to be involved in its pathogenesis and
clinical features. Nevertheless, among chronic arthritides, while angiogenesis in rheumatoid arthritis has been largely studied with
a great amount of literature data, limited data on angiogenesis role in psoriatic arthritis are available. This review article is focused
on current knowledge on the mechanisms responsible for dysregulated angiogenesis in psoriatic arthritis.

1. Introduction

Psoriatic arthritis (PsA) is a chronic arthritis, associated with
psoriasis, classified with seronegative spondyloarthritis. It is
characterized by involvement of metacarpophalangeal and
interphalangeal joints of the hands and feet, as well as ankles
and knees, often with extra-articular involvement, including
eye and/or bowel involvement, sometimes with sacroiliac
joints and/or spinal involvement. Joint lesions in PsA are
characterized by an erosive arthritis with periosteal reactions
occurring in enthesitis and syndesmophytes occurring in
spondylitis. In particular, enthesitis and dactylitis are dis-
tinctive clinical features of PsA. As demonstrated by ultra-
sonography and magnetic resonance imaging, enthesis may
be the first site involved by inflammation in PsA [1]. Other
PsA distinctive features are the absence of serological tests for
rheumatoid factor and anti-cyclic citrullinated peptide (CCP)
antibodies. PsA is often associated with HLA-B27 in patients
with axial involvement [2]. Although the global features of
synovitis are not different between rheumatoid arthritis (RA)
and PsA, synovium inflammation in PsA is characterized

by more intense hypervascularity and infiltration of poly-
morphonuclear leukocytes [3, 4]. Even if PsA pathogenesis
is still unclear, angiogenesis plays a crucial role in the early
events in PsA. This review article is focused on the analysis
of the current knowledge on the mechanisms responsible for
angiogenesis dysregulation occurring in PsA.

2. Angiogenesis

Angiogenesis, the formation of new capillaries from preexist-
ing vessels, plays an important role in synovitis pathogenesis.
Angiogenesis begins with the production of angiogenic fac-
tors which are responsible for the activation of endothelial
cells, which, in turn, secrete proteolytic enzymes such as
matrix metalloproteinases (MMPs) and plasminogen activa-
tors.These enzymes degrade the basementmembrane and the
perivascular extracellular matrix. Subsequently, endothelial
cells proliferate and migrate into the perivascular area. New
vessel formation is then completed by lumenation of these
“primary sprouts” forming “capillary loops” and by the
synthesis of a new basement membrane. The proliferation
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of endothelial cells of these “primary sprouts” and their
migration lead to the generation of secondary and further
generations of vascular sprouts [5].

The regulation of these events is due to the net balance
between angiogenic and antiangiogenic factors [6]. Vascular
endothelial growth factor (VEGF) and fibroblast growth
factor (FGF) family members, platelet-derived growth factor
(PDGF), tumor necrosis factor-alpha (TNF-𝛼), transforming
growth factor-alpha and transforming growth factor-beta
(TGF-𝛼 and TGF-𝛽), interleukins (ILs), chemokines, angio-
genin, and angiopoietins (Angs) are the main angiogenic
factors. On the other hand, angiostatin, endostatin, and
thrombospondin inhibit angiogenesis [7–9]. An imbalance
between these positive and negative factors, with a predomi-
nance of angiogenic factors, or downregulation of inhibitory
regulators, is involved in impaired angiogenesis which has
been observed in several autoimmune diseases [6, 10, 11].

Angiogenesis appears to be a first-order event in psoriatic
arthritis, as in RA. Alterations in the vascular morphology
of the nail folds of patients affected by psoriasis without
nail disease have been seen by microscopic examination
[12], as well as an increase in the number of blood vessels
and morphological vascular alterations, such as tortuous and
elongated blood vessels, which have been observed in the PsA
synovial membrane [13, 14].

