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Abstract: Superwetting surface can be divided into (super) hydrophilic surface and (super) hy-
drophobic surface. There are many methods to control superwetting surface, among which plasma
technology is a safe and convenient one. This paper first summarizes the plasma technologies that
control the surface superwettability, then analyzes the influencing factors from the micro point of view.
After that, it focuses on the plasma modification methods that change the superwetting structure on
the surface of different materials, and finally, it states the specific applications of the superwetting
materials. In a word, the use of plasma technology to obtain a superwetting surface has a wide
application prospect.

Keywords: plasma treatment; superhydrophobic; superhydrophilic; super oil repellent materials

1. Introduction

Superwetting surface is mainly supplied in the fields of oil–water separation [1],
anti-icing [2], anti-fog [3], self-cleaning [4], packaging [5] and biology [6]. Two points
may be considered for the preparation methods of a superhydrophobic surface [7]: one
is to select materials with low surface energy to expand the irregularity of the material
surface, the second is to reduce the energy of the rough surface and modify the rough
surface with low surface energy materials. On the contrary, the superhydrophilic surface is
normally obtained by forming roughness on the surface of high surface energy material.
Superhydrophobic surface [8] is usually grafted with low-energy functional groups, such
as nitrogen-containing and fluorine-containing functional groups. Superhydrophilic sur-
face usually contains high-energy functional groups [9] such as hydroxyl, carboxyl, and
ester groups.

Generally speaking, there are two main methods to prepare super oil repellent ma-
terials [10,11]. One type is to use fluorine-containing group materials with low surface
energy to modify the membrane surface, so as to directly form micro and nano structures
and expand the irregularity of the material surface. Another type is to form micro nanos-
tructures on the surface of the membrane, and then modify the membrane surface with
fluorine-containing groups with low surface energy.

Currently, many approaches have been applied to obtain superwetting surfaces [12]
represented by bottom-up ones, such as immersion coating, electrospinning, self-assembly,
and top-down ones, such as photolithography and the template method. The former
prepared surfaces with different morphologies and the latter generated regular surface
topography, both on the surface of materials [13].

Low temperature plasma technology [14] developed in recent years is a flexible and
effective way to regulate the surface structure of materials, and low temperature plasma
enhanced chemical vapor deposition (PECVD) technology [15,16] has certain advantages
in direct surface pretreatment, low temperature modification, low organic content, and
no post-processing. This technology mainly uses the energy or activity of electrons, ions,
free atoms, and free radicals in the plasma to induce physical and chemical effects, cause
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collision, scattering, excitation, rearrangement, isomerization, defect, crystallization, and
amorphization on the material surface, and finally, form new functional groups with
positive functions or film layers with special structure. Therefore, the plasma technology
process plays an important role in superwetting surface treatment. In 2000, there were fewer
than 3500 papers published on plasma control of surface superwettability. By 2010, there
were nearly 9000 papers that can be searched in this field. So far this year, there have been
about 20,000 papers published in the field of plasma control of surface superwettability.

Currently, there are two widely used modification methods [17]: one is atmospheric
pressure plasma [18] treatment, including dielectric barrier discharge plasma and atmo-
spheric pressure plasma jet treatment; the other is low pressure plasma treatment [19],
including radiofrequency (rf) discharge plasma treatment and glow discharge plasma
treatment. The surface can be bombarded by plasma to produce nano-scale roughness [20],
or the corresponding wettability of the surface can be obtained by introducing precursor
grafted with various functional groups [21]. The same material can be treated by different
processes, and the same process can also treat different materials. Figure 1 shows the
treatment of different materials by various processes.
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Hence, the main objective of this review paper is to discuss factors that affect the
superwetting surface structure and performance, and study in more detail the application
of plasma technology in superwetting surface structure and properties. Then, the review
focuses on the current state of the plasma modification methods for different types of
materials, including textile fiber surface, porous material surface, polymer film, wood
surface, glass surface, and particle/powder surface. Different applications of superwetting
materials are also briefly introduced.

