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Abstract
Purpose of Review Glucose management in the hospital is difficult due to non-static factors such as antihyperglycemic and 
steroid doses, renal function, infection, surgical status, and diet. Given these complex and dynamic factors, machine learning 
approaches can be leveraged for prediction of glucose trends in the hospital to mitigate and prevent suboptimal hypoglycemic 
and hyperglycemic outcomes. Our aim was to review the clinical evidence for the role of machine learning–based models 
in predicting hospitalized patients’ glucose trajectory.
Recent Findings The published literature on machine learning algorithms has varied in terms of population studied, outcomes 
of interest, and validation methods. There have been tools developed that utilize data from both continuous glucose moni-
tors and large electronic health records (EHRs). With increasing sample sizes, inclusion of a greater number of predictor 
variables, and use of more advanced machine learning algorithms, there has been a trend in recent years towards increasing 
predictive accuracy for glycemic outcomes in the hospital setting. While current models predicting glucose trajectory offer 
promising results, they have not been tested prospectively in the clinical setting.
Summary Accurate machine learning algorithms have been developed and validated for prediction of hypoglycemia and 
hyperglycemia in the hospital. Further work is needed in implementation/integration of machine learning models into EHR 
systems, with prospective studies to evaluate effectiveness and safety of such clinical decision support on glycemic and other 
clinical outcomes.

Keywords Machine learning · Artificial intelligence · Glucose · Insulin · Hospital · Diabetes

Introduction

Diabetes mellitus (DM) is a prevalent condition in the hospi-
tal, present in nearly 1 in 5 inpatients [1]. Considering how 
various dynamic factors (e.g., nutritional status, steroid and 
antihyperglycemic medications, renal function, and infection) 
may influence glucose homeostasis over a relatively short 
time frame, it can be difficult to attain or maintain glycemic 

targets in hospitalized patients [2, 3]. Attaining and maintain-
ing euglycemia is important in the hospital as both hypergly-
cemia and hypoglycemia have been associated with increased 
morbidity, mortality, and healthcare expenditures. [4–7]

To address the challenge of glycemic management 
throughout a patient’s evolving and often complex hospi-
tal course, there has been growing interest in and use of 
clinical decision support tools that provide insights into 
glucose trends. Machine learning using large electronic 
health record (EHR) data has been increasingly utilized 
to facilitate clinical decision-making for a broad range of 
clinical conditions [8, 9]. In the ambulatory setting, there 
is a large body of evidence for machine learning–based 
glucose and insulin dosing prediction, but there are fewer 
tested algorithms in hospitalized patients [10]. Tools 
that have been developed to predict glucose trajectory 
include continuous glucose monitoring (CGM) technol-
ogy and machine learning models based on point-of-care 
and serum glucose measurements or CGM [11]. In recent 
years, there has been a growing interest in using CGM 
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in the hospital setting as a decision support tool, akin to 
telemetry monitoring [12]. However, due to challenges 
associated with employing CGMs in the hospitalized set-
ting, there has also been interest in employing non-CGM-
based glycemic prediction algorithms using large EHR 
datasets. While glycemic prediction models do not neces-
sarily recommend to a provider the best course of action to 
maintain euglycemia, they can offer insights into glycemic 
trends to guide therapeutic adjustments in the antihyper-
glycemic regimen.

The purpose of this review is to summarize machine 
learning–based models and clinical decision support tools 
for glycemic prediction in hospitalized patients. Our review 
focuses on the methodology used, hospital setting (ICU 
vs. non-ICU), model performance, and impact on clinical 
outcomes.

Machine Learning Overview

Machine learning is the computational process of taking an 
input of data (i.e., independent variables) and an output (i.e., 
dependent variable) and uses different statistical rules based 
on the parameters of each model to create an algorithm that 
represents the relationship between the raw data and the out-
put. Machine learning has been used throughout medicine 
to find patterns in genome sequencing, improve diagnostic 
pathology, and filter relevant problems during a patient’s 
admission [13]. EHR data is at the forefront of machine 
learning techniques due to the amount of raw information it 
possesses, and has been used to predict various disease phe-
notypes or diagnoses (e.g., congestive heart failure, chronic 
obstructive pulmonary disease). [14]