Morphological vascular alterations in PsA synovial tissue
appear to be manifestly distinct from that observed in RA.
In fact, PsA is mainly characterized by tortuous, bushy,
elongated vessels, whereas RA is prevalently characterized by
straight vessels with regular branching [14].This suggests that
angiogenic pathways are different between PsA and RA, just
like the pathogenic mechanisms.The morphological chances
described in blood vessels of PsA joints are also observed in
psoriatic skin lesions and suggest the presence of a dysreg-
ulated angiogenesis resulting in immature vessels [15]. Nev-
ertheless, while angiogenesis in RA has been largely studied
and a great amount of data is present in the literature [10, 16],
there are only limited data on the role of angiogenesis in PsA.

3. The Role of Hypoxia

The role of hypoxia has been extensively studied in RA, while
few data are available in PsA. Hypoxia in the rheumatoid
joint has been demonstrated many years ago by direct
measurements on synovial fluid samples from RA patients
[17, 18]. Three mechanisms have been suggested to explain
hypoxia in RA synovial tissue: (1) the intermittent closing
of capillaries for the increased intra-articular pressure due
to synovial hyperplasia, synovial fluid effusion, and joint
movements within the rigid joint capsule; (2) the high
metabolic demand due to the migration and proliferation
of inflammatory cells, with an increment of the distance
between proliferating cells and nearby blood vessels; (3)
the increased expression of angiotensin converting enzyme
(ACE) that induces the formation of angiotensin II which
is responsible for vasoconstriction and enhancing hypoxia
[19]. It is conceivable that the first two mechanisms may also
be involved in PsA, while no data are available about ACE
expression in PsA.

In PsA, low in vivo oxygen levels have been demonstrated
in PsA synovium [20]. Hypoxia is involved in inducing the
expression of angiogenic chemokines, MMPs, and hypoxia
inducible factor (HIF) [21–25]. Expression of HIF-1𝛼 by
macrophages has been observed principally close to the
intimal layer but also in the subintimal area in rheumatoid
synovium [26]. HIF induces VEGF transcription via hypoxia
response element (HRE) interaction in the promoter ofVEGF
gene and is recognized as a key event in angiogenesis induc-
tion [27]. HIF-1𝛼 subunit stability is regulated by oxygen
levels through the enzyme prolyl hydroxylase (PHD) [28].
Hypoxia is also responsible for inducing the expression of
nuclear factor-𝜅B (NF-𝜅B) via decreased PHD-dependent
hydroxylation of inhibitor of 𝜅B kinase 𝛽 (IKK𝛽) [29].

Hypoxia induces the formation of reactive oxygen species
(ROS), via activation of cellular systems, such as the mito-
chondrial electron transport chain and NADPH oxidase
(NOX). ROS are responsible for oxidative damage that
modifies the structure of DNA, proteins, and lipids and
are involved in angiogenesis, endothelial cell differentia-
tion, proliferation, and migration [30–33]. A significantly
increased expression of NOX-2, which is the membrane-
bound catalytic subunit of NOX, has been observed in a
study on fifty-four patients with active inflammatory arthritis
(33 with RA and 21 with PsA) [34]. High NOX-2 expression
was correlated with low synovial PO2 levels and with high
expression of VEGF, Ang-2, factor VIII, neural cell adhesion
molecule, and 𝛼-smooth muscle actin. Moreover, a decrease
in NOX-2 expression and an increase in in vivo synovial PO2
levels have been found in patients treated with anti-TNF-𝛼
[34].

Hypoxia has been correlated to altered bioenergetic and
increased metabolic turnover in inflamed joints [35]. In
fact, hypoxia is involved in mitochondrial dysfunction and
induces a switch to glycolysis, supporting abnormal angio-
genesis. Hypoxia and increased glycolytic metabolites are
responsible for the expression of HIF-1𝛼 and NF-𝜅B. These
transcription factors induce the expression of angiogenic
growth factors, inflammatory cytokines, and extracellular
membrane components which in turn are involved in further
glycolysis [36].