2. Low Temperature Plasma Control Technology

Plasma regulation is considered a simple, efficient, and low-cost treatment technol-
ogy [22] that can control the material surface without effects on the surface and matrix of the
treated material [23]. The most widely used low temperature plasma generation methods
include dielectric barrier discharge, atmospheric pressure plasma jet, glow discharge, radio
frequency discharge, etc.
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2.1. Dielectric Barrier Discharge

Dielectric barrier discharge (DBD) [24] is a kind of non-equilibrium gas discharge with
insulating medium inserted into the discharge point space, also known as dielectric barrier
corona discharge or silent discharge. Its schematic diagram is shown in Figure 2.
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Figure 2. Dielectric barrier discharge plasma schematic diagram.

Hossain et al. [25] used tetramethylsilane (TMS) and 3-aminopropyl methyl silane
(APDMES) as precursors to deposit superhydrophobic films on glass substrates by dielectric
barrier discharge plasma jet. After treatment, the water contact angle is 163◦, and the sliding
angle is 5◦. Lin et al. [26] used CO2/N2 dielectric barrier discharge plasma and acrylic
acid as a precursor to modify the surface of the PTFE film, and then -COOH and other
hydrophilic groups (such as C-O, C-O, C-C, etc.) were formed on the surface of PTFE.
After two reactions treatments, the water contact angle decreases to 140◦, and after twenty
reactions, the water contact angle is less than 5◦.

Dielectric barrier discharge plasma, due to its high electron energy and fast reaction,
can be applied to all kinds of gases without electrode corrosion. Therefore, it has been
widely used in sterilization, cleaning material surface, semiconductor manufacturing, and
surface treatment.

2.2. Atmospheric Pressure Plasma Jet

Atmospheric plasma jet [27] is usually generated by high kilohertz sinusoidal excita-
tion. Through the diagnosis of nanosecond time-resolved discharge images, we can find
that it was made up of clumps of fast-moving, high-energy plasma particles, generating
one or two discharges in one excitation power cycle. The plasma jet excited by the mi-
crosecond high pressure pulse is mainly generated in the rising stage of the high-pressure
pulse. Plasma jet characteristics can be regulated by high pressure pulse parameters, which
provides a better technical approach for the application of plasma jet. Figure 3 shows how
this technique works.
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Chen et al. [28] improved the hydrophilicity of the PTFE surface by using an ar-
gon plasma jet. After treatment, as the roughness of the root mean square reduced to
5.74 ± 0.32 nm, the surface was smooth and uniform, water contact angle decreased to
28 ± 10◦, fluorine content decreased and oxygen content increased. Liu et al. [29] used a
nitrogen atmospheric plasma jet to treat the electrochemically corroded aluminum base
surface, then the surface was fluorinated with fluoroalkyl silane ethanol. After treatment,
the water contact angle decreased to 0◦, the fluorine content decreased to 5.67%, and the
oxygen content increased rapidly to 46.34%.

Atmospheric plasma jet is suitable for a wide variety of materials due to its low cost,
ease of use, and no pollution, which plays an important role in the field of environmental
engineering, biomedicine, plasma chemical industry, and so on.

2.3. Glow Discharge

Glow discharge [30] (as shown in Figure 4) refers to the gas discharge phenomenon
showing glow in low pressure gas, that is, the phenomenon of self-sustaining discharge
(self-excited conduction) in rarefied gas.
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T. anupriyanka et al. [31] modified the surface of polyethylene terephthalate (PET)
fabric with oxygen as process gas in a DC glow discharge plasma chamber. After plasma
treatment, the surface energy for water was 3.54 mJ/m2. For ethylene glycol, the surface en-
ergy was 48 mJ/m2. Wang et al. [32] pretreated aluminum alloy after anodic oxidation with
low-temperature plasma. Then, nanopores were formed on the surface, and small mastoids
were formed at the edge of the pores. Then, the surface was modified by trichlorooctade-
cylsilane. The carboxyl reaction between trichlorooctyl silane and alumina formed alkyl
silane films with low surface energy. Some of the voids form larger microvoids, the cold
plasma roughens the surface at the nanoscale and the water contact angle of the surface
treated by trichlorooctadecylsilane reaches 157.8◦.