Within the field of diabetes, machine learning has been 
implemented broadly to improve detection of diabetes 
diagnosis [15] and complications [16], cardiovascular risk 
stratification [17], and insulin dosing [18]. An early applica-
tion of machine learning in diabetes was a neural network 
model that achieved a sensitivity and specificity of 0.76 in 
predicting the onset of diabetes [19]. Since then, landmark 
studies in the field have included a gradient boosting model 
that predicts glucose response prediction based on personal 
and microbiome factors [20] and a deep learning model 
that identifies diabetic retinopathy [21]. Most notably, an 
initial closed-loop insulin delivery system was based on a 
rules-based model; [18] since then, bi-hormonal artificial 
pancreas technology has been associated with improved gly-
cemic control when compared to sensor-augmented insulin 
pump therapy [22]. Over the past few years, there has been 
growing scientific interest in the use of machine learning 
with large EHR datasets to predict glucose trends or required 
insulin doses in hospitalized patients.

Phases of Machine Learning Research

Figure  1 outlines the development phases of machine 
learning–based research with application to the clinical 
topic of inpatient glycemic prediction [23]. These steps 
include problem selection, data collection, machine learn-
ing development, model validation, assessment of impact, 
and deployment and monitoring [24]. It is important to 
recognize that key differences in each of these phases of 
machine learning research will influence model results, 
comparability, and generalizability.

Problem Selection and Study Population

The first step in machine learning development is defin-
ing the study problem and population of interest. The 
study problem defines the dependent variable, specifically 
the outcome that is being predicted (i.e., hypoglycemia 
over the next 24 h, hypoglycemia during any portion of a 
patient’s admission, etc.). For inpatient glycemic predic-
tion, potential populations include patients with known 
diabetes or specific type of diabetes (type 1 vs. type 2), 
patients with acute/stress hyperglycemia, and exposure to 
specific anti-hyperglycemic medications; populations may 
be limited to ICU or general floor patients. Selection of 
the study population will directly affect the generalizabil-
ity and clinical application of the model. For example, a 
machine learning model derived from patients with only 
diagnosed T2DM at the time of admission could not be 
universally applied to all patients with diabetes.

The method of evaluating model performance (i.e., how 
accurately the model predicts the outcome in either past 
or future patients) will also be driven by the problem of 
interest. For example, if the problem is predicting the next 
glucose measurement based on CGM, quantitative values 
for the error, such as mean average error, can be used to 
measure how far a prediction deviates from the true value; 
however, if clinical context is more valued than quantita-
tive accuracy and the goal is to properly treat patients, 
Clarke error grid proportions can be reported [25]. If the 
problem is prediction of hypoglycemia or hyperglycemia, 
these binary outcomes can be reported as sensitivity/spec-
ificity, positive and negative predictive values, positive 
and negative likelihood ratios, or area under the receiver 
operating curve (AUC) [26]. AUC relates the tradeoff a 
model makes between sensitivity and specificity—a higher 
AUC indicates overall higher sensitivity and specificity. 
Generally, an AUC of 0.5 represents no discriminatory 
value, 0.7–0.8 is considered acceptable, and greater than 
0.9 is considered outstanding. It is worth noting that for 
rare outcomes such as hypoglycemia, the AUC may not 
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sufficiently quantify the accuracy of a model because of 
the imbalance between events (hypoglycemia) and non-
events. In such cases, a precision-recall plot may be more 
informative. [27]

Data Extraction and Processing

After defining the study question and population, data related 
to clinical predictors and the outcome measure must be 
extracted from the EHR. Challenges at this stage include the 
availability of predictor variables and the ease of extracting 
relevant information from within the EHR. A collaborative 
and iterative approach between clinical content experts and 
EHR vendor certified analysts is recommended to identify 
and validate the data elements and sources. Since machine 
learning entails use of data from thousands of patients, 
another important consideration at this is ensuring the secu-
rity of the data and minimizing breach of confidentiality by 
using secure virtual environments for data analysis and con-
sidering use of limited (deidentified) datasets when possible.

After a raw dataset is assembled, it must undergo “data 
tidying,” which consists of organizing the dataset in such a 
way that it is usable to answer the question at hand based 
on the defined exposure variables, index unit of observation 

(e.g., calendar day, patient day, each glucose reading), and 
the prediction horizon (e.g., next glucose reading, next 24 h, 
remainder of admission). For example, if a machine learning 
algorithm attempts to predict hypoglycemia every calendar 
day but the dataset was extracted for every glucose observa-
tion, the dataset will need to be constructed longitudinally 
such that each row represents the index unit of observation 
(e.g., calendar day).

