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Background: In the United States, the true geographic distribu-
tion of the environmental fungus Histoplasma capsulatum remains 
poorly understood but appears to have changed since it was first 
characterized. Histoplasmosis is caused by inhalation of the fun-
gus and can range in severity from asymptomatic to life threaten-
ing. Due to limited public health surveillance and under detection 
of infections, it is challenging to directly use reported case data to 
characterize spatial risk.
Methods: Using monthly and yearly county-level public health sur-
veillance data and various environmental and socioeconomic char-
acteristics, we use a spatio-temporal occupancy model to estimate 
latent, or unobserved, presence of H. capsulatum, accounting for 
imperfect detection of histoplasmosis cases.
Results: We estimate areas with higher probabilities of the presence 
of H. capsulatum in the East North Central states around the Great 

Lakes, reflecting a shift of the endemic region to the north from pre-
vious estimates. The presence of H. capsulatum was strongly associ-
ated with higher soil nitrogen levels.
Conclusions: In this investigation, we were able to mitigate chal-
lenges related to reporting and illustrate a shift in the endemic region 
from historical estimates. This work aims to help inform future 
surveillance needs, clinical awareness, and testing decisions for 
histoplasmosis.
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Histoplasmosis is an infection caused by the inhalation of 
the environmental fungus Histoplasma capsulatum that 

ranges from asymptomatic infection to life-threatening dis-
seminated disease.1 In the United States, histoplasmosis has 
traditionally been associated with the areas around the Ohio 
and Mississippi River Valleys, a finding established by nation-
wide skin test reactivity surveys conducted during the 1940s 
and 1950s.2 However, cases acquired far outside these areas 
suggest that histoplasmosis is more widespread than origi-
nally thought.3–5

Furthermore, public health surveillance data, although 
subject to underdetection of cases and limited to only a dozen 
states that require reporting of histoplasmosis, indicate that 
cases routinely occur in North Central states not previously 
considered to be endemic.6,7

Our current population-level understanding of histo-
plasmosis is primarily based on passive public health disease 
surveillance data. Before 2016, there was no standardized 
national case definition for histoplasmosis, leading to varia-
tion in definitions across states (See eAppendix Table 1; http://
links.lww.com/EDE/B927). Since then, the case definition 
has been standardized.7 Despite these advances, surveillance 
remains limited in geographic scope and in the level of detail 
of the data collected.8 Additionally, understanding the spatial 
risk of histoplasmosis is complicated by challenges with detec-
tion.9 For example, histoplasmosis is likely under detected and 
frequently misdiagnosed because the signs and symptoms can 
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be similar to those of other common respiratory illnesses.7,10 
A prior study developed a suitability score for H. capsulatum 
based on environmental characteristics but did not account for 
under detection of reported histoplasmosis cases.11 Ignoring 
under detection can result in biased statistical inference about 
the presence of H. capsulatum.12

We developed a spatio-temporal occupancy model to 
estimate the endemic region for histoplasmosis.13 The model 
relates reported histoplasmosis cases to latent, or unobserved, 
presence of H. capsulatum and accounts for imperfect detec-
tion in the reported cases. This represents a novel application 
of a common ecological model to a problem in environmental 
and infectious disease epidemiology. Our results provide an 
increased understanding of the areas with the highest prob-
ability of the presence of H. capsulatum. This information is 
essential for guiding both healthcare providers’ testing deci-
sions and public health prevention strategies.