Glow discharge plasma can not only treat some material surface and sewage, but also
be used as a relatively new display technology due to its advantages of high brightness
and fast response.

2.4. Radio Frequency Plasma Discharge

Radio frequency low temperature plasma [33] is a low temperature plasma produced
by high frequency and high pressure to ionize the air around the electrode, which can
produce linear discharge and projectile discharge. Figure 5 shows a schematic of how
it works.

Lim et al. [34] treated graphene surface for 20 s with radio frequency plasma of tetraflu-
oride carbon, after which fluorine was absorbed on the material surface, and formed strong
and stable chemical bonds with the surface, making graphene with fluorinated functional
groups durable. The water contact angle of the treated surface can be increased to 104.9◦.
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Gursoy et al. [35] deposited poly (butyl hexafluoroacrylate) polymer film on the surface
of expanded perlite by radio frequency plasma to successfully prepare the hydrophobic
surface. Because of the high fluorine chain structure in butyl hexafluoroacrylate, the de-
posited polymer has been increased by up to 35.7% fluorine content. The surface which
was treated at a power of 20 W can obtain a water contact angle of about 100◦.
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Radio frequency plasma discharge has high efficiency and produces high chemical
active substances, which can give full play to the advantages of efficient chemical treatment
technology, but the production efficiency is low in industrial production. Radio frequency
plasma has a high chemical treatment efficiency, good performance, and is suitable for the
treatment of a small number of samples. Moreover, it will not produce harmful gases and is
environmentally friendly, so there is a large demand for radio frequency plasma treatment.

2.5. Inductively Coupled Plasma

Inductively coupled plasma is a plasma source that generates current as energy source
through electromagnetic induction of a time-varying magnetic field. Its schematic diagram
is shown in Figure 6.

Lei et al. [36] used pulse inductively coupled plasma (PICP) to conduct surface modifi-
cation of polyethylene terephthalate (PET). After modification, oxygen-containing groups
were grafted on the surface, and the root mean square roughness increased to 2.525 nm, and
the water contact angle reached 38.8◦. The treated surface has good biological adhesion.
Leet al. [37] used pulsed inductively coupled plasma to treat the surface of polyvinylidene
fluoride (PVDF) film. After the treatment, the surface was grafted with alkyl chloride
silane, and some spherical particles were distributed on the surface. The water contact
angle reached 125.3◦. After treatment, it has the effect of treating sewage.

Therefore, inductively coupled plasma processing has obvious advantages in terms
of material types and processing speed, and has a large space to play in semiconductor
materials and other fields.
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3. Results and Discussion
3.1. Modification Mechanism of Superwetting Surface

The wettability of the solid surface is mainly determined by the corresponding
functional groups and the surface topography [38]. In order to achieve superwetting
performance, the surface energy must be well calculated and controlled. Chang-hwan
Choi et al. [39] established a new model to more accurately estimate the dynamic contact
angles of droplets on surfaces with different roughness. For superhydrophobic perfor-
mance [40], that is, the contact angle (CA) (Figure 7 [41]) value of droplets on the flat
hydrophobic surface should exceed 150◦, and the surface energy should be less than one
quarter of the surface energy of droplets. As a result, most samples with good rough-
ness conditions can achieve 90◦ hydrophobicity, but it is difficult to achieve 150◦ super
hydrophobicity. In order to achieve ultra-low surface energy, the most commonly used
method is to use low surface energy materials or groups to fix Si, F and other particles or
elements on the sample surface through spraying [42], deposition, and other processes.
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3.1.1. Changes in Surface Chemical Composition