Moreover, exposure variables must be temporally related 
to the outcome variable such that all exposures occurred 
prior to the outcome (i.e., insulin doses administered in the 
previous 24 h to predict glucose values in the next 24 h). In 
some cases, machine learning models have used aggregate 
data across an entire patient stay to predict glycemic out-
comes occurring at any time during admission, which is in 
fact more of a cross-sectional design (association) rather 
than longitudinal design (prediction). When insulin or other 
medications are being used as relevant exposure variables, 
one should consider the pharmacokinetic profile of the dif-
ferent insulin types to determine insulin dose on board at 
the time of the prediction. Similarly, glucocorticoids, which 
can have a significant influence on glucose homeostasis, 
may need to be normalized to a common equivalent dose 
(e.g., hydrocortisone or prednisone equivalents) and their 

Fig. 1  Phases of research in machine learning models for inpatient glucose management. (ICU intensive care unit, CGM continuous glucose 
monitor, TIR time in range, TAR  time above range, RCT  randomized controlled trial, ICD International Classification of Diseases)
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pharmacokinetic profile would need to be accounted for to 
determine the active glucocorticoid dose at the time of the 
index prediction. These data processing steps can be labor 
intensive, requiring a series of data merges, collapsing of 
data into summary measures, and computations.

Machine Learning Development

Defining the Outcome

The next key step is defining the outcome of interest, and 
variation among different research groups in defining 
glucose-related outcomes will influence model perfor-
mance and inter-model comparability. For example, stud-
ies exploring hypoglycemia may use different cutoffs (glu-
cose ≤ 70, < 70, < 54, < 50, < 40 mg/dl, etc.), and may apply 
different criteria to distinguish iatrogenic from spontaneous 
hypoglycemia. Similarly, various definitions of controlled 
glucose or hyperglycemia could be considered based on mean 
glucose values, peak glucose values, or proportion of read-
ings within a defined range (e.g., 70–180 mg/dl). Differences 
in glycemic outcome definitions will have a direct effect on 
outcome prevalence and, accordingly, model performance 
(sensitivity and specificity). [28] For example, choosing more 
restrictive hypoglycemia cutoffs (< 54 mg/dL vs. < 70 mg/dL) 
or narrowing the prediction horizon (hypoglycemia with next 
glucose measurement vs. at any time during admission) will 
decrease the prevalence of the outcome, thereby affecting the 
sensitivity and specificity of the model (i.e., it can be harder 
to accurately predict a more rare outcome). [29]

Defining the Prediction Horizon

The prediction horizon (i.e., how far ahead the model 
attempts to predict the outcome) will have important impli-
cations on clinical relevance, usability, and model perfor-
mance. For example, a shorter prediction window (e.g., next 
patient day) may be more actionable (i.e., provide a definite 
time period for clinician intervention), whereas a larger pre-
diction window (e.g., patient admission) increases the preva-
lence of an outcome and thus model performance, but may 
have diminished value as a decision support tool throughout 
the entire hospitalization. Models that attempt to predict risk 
of a dysglycemic outcome at any time during hospitalization 
may be useful to flag patients at risk at the time of admission 
but would have less clinical utility for inpatient clinicians for 
day-to-day adjustments of the antihyperglycemic regimen.

Modeling Technique

Once the outcome and prediction window have been defined, 
a tidied dataset can be used to create a novel machine learn-
ing algorithm. There are many different machine learning 

techniques—the simplest is linear regression, which infers 
that there is a linear relationship between exposure variables 
and the outcome variable and fits slopes for each exposure 
variable [30]. Although complex modeling techniques can 
be more robust in creating non-linear models, they are at risk 
of being computationally inefficient.

Modeling techniques require different amounts of com-
putational storage since they employ unique methodologies 
to create the algorithm. The simplest of models for quantita-
tive prediction is simple linear regression, which creates a 
linear model that relates the predictor to the outcome with a 
slope and y-intercept. For two-class classification (i.e., yes 
or no), the equivalent would be logistic regression, where 
each predictor has an associated slope and a y-intercept to 
output a probability that a prediction is either “yes” or “no.”