METHODS

Data Sources
We used county-level data on histoplasmosis cases 

reported to health departments from 12 states (Alabama, 
Arkansas, Delaware, Illinois, Indiana, Kentucky, Michigan, 

Minnesota, Mississippi, Nebraska, Pennsylvania, and 
Wisconsin) during 2011–2014, the most recently available 
time period (Figure  1). This time period precedes the stan-
dardized definition defined in 2016. Monthly data were avail-
able from all states except for Delaware and Kentucky, which 
were reported yearly.7

Variables considered to help explain the environmen-
tal presence of the fungus included land cover characteris-
tics, nitrogen levels, latitude and longitude, and elevation. To 
explain the presence or absence of histoplasmosis diagno-
ses, we considered cultivated crops, temperature, soil mois-
ture, total population, and socioeconomic variables. The land 
cover characteristics were from the 2010 National Land Cover 
Database (NLCD), and for this analysis, we considered the 
proportion of each county with cultivated crops, the propor-
tion covered with water, and the proportion that is undevel-
oped.14 We obtained soil nitrogen levels from the United States 
Geological Survey15 based upon estimated county-level farm 
and nonfarm nitrogen fertilizer use, in kilograms, from com-
mercial fertilizer sales. Elevation was from the 2010 Global 
Multi-resolution Terrain Elevation Data (GMTED2010).16 
We obtained temperature data from the National Oceanic and 
Atmospheric Administration (NOAA) National Centers for 
Environmental Information (NCEI) and was provided at the 

FIGURE 1. Map of the 12 states included in our analysis. Counties shaded blue had at least one case of histoplasmosis reported 
to public health authorities during the 4-year study period.
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locations of the weather stations.17 We computed daily county-
level temperature by averaging the stations within each 
county. For counties with no weather stations, we averaged the 
temperature of the adjacent counties. We generated monthly 
data by averaging the daily values. Surface soil moisture was 
from the National Integrated Drought Information System 
(NIDIS) supported by the Climate Prediction Center (CPC).18 
The values estimated by the CPC soil moisture tool as part 
of the National Weather Service Global Forecast System is 
calculated using a one-layer hydrologic model19,20 that calcu-
lates soil moisture, evaporation, and runoff using as forcing 
observed precipitation and temperature. The data provides 
daily calculated soil moisture values in a 10 × 10 km pixel 
area, which were averaged to the county level by attributing 
the pixels to the respective county based upon the bounding 
box and scaled to the monthly level by averaging across the 
days. We used the American Community Survey 2014 5-year 
county-level estimates of total population, proportion with 
private health insurance, and proportion employed in agricul-
ture to characterize county demographics.21

Statistical Model
We used a Bayesian occupancy model (full model spec-

ification in eAppendix; http://links.lww.com/EDE/B927) to 
relate the binary indicator of reported histoplasmosis cases 
to latent presence of H. capsulatum.13 By converting reported 
histoplasmosis case counts to binary indicators, we mitigate 
some of the reporting differences across states while retaining 
the ability to learn about the latent presence of H. capsula-
tum in the environment. This model accounts for the fact that 
presence of H. capsulatum does not always result in histoplas-
mosis infection, and even if histoplasmosis is contracted, it 
may go undetected (i.e., undiagnosed or unreported to public 
health authorities). Failure to account for the fact that zero 
cases may be reported even when there is exposure to H. cap-
sulatum can result in biased statistical inference.12 By focus-
ing on presence of H. capsulatum, we address a question of 
interest better suited to the available data that avoids bias due 
to imperfect detection that would be present in a more tradi-
tional count model for rates of disease.

For county i i( , , )= …1 943  and month t t( , , ),= …1 48  
define Yit to be the binary indicator that at least one case of 
histoplasmosis was reported. Let Zi be an indicator of pres-
ence of H. capsulatum in county i. While histoplasmosis cases 
are reported monthly, we assume presence of H. capsulatum 
is constant over this 4-year period. This assumption is reason-
able based on the short time frame under which data from this 
study were collected relative to known survival rates of H. 
capsulatum.22 The proposed occupancy model assumes that if 
H. capsulatum is absent Zi =( )0 ,  then there are no reported 
cases of histoplasmosis in that county throughout the study 
period Y for all t Tit = = …( )0 1, , . However, if H. capsulatum 
is present ( ),Zi = 1  then there may or may not be any reported 
cases for any month within the study period (Yit = 0  or Yit = 1 

for any given month t, where t = …1, , 48). To incorporate all 
data available, we let Yi

k( ) be the indicator that there was at 
least one reported case of histoplasmosis in county i during 
year k = 1 2 3 4, , , ,  and we set Yi

k( )  equal to 1 if Yit = 1 for any 
month within year k and 0 otherwise. This hierarchical model 
allows us to simultaneously model all counties regardless of 
reporting frequency, and we borrow strength from the coun-
ties with monthly observations to infer monthly outcomes for 
the remaining counties.