4. Angiogenic Factors in PSA

Increased levels of several angiogenic factors, such as VEGF,
TGF-𝛽, PDGF, and Angs, have been found in psoriasis
[37, 38]. Increasing evidence underlines the importance of
numerous angiogenic factors also in PsA (Table 1). Angs
and VEGF expression has been demonstrated in perivascular
areas of PsA synovial membrane and increased expression of
VEGF and TGF-𝛽 has been found in the synovial fluid in
early PsA [15, 39]. Ang-2 andVEGF expression in the synovial
membrane has been found to be significantly higher in early
PsA than in RA. Moreover, significantly higher VEGF and
TGF-𝛽 levels have been seen in the synovial fluid in early
PsA compared to RA [40]. MMP-1 and MMP-3 have been
described in the sublining and lining layer cells in the synovial
tissue in PsA [41]. Moreover, MMP-9 levels have been found
to be significantly higher in the synovial fluids of early PsA
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Table 1: Angiogenic agents involved in PsA.

Angiogenic factors in PsA
VEGF [40, 47, 61]
TGF-𝛽 [40]
Ang-1 [40]
Ang-2 (both stimulator and inhibitor) [40, 61]
MMP-9 [42]
TNF-𝛼 [59–62, 67]
VEGF: vascular endothelial growth factor; TGF-𝛽: transforming growth
factor-𝛽; Ang: angiopoietin; MMP-9: matrix metalloproteinase-9; TNF-𝛼:
tumor necrosis factor-𝛼.

than in early RA. In the synovial membrane, MMP-9 levels
have also been found to be higher in early PsA than in early
RA, but without a significant difference [42].

Synovial vascular morphology appears to be related to
angiogenic factors, such as VEGF, Angs, and MMP-9. In
PsA, distinct vascular morphology, characterized by tortuous
vessels, has been correlated with VEGF levels [40]. Moreover,
in PsA lining layer hyperplasia is less evident than in RA,
probably due to impaired apoptosis of lining cells and
decreased presence of CD68+ macrophage-like synoviocytes
[43].

The concomitant expression of these angiogenicmolecules
in PsA joints plays a key role in angiogenesis induction, as
demonstrated by the more intense activation of an important
angiogenic signaling pathway, theNOTCH-DLL4, after stim-
ulation of VEGF and Ang-2 in combination compared with
either VEGF or Ang-2 alone [44].

Accumulated evidence shows that PDGF has a key role in
the recruitment of pericytes to newly formed vessels, where
their primary function is to maintain the vessel integrity.
In inflammatory arthritis, both immature and mature blood
vessels have been found in the synovium. The presence
of immature vessels may be responsible for instability of
endothelial–pericyte interactions [45].

VEGF and its receptors, VEGFR-1/Flt1 and VEGFR-
2/KDR, have been demonstrated in PsA synovial tissue,
suggestingVEGF’s role in inducing angiogenesis and vascular
permeability [39, 46]. In the synovial tissue, VEGF may be
derived from endothelial and synovial cells. Synovial VEGF
levels may be upregulated by cytokines, such as IL-1 and
TNF-𝛼, secreted by inflammatory cells and synoviocytes [46].
Increased levels of VEGF have also been observed in serum
obtained from PsA patients [47], produced by macrophages,
fibroblasts, neutrophils, and platelets [48, 49]. Nevertheless,
Przepiera-Będzak et al. [50] have found comparable VEGF,
EGF, and FGF-2 serum levels in PsA patients and controls,
even if the authors admit the presence of several limitations in
their study including a small number of patients and no group
of patientswithout treatment. In the same study, serumVEGF
levels correlated with serological and clinical indicators, such
as CRP and BASFI (Bath Ankylosing Spondylitis Functional
Index), and disease duration [50]. VEGF polymorphisms
have been associated with the onset of psoriasis [51, 52]. A
low expression of the T allele of VEGF rs3025039, known as

+936 C/T, has been found in PsA patients when compared
with controls [53]. This suggests that this polymorphism
has a protective role against the development of PsA. It is
interesting to underline that the frequency of the 936 T
allele is significantly increased in RA patients, suggesting that
differentmechanisms are involved in angiogenesis in PsA and
RA [54].