The primary limitation to linear and logistic regression 
is that as relationships between predictors and outcome 
become less linear, the predictive accuracy of the models 
worsen [31]. Thus, there has been growing interest in utiliz-
ing modeling techniques that do not impose a given relation-
ship on outcome and predictors to leverage information from 
big datasets. Other modeling techniques used for prediction 
include k-nearest neighbors, tree-based methods such as ran-
dom forests, and neural networks.

In k-nearest neighbors, observations in the training set are 
plotted in as many dimensions as there are predictors. Then, 
a prediction is made based on the average of the k nearest 
points. Simply, k-nearest neighbors make a prediction based 
on the outcome of the observations most similar to the point 
of interest. Tree-based methods create cutoffs of different 
predictor values that are set as rules, and a prediction is 
then made based on those rules. To improve model perfor-
mance, multiple trees can be used with the resulting predic-
tion based on the average prediction from all the trees in the 
random forest. In neural networks, the predictors are used 
to build new functions that are then related to the outcome. 
The term neural network comes from the new intermediate 
functions built between predictors and outcome, which were 
considered analogous to neurons either activating or inhibit-
ing a downstream neuron (the prediction).

In addition to logistic regression, most published models 
in inpatient glycemic prediction use a derivative of tree-
based models. The primary derivatives of tree-based models 
are bagging, random forests, and boosting [30]. In bagging, 
repeated random samples are taken from the dataset and 
predicted upon to allow for multiple trees to be created and 
reduce the variance of the overall model. Random forests go 
beyond the bagging technique by limiting the predictors that 
could be chosen from when creating each rule to decorrelate 
the trees and make them more reliable. The notion behind 
random forests is that there are a set of variables that are 
most correlated to the outcome of interest, but by forcing the 
model to randomly choose from less correlated predictors, 
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the model will better capture the nuances between predic-
tors. Boosting is unique in that rather than creating multiple 
trees attempting to predict the same outcome, each sequen-
tial tree in boosting is built off the residual, or errors, in 
the previous tree such that each tree is built sequentially. 
Different machine learning methods such as stochastic gra-
dient boosting and XGBoost modify the boosting technique 
in an attempt to maximize model performance or improve 
processing efficiency. [32]

Model Validation

A developed machine learning model can then be tested on a 
set of patients from the same hospital (internal validation) or 
different hospitals (external validation) who are naïve to the 
model to estimate model performance. Previous research has 
highlighted that external validation is crucial to algorithm 
development, as internal validation can overestimate model 
performance on a future cohort of patients [33]. Differences 
in validation methods using retrospective data may affect 
how a model performs after prospective evaluation, as ran-
dom cross-fold validation may not account for secular trends 
in the hospital setting that could affect the prevalence of the 
outcome. This technique of blocking observations is based 
on the concern that in structured data models may perform 
worse if observations are randomly assigned to the training 
and test set [34]. For inpatient glucose prediction, data are 
inherently structured by time: increasing understanding of 
dysglycemia and new protocols that are developed over time 
play a role in mitigating hypoglycemia and hyperglycemia, 
but the secular trends are poorly captured in machine learn-
ing models. By dividing earlier observations into the training 
set and more recent observations into the test set, research-
ers can report model performance statistics that reflect 
changes in the healthcare system not directly accounted for 
by included predictor variables.

Assessment of Impact and Deployment and Monitoring

After a model has been developed and validated, it can be 
integrated into the EHR and evaluated prospectively for 
effectiveness in reducing the desired outcome of interest. 
This process requires a near real-time data feed from the 
EHR into the algorithm, with output returned to the end user 
through the EHR. Some EHR vendors, such as Epic Systems 
and Cerner, have built-in tools for predictive analytics to 
simplify the process of getting data out and back into the 
EHR in real time. For example, the Epic Cognitive Comput-
ing platform (EpicCare, Verona), which leverages Microsoft 
Azure cloud software, can be used to configure prediction 
models with EHR data, create and modify workflows based 
on the results of the predictive models, and report outcomes 
of the models and expected workflows [35]. Recently, the 

Epic Cognitive Computing platform was used to quickly 
develop a model for COVID-19-related outcomes [35]. 
Similarly, Cerner has partnered with Amazon Web Services 
to create a cloud-based health platform for predictive ana-
lytics called “Project Apollo.” [35] It is expected that these 
embedded tools for predictive analytics will accelerate the 
deployment of machine-learning based prediction models by 
streamlining the process for clients and by using native func-
tionality of the EHR. Various formats for the output of the 
model could be considered, such as a best practice advisory/
alert (either intrusive or non-intrusive) or a report embedded 
with the glucose/insulin management section of the EHR.