Define ψ i iP Z≡ =( )1  as the probability of H. capsu-
latum presence in county i and p P Y Zit it i= = =( | )1 1  the 
detection probability, or the probability of there being at least 
one reported case of histoplasmosis in county i during month t 
given that H. capsulatum is present. We assume the following 
Bayesian occupancy model:

Y Yi
k

t k

k

it
( ) ( )= − −

= −
∏1 1
12 11

12

Y Z p Bernoulli Z pit i it i it| , ( )∼

Z Bernoullii i i| ( ).ψ ψ∼

For the counties where monthly data are available, Yit  is 
observed. However, for the counties with yearly data, Yit  is a 
latent binary random variable for each t. We assume a probit 
link for each probability, ψ i  and pit ,  and relate these quanti-
ties to environmental variables and spatial or temporal random 
effects.23,24 The probit link was chosen for computational con-
siderations (see eAppendix Section 1.2; http://links.lww.com/
EDE/B927 for more details). More specifically, we assume the 
probability of the presence of H. capsulatum relates to envi-
ronmental covariates and a spatial random effect that accounts 
for our belief that H. capsulatum is more likely to be present 
in a county if it is present in neighboring counties. That is,

ψ i = +Φ( )Xi iaa hh ,

where Φ( )⋅  is the cumulative distribution function of the 
standard normal distribution, Xi  is a vector of standardized 

TABLE 1. The Posterior Mean and 95% Credible Intervals 
for the Covariate Effects of the Probability of Presence of 
Histoplasma capsulatum

Variable Estimate (CI) P (>0|Data)

Intercept –0.0375 (–0.1373, 0.0667) 0.2480

Cultivated crops 0.1566 (–0.0460, 0.3453) 0.9520

Log farm nitrogen 0.2272 (0.0442, 0.4217) 0.9880

Log nonfarm nitrogen 0.6436 (0.5228, 0.7785) 1.0000

Log elevation –0.1922 (–0.3991, –0.0135) 0.0200

Latitude 0.1865 (0.0520, 0.3404) 0.9940

Longitude 0.1898 (0.0692, 0.3300) 1.0000

Land cover—water 0.1050 (0.0072, 0.2051) 0.9840

The last column is the posterior probability of the regression coefficient being 
positive.

http://links.lww.com/EDE/B927
http://links.lww.com/EDE/B927
http://links.lww.com/EDE/B927
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covariates related to exposure risk, aa  is a vector of regression 
coefficients, and ηi  is a spatial random effect (see eAppendix; 
http://links.lww.com/EDE/B927 for detailed specification). 
We assume the probability of observing at least one diagnosed 
case of histoplasmosis, given H. capsulatum is present relates 
to land-use and socio-environmental covariates, as well as 
population size since more populous counties are more likely 
to have a detected case. The model for the detection probabil-
ity includes a random effect to account for temporal autocor-
relation within a county. That is,

pit = +( )Φ W vit itβ ,

where Wit  is a vector that contains standardized covariates 
related to detectability, and β  is a vector of regression coef-
ficients. Note that Wit  is specified to assume state-specific 
intercepts so that the intercepts represent a statewide average 
detection rate. We include the temporal random effect νit  to 
account for the notion that detectability within county i dur-
ing year t is likely related to detectability for county i during 
year t −1. Thus, we assume for t v Nit= ∼1 0 2( , )τ  and for 
t T v N vit i t= … ∼ −2 1

2, , , ( , ),ρ τ . The temporal random effects 
are assumed to be independent across space. For identifiability 
of the temporal random effect, we enforce a mean-zero center-
ing constraint when t = 1.