Inflammatory cytokines involved in PsA pathogenesis,
such as TNF-𝛼, also have angiogenic effects. TNF-𝛼 is
involved in the induction and upregulation of angiogenic
agents, such as VEGF [15]. A similar role is also conceivable
for IL-1 [15]. In synovial fibroblasts, TNF-𝛼, via stimula-
tion of Toll-like receptor-2 (TLR-2) pathway, induces the
translocation of NF-𝜅B, which is responsible for inducing
the expression of proinflammatory cytokines and MMPs
[46, 55]. IL-17, produced by T-helper-17 via stimulation of
IL-23, induces upregulation of proinflammatory cytokines,
neutrophils chemiotaxis, endothelial cell migration [46],
suggesting a role for IL-17 and IL-23 in angiogenesis in
psoriatic arthritis. Oncostatin M (OSM) is a member of the
IL-6 family, which has a role in arthritis pathogenesis [56].
Its involvement in angiogenesis has been seen in RA [57].
More recently, a role for OSM has been described in IL-17
regulation [58]. Thus, it is conceivable that OSM may play a
role in PsA angiogenesis.

Therapies with TNF-𝛼 inhibitors have been associated
with reduced levels of VEGF in sera and skin of patients
affected by PsA [59, 60]. Immunohistochemical studies on
synovial and psoriatic lesional skin biopsies obtained from
PsA patients treated with anti-TNF-𝛼 agents have demon-
strated changes in numerous factors involved in angiogenesis
regulation [61, 62]. Lower levels of VEGF and VEGFR-2
and a reduced expression of stromal cell-derived factor 1
(SDF1)/CXC motif chemokine 12 (CXCL12) and Tie2 have
been found in PsA patients treated with anti-TNF-𝛼 agents
[61]. Tie2 is a specific receptor for Ang-1 and Ang-2. The
Angs and Tie-2 are also important regulators of blood vessel
growth, maturation, and function. Ang-1 is characterized by
angiogenic effects, whereas Ang-2 has generally an opposing
action [63]. Ang-2 levels increased after anti-TNF-𝛼 therapy
[61]. By considering that Ang-2 acts as both a Tie-2 antag-
onist and agonist [64], it is conceivable that Ang-2 induces
angiogenesis in the presence of VEGF, whereas it is involved
in vascular regression when VEGF is downregulated [65].
As suggested by Cañete et al. [61], an increase in the Ang-
2/VEGF ratio after anti-TNF-𝛼 treatment, as well as Tie2
reduction, may be responsible for the consistent reduction
of synovial neovascularization in PsA. By considering that
studies have shown a synergistic effect of TNF-𝛼 and Angs in
driving inflammation and angiogenesis [66], it is conceivable
that this could have a role in partial responders to anti-TNF-𝛼
treatment.

Finally, a significant reduction in the expression ofMMP-
9 and adhesion molecules, such as 𝛼v𝛽3 integrin E-selectin,
intercellular adhesionmolecule-1 (ICAM-1), and vascular cell
adhesion molecule-1 (VCAM-1), and in the number of blood
vessels in dermis and/or synovium has been demonstrated
after anti-TNF-𝛼 therapy [62, 67].
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5. Concluding Remarks

Alterations in blood vessels’ morphology in joints and psori-
atic skin lesions suggest the presence of a dysregulated angio-
genesis resulting in immature vessels in PsA [15]. Pathogenic
mechanisms of this inefficient angiogenesis in PsA are still
unclear. However, an imbalance between angiogenic and
antiangiogenic factors is probably involved in inducing a
dysregulated angiogenesis in PsA, which seems to play an
important role in its pathogenesis and clinical implications.
Further studies are needed to explain the role of angiogenesis
in the pathogenesis of PsA and to clarify the mechanism
responsible for angiogenesis dysregulation.
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