After deployment of an EHR-based prediction model, 
fixed updates may be needed to revise prediction models 
as new data become available, while ad hoc updates may 
be needed if there are new therapies (e.g., new insulins or 
oral antihyperglycemic medications). In addition, feedback 
from end users about clinical utility of the EHR-based model 
should be considered to adjust the model based on end user 
needs or any changes in clinical care practices.

Machine Learning Models for Inpatient 
Glucose Prediction

Due to the established adverse effects of poor glycemic con-
trol on patient outcomes, there has been growing research 
over the past decade in predicting dysglycemia using 
machine learning approaches in the hospital setting [4]. As 
studies in the field of inpatient glucose prediction continue 
to accrue, there has been a gradual progression from tra-
ditional regression modeling to more advanced machine 
learning models, with studies using larger datasets and 
much larger numbers of clinical predictors showing con-
tinually improving predictive accuracy. Table 1 summarizes 
validated machine learning models for glucose prediction 
in the hospital. We review these key studies with respect to 
the study populations, outcome definitions, key exposure 
variables, prediction horizon, validation method, and model 
performance.

Logistic Regression Models for Inpatient Glucose 
Prediction

Early machine learning methods relied on relatively small 
sample sizes and used logistic regression to predict the risk 
of hypoglycemia occurring during hospital admission. In 
2012, Elliott et al. used a logistic regression model with nine 
predictors that included prandial insulin, sulfonylurea, basal 
insulin, weight, and renal function [36]. They employed a 
training set of 172 patients and presented model performance 
on a test set of 3,028 patients; notably, their inclusion crite-
ria for the test set included patients with glucose < 90 mg/
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dL, as they were predicting hypoglycemic events based on 
antecedent mild hypoglycemia. Their model, which included 
predictor variables of insulin doses, weight, creatinine clear-
ance, and sulfonylurea use, achieved a sensitivity of 71% for 
a hypoglycemic event < 70 mg/dL. This predictive model 
was coupled with therapeutic recommendations and, to 
our knowledge, is the only published model that has been 
deployed in the EHR as an informatics alert and evaluated 
prospectively. [48]

Ena et  al. also used a logistic regression model that 
included four predictors: GFR < 30 mL/min/1.73  m2, insu-
lin dose > 0.3 units/kg/day, length of stay, and previous epi-
sode of hypoglycemia during the 3 months prior to admis-
sion [38]. Their training and test sets were 839 patients and 
561 patients, respectively, from two different nationwide 
retrospective cohort studies. The authors achieved a vali-
dation set AUC of 0.71 for prediction of a hypoglycemic 
event < 70 mg/dL during a hospital admission. Stuart et al. 
utilized logistic regression that included thirteen predictors 
to predict a hypoglycemic event < 4.0 mmol/L (< 72 mg/dL) 
during hospital admission. [37] Their model achieved an 
AUC of 0.733 using a cohort of 9,584 admissions. Shah 
et al. developed a risk prediction tool based on five variables 
(age, ED visit 6 months prior to admission, insulin use, use 
of oral agent that does not induce hypoglycemia, and severe 
CKD) from 300 patients using logistic regression. Using a 
risk score cutoff of at least 9, their model achieved a sensi-
tivity of 0.77 and specificity of 0.28.

The next phase in machine learning for prediction of 
hypoglycemia in hospitalized patients used logistic regres-
sion to make predictions using a shorter prediction horizon. 
In 2018, Mathioudakis et al. predicted hypoglycemia occur-
ring on the next calendar day, and achieved a C-statistic of 
0.77 when predicting a hypoglycemic event ≤ 70 mg/dL 
using a logistic regression model based on 44 predictors 
from 13,360 hospitalized patients in the training set and 
5,902 patients in the test set [39]. Similarly, in 2018, Win-
terstein et al. published a logistic regression model that pre-
dicted a hypoglycemic episode defined as a glucose < 50 mg/
dL not followed by a glucose value > 80  mg/dL within 
10 min in a prediction horizon of 24 h; their model, which 
used a large cohort of 21,840 patients and 38 predictor vari-
ables, achieved a C-statistic of 0.887 when limited to admis-
sion days 3–5. [40]