Our model is fit within the Bayesian framework. Details 
on the prior distributions and the Markov chain Monte Carlo 
(MCMC) algorithm used to simulate from the posterior dis-
tribution are in eAppendix Section 1.2; http://links.lww.com/
EDE/B927. We initially included a larger set of explanatory 
variables and performed reversible jump MCMC to determine 
which variables had a relatively high posterior probability of 
inclusion in the model.25 See eAppendix Section 2.1; http://
links.lww.com/EDE/B927 for details. The final model was 
then fit using the variables listed in Tables 1 and 2.

RESULTS
We see strong and positive associations between the 

presence of H. capsulatum and log farm nitrogen soil con-
tent, log nonfarm nitrogen soil content, and the percent of the 

county covered by water (Table 1). We see a negative associa-
tion with log elevation, indicating a lower probability of pres-
ence in areas of higher elevation. We estimated the presence 
of H. capsulatum for the 12 states for which we had histoplas-
mosis case data and for the states in the immediate surround-
ing area. We observe the highest estimated probability of the 
presence of H. capsulatum in the northern part of the study 
region consisting of the East North Central United States. We 
also observe high estimated probabilities along the Atlantic 
coastal plain. The probability increases moving northward and 
eastward through the study region (Figure 2A). As expected, 
we see higher standard errors in counties that are further from 
those in the observed data (Figure 2B).

The state-specific estimated intercepts and credible 
intervals for the detection probability are shown in Figure 2C. 
This figure shows that detecting cases of histoplasmosis varies 
from state to state, and the highest average estimated probabil-
ity of detection was in Minnesota. Figure 2D shows the esti-
mated detection probability for each county averaged over the 
48 months, showing a large amount of spatial heterogeneity in 
histoplasmosis detection. Maps of the county-level detection 
probabilities for each of the 48 months can be found in the 
eAppendix; http://links.lww.com/EDE/B927.

Table 2 summarizes the posterior distributions for the 
detection probability regression coefficients. We estimate that 
more populated areas are more likely to have reported cases 
of histoplasmosis given the presence of H. capsulatum. We 
observed a negative relationship with the percentage of resi-
dents with private health insurance, and we see a moderately 
positive relationship with having a larger land area covered by 
cultivated crops.

DISCUSSION
We used a Bayesian occupancy model to relate monthly 

reported cases of histoplasmosis to the latent presence of H. 
capsulatum, while accounting for differences in case report-
ing frequency. Histoplasmosis is only reportable in a small 
number of states and often goes undetected. Thus, analyzing 
the case data without accounting for imperfect detection of 
histoplasmosis will likely underestimate the true presence 
and yield biased statistical inference. In addition, we quan-
tified the relationship between geographical variation in the 
presence of H. capsulatum and environmental characteristics. 
By incorporating information about environmental covariates 
and accounting for spatial dependence, we were able to pre-
dict the probability of presence for states neighboring the 12 
states for which we had histoplasmosis case data. We found 
that the northern Midwestern United States and the eastern 
Atlantic coastal region had the highest estimated probability 
of the presence of H. capsulatum, suggesting that the spatial 
risk of histoplasmosis has changed from what was originally 
described in the 1950s, which focused counties inside a tri-
angle with points in central Ohio, southern Iowa, and north-
ern Louisiana.2 This finding is consistent with previous work 

TABLE 2. The Posterior Mean and 95% Credible Intervals of 
the Covariate Effects for Diagnosed Cases of Histoplasmosis 
Given Presence of Histoplasma capsulatum

Variable Estimate (CI) P (>0|Data)