Since the publication of those two studies in 2018, 
researchers have employed logistic regression in large data-
sets to answer different questions about predicting inpatient 
hypoglycemia. Elbaz et al. asked if they could predict glu-
cose ≤ 70 mg/dL in the first week of a patient’s admission 
[44]. Their dataset included a training set and two validation 
sets of 3,605, 2,425, and 3,635 patients, respectively. Their 
externally validated logistic regression achieved AUCs of 
0.72 and 0.71 when predicting hypoglycemia during the Ta
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first week of a patient’s admission. Horton et al. published 
a logistic regression model that included 41 predictors for 
impending hypoglycemia during a patient’s ICU stay [47]. 
They trained their model using physiologic data up to 12 h 
prior to a hypoglycemic episode that required treatment 
with 50% dextrose and excluded any subsequent episodes of 
hypoglycemia in that patient’s admission. Their training set 
included 11,847 patients. Upon externally validating their 
model on the MIMIC-III data, they achieved an AUC of 
0.79. Another approach to incorporating both hypoglycemia 
and hyperglycemia into glucose prediction was presented 
by Kyi et al. [43] Their model sought to predict persistent 
dysglycemia (glucose < 72 mg/dL or > 270 mg/dL on two 
admission days) at the time of admission. Their dataset 
included 594 patients and ten predictors such as admission 
dysglycemia, HbA1c ≥ 8.1%, sulfonylurea or insulin use, 
glucocorticoid use, Charlson Comorbidity Index score, and 
admission days. Their logistic regression model achieved 
an ROC of 0.806.

Tree‑Based Models for Inpatient Glucose Prediction

Model performance vastly improved when more advanced 
machine learning techniques were employed, since a 
patient’s glucose is not simply linearly related to factors 
such as antihyperglycemic medication dosing, kidney func-
tion, and carbohydrate intake. In 2020, Ruan et al. published 
an XGBoost model that predicted whether a patient would 
be hypoglycemic at any time during their admission [8]. 
Their model, which included 42 clinical covariates and a 
total sample size of 17,658 patients, achieved an AUROC 
of 0.96, outperforming a multivariate logistic regression 
AUROC of 0.75. Seeking to decrease the prediction interval 
for potentially increased clinical utility, Mathioudakis et al. 
published in 2021 a stochastic gradient boosting model using 
43 static and time-varying clinical covariates that predicted 
whether or not a patient would have at least one hypoglyce-
mic reading in a rolling window of 24 h from each glucose 
measurement, which could act as a warning for a provider 
to adjust a patient’s insulin regimen [9]. The total sample 
size across internal and external validation hospitals was 
35,147 patients, and the stochastic gradient boosting model 
achieved a C-statistic of 0.90 upon internal validation and 
ranged from 0.86 to 0.88 upon external validation in four 
different hospitals.

A recent trend in the field of inpatient glucose prediction 
has been to shorten the prediction horizon while incorpo-
rating as much data present in the EHR as possible. One of 
the shortcomings of predicting hypoglycemia at the admis-
sion level is that the only data that can be included in the 
model are those that are known at the time of admission, 
which prevents changes in labs, vital signs, and medications 
from being incorporated. Risk of hypoglycemia is inherently 

dynamic within a patient’s hospital course and being able 
to incorporate new data with a shorter prediction horizon 
allows for more clinically meaningful predictions. Zale et al. 
published this year a random forest model employing 59 pre-
dictors that classified a patient as hypoglycemic, controlled, 
and hyperglycemic using a large dataset with over 100,000 
patients from five hospitals [29]. Unlike earlier glycemic 
prediction models, this model predicted the glycemic out-
come for the next glucose observation at the time of each 
index glucose measurement, with the interquartile range 
for time to next glucose measurement of 1.63 to 4.37 h. 
Four of those hospitals were used for external validation 
and achieved sensitivities for controlled, hyperglycemic, 
and hypoglycemic of 0.64–0.70, 0.75–0.80, and 0.76–0.78, 
respectively; specificities for controlled, hyperglycemic, 
and hypoglycemic ranged from 0.80 to 0.87, 0.82 to 0.84, 
and 0.87 to 0.90, respectively, across the external validation 
hospitals.