Cultivated crops 0.0829 (–0.0620, 0.2321) 0.8660

Soil moisture 0.0055 (–0.0880, 0.1159) 0.5440

Log population 0.7292 (0.5525, 0.9288) 1.0000

Log percent non-White 0.0040 (–0.1552, 0.1659) 0.5040

Agriculture 0.0290 (–0.1422, 0.1926) 0.6520

Private insurance –0.1247 (–0.2771, 0.0126) 0.0380

The last column is the posterior probability of the regression coefficient being posi-
tive.

http://links.lww.com/EDE/B927
http://links.lww.com/EDE/B927
http://links.lww.com/EDE/B927
http://links.lww.com/EDE/B927
http://links.lww.com/EDE/B927
http://links.lww.com/EDE/B927


 Epidemiology • Volume 33, Number 5, September 2022Hepler et al.

658 | www.epidem.com © 2022 The Author(s). Published by Wolters Kluwer Health, Inc.

suggesting an expansion of the endemic areas.7,11 Specifically, 
the high probability of histoplasmosis detection in Minnesota 
is consistent with previous work and may reflect a strong sur-
veillance system and a broad case definition at the time the 
data were collected.7

Although occupancy models are commonly used in eco-
logical applications, they are less common in public health. 
However, imperfect detection is likely present in many public 
health outcomes due to gaps in reporting systems and undi-
agnosed or misdiagnosed cases. Failure to explicitly account 
for imperfect detection can result in biased inference since 
the geographic variability in disease presence and detectabil-
ity are otherwise confounded. We have illustrated how this 
modeling framework can be applied to public health data to 
quantify spatial variability and identify geographic regions of 
increased risk.

Our finding of a positive association of histoplasmosis 
with soil nitrogen content is not surprising. H. capsulatum is 
well-known to thrive in soil enriched with high levels of nitro-
gen and phosphate.9,26 Future work could incorporate data 
that quantifies the geographical distribution of birds and bats 
(e.g., eBird27 and North American Bat monitoring program28). 
The association we observed between expected presence of H. 
capsulatum with cultivated crops also supports previous work 
showing that a high proportion of people with histoplasmosis 
live in rural areas and that people with jobs in the agriculture 
industry may be at increased risk.8 Similarly, historical evi-
dence from skin test studies shows higher rates of histoplas-
mosis among people who lived on farms.29

One limitation of our approach is that we transformed 
the reported case data to a binary outcome and thus cannot 
describe rates of infection. Future work could model raw case 

FIGURE 2. Histoplasmosis results. A, Map of the estimated posterior probability of presence of Histoplasma capsulatum.  
B, Standard errors of the estimated posterior probability. C, Estimates and credible intervals of the state-specific intercepts for the 
probability of detecting a case of histoplasmosis, given H. capsulatum is present. D, County-level estimated detection posterior 
probability averaged over the 48 months. Note that the low estimate and wide variability for the average rate of histoplasmosis 
detection in Delaware shown in (C) is likely due to the fact that Delaware only has three counties with just two reported diagnosed 
cases throughout the study period.
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counts to inform potential exposure risk. The reporting dif-
ferences between states coupled with the large proportion of 
infections that go undetected make this challenging as the 
reported counts do not accurately reflect the true underly-
ing incidence of histoplasmosis in a given county. Another 
limitation is the model’s inability to predict results for the 
entire United States, as we did not have evidence to deter-
mine whether or not the relationships with the included envi-
ronmental variables hold outside of our study region. Last, 
future studies could also investigate host-related covariates. 
For example, persons 65 years old and older and those with 
immunosuppression are more likely to have severe histo-
plasmosis and are thus more likely to be diagnosed. By 
incorporating demographic information or information on 
underlying health status, the model’s detection process could 
be improved.

In conclusion, we have generated a map that quanti-
fies the geographical distribution of endemic regions for his-
toplasmosis in a relatively large region of the United States, 
providing a better understanding of the areas where the pres-
ence of H. capsulatum is likely. A more comprehensive char-
acterization of its spatial distribution is important for guiding 
clinical decision-making and public health surveillance and 
prevention activities.
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