Predicting Glucose as a Quantitative Variable

With the increase in dataset sizes, several studies have been 
published in the last 2 years using CGM data and time series 
analyses to predict glucose over a shorter prediction horizon 
and to treat glucose as a quantitative (discrete value) rather 
than a binary outcome. Kim et al. published a recurrent 
neural network model to predict a patient’s glucose with a 
prediction horizon of 30 min and achieved an average root 
mean squared error of 21.5 mg/dL [42]. Their sample size 
was 20 patients and included 99.4 patient-days of CGM data. 
Van den Boorn et al. utilized a CGM dataset with a larger 
sample of ICU patients (N = 94) that totaled 134,673 glucose 
measurements. Their model attempted to predict the glucose 
reading with a prediction horizon of 30 min based on the 
first and second derivatives of the CGM data, and achieved a 
mean squared difference of 7.39 mg/dL [46]. The time series 
approach to predicting glucose in the short-term horizon has 
not been limited to CGM data, but has also been applied 
to the MIMIC-III dataset from critical care unit patients. 
Fitzgerald et al. applied a boosted tree model to this dataset 
of ICU patients, dividing the patients into a training set of 
10,938 patients and a test set of 5,172 patients. The authors 
achieved 97% clinically acceptable predictions with mean 
absolute percentage error estimated between 16.5 and 16.8% 
with a 2-h prediction horizon. [45]

Building upon CGM Prediction

Commercially available CGM devices offer real-time alert-
ing for both hypoglycemia and hyperglycemia and could 
therefore be considered an alternative strategy to EHR-
derived machine learning prediction models in the hos-
pital. Although a CGM-based glucose telemetry system 
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holds potential as an innovative clinical decision support 
strategy [49, 50], it is worth noting that real-time alerts 
for hypoglycemia may not provide an adequate lag time 
for clinicians to proactively reduce insulin doses (e.g., 
basal insulin) to prevent the event from occurring in the 
first place. Certainly, CGM-based systems may provide a 
safety check for hospital-based clinicians as detection of 
impending hypoglycemia could be addressed by provid-
ing the patient with supplemental carbohydrates; however, 
we suggest that there is still a need for machine learn-
ing–based personalized insulin dosing algorithms that 
would make recommendations in real time for insulin dos-
ing to achieve desired glycemic targets without hypoglyce-
mia. Integrating CGM with insulin doses and other clinical 
data from hospitalized patients may allow for improved 
machine learning models for prediction of insulin doses 
throughout a patient’s hospitalization. Finally, there are 
financial and human factor considerations (staff training, 
time, resources) for broad implementation of CGM devices 
in hospitalized patients, and cost-effectiveness studies are 
needed prior to adoption in specific inpatient populations.

Future Directions

Despite the growing body of research in the past decade 
on machine learning–based tools for glucose prediction in 
the hospital setting, this field is still in a relatively nascent 
state, with most prediction models having been validated 
using retrospective data, but only one published model 
[51] (developed using a relatively small sample) having 
been integrated into EHR systems and tested prospec-
tively for clinical effectiveness. Although machine learn-
ing holds potential for glycemic prediction in the hospital, 
it is unknown whether providing hospital-based clinicians 
more accurate predictions in real time will modify pre-
scribing practices and improve glycemic outcomes. We 
previously found that there is a high degree of clinical iner-
tia in the hospital even after an overt hypoglycemic epi-
sode [52], so the clinical value of machine learning–based 
glycemic prediction remains to be demonstrated. In the 
meantime, additional published studies from different 
healthcare systems using EHR data are needed to refine 
our understanding of parameters that affect insulin dosing 
in the hospital so that glycemic predictions can ultimately 
be coupled with actionable insulin dosing recommenda-
tions [53]. Considering that many of the insulin dosing 
algorithms are proprietary and unpublished, publication of 
methods and results will allow the scientific community to 
advance our understanding of factors involved in glucose 
homeostasis in the hospital and to continually improve the 
predictive accuracy of insulin dosing algorithms.

Conclusion

Advanced machine learning models using large EHR data-
sets with large numbers of clinical predictors achieve greater 
predictive accuracy for glucose than more traditional regres-
sion modeling techniques in hospitalized patients. Inferences 
and comparisons of different machine learning algorithms 
for inpatient glucose prediction require careful consideration 
of the study population, outcome and exposure variables, 
and prediction horizon used to derive the model, as well as 
the validation approach used to describe model performance. 
Further prospective studies would be needed to demonstrate 
the added value of deploying machine learning derived pre-
dictive analytic support on improving glycemic management 
and other outcomes in hospitalized patients.
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