Free energy (or surface tension) on the solid surface can directly affect the wettability
and water contact angle of the material surface [43]. The larger the surface free energy is,
the easier it is to be wetted. Several common elements that increase surface energy are N,
O, Cl, H, F, Si, et al. For example, CF4 plasma is used to introduce F-containing functional
groups on the surface of SiO2 (Figure 8a) [44]; Oxygen low temperature plasma is used
to graft O functional groups (Figure 8b) [45] on the glass surface. Therefore, the surface
wettability of materials can be regulated by replacing elements on the surface of materials
or introducing other functional groups.
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Kang et al. [46] studied how the surface wettability can be changed by regulating the
generation of hydrophilic groups, such as nitrogen oxides on the surface of polyimide film.
After plasma treatment, the water contact angle of the film drops below 30◦. Research
showed that the peak strength of the carbon–oxygen bond and the carbon–oxygen double
bond increased, N/C ratio reached 0.13, and O/C ratio reached 0.45. Peng et al. [47] carried
out hydrophilic treatment on the surface of polyethylene glycol by using CF4 plasma to
graft fluoride onto the surface of polyethylene glycol. The fluorinated layer reduced the
interaction between water and polyethylene glycol, resulting in a larger contact angle of
30.7◦ and the oil contact angle of 60.7◦, thus making it easy and effective in anti-pollution
and decontamination. Chang-hwan Choi et al. [48] developed a new model to estimate
the depinning force of receding droplets on columnar superhydrophobic surfaces with
different structures but fixed sizes. This model theoretically proves that the depinning force
is linearly related to the maximum three-phase boundary along the droplet boundary, and it
is also proved from the side that the hydrophobicity is affected by the surface morphology.

Therefore, the surface of the material can be modified by high-energy or low-energy
functional groups to affect the chemical composition of the surface, so as to well control
the wettability of the material surface. Some scholars have also tried to graft some polar
functional groups on the surface of materials, such as hydroxyl carboxyl groups. The
number of polar groups determines the wettability of the surface. However, some materials
grafted with chemical functional groups would greatly reduce their working life under
different service conditions. For example, the carboxyl group will be destroyed in an
alkaline environment, thus reducing its timeliness. Consequently, it is necessary to regulate
the microstructure of the surface.

3.1.2. Changes in Surface Roughness

Based on the previous discussion, the chemical composition of smooth surfaces can be
regulated and the surface wettability can be controlled by changing the surface free energy,
but there are certain limitations. In the Wenzel equation [49], cosθr = r(γsv − γsl)/γlv, r is
roughness, referring to the ratio of the real solid–liquid contact area to the apparent solid–
liquid contact area. As known from the equation, when θ < 90◦, the contact angle θr of rough
surface decreases with the increase of roughness r, and the surface is more hydrophilic;
when θ > 90◦, θr increases with the increase of surface roughness r, and the hydrophobic
surface becomes even more hydrophobic. Using plasma treatment can not only introduce
new elements, but also have certain influence on the surface morphology. The schematic
diagram is shown in Figure 9a. After treatment, the morphologies were different. The
common morphologies included coronal (Figure 9b) [50], dendritic (Figure 9c) [51], globular
(Figure 9d) [52], and cauliflower (Figure 9e) [53].
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E. Vazirinasab et al. [54] used atmospheric pressure plasma jet to treat the surface of
high-temperature vulcanized (HTV) silicone rubber substrate. It is found that the coral-like
micron and nanostructures treated by plasma increase the possibility of superhydrophobic-
ity. When the voltage increases, the cluster spacing becomes smaller, the micro-roughness
becomes larger, the contact angle of treated water is over than 160◦, and the contact angle
hysteresis (CAH) is less than 3◦. Zhang et al. [55] used micro/nano dielectric barrier dis-
charge to change the wettability of polymethyl methacrylate surface. When the applied
voltage is 40 kV and lasts for 300 s, the contact angle increased to 99◦. The treated surface is
filled with mounds of particles. Results showed that the surface roughness increased to
4.41 nm and root mean square roughness increased to 5.37 nm.

Therefore, when the surface exhibits nano- or sub-micron roughness or surface mor-
phology, it has a very significant effect on the wettability control of the surface. It not
only strengthens the timeliness of surface wettability, but also saves the time and cost of
repeated surface treatment.

3.2. Modification Method of Superwetting Structure on Surface of Different Materials by Plasma

At present, as a simple and efficient surface treatment method, plasma treatment is
widely used in all aspects of our life, and has been promoted to process many materials
such as cotton fabric [56], fiber fabric [57], and wood [58] material. Plasmas are widely
used because they are efficient in plasma processing and deposition, and can treat material
surfaces quickly without affecting the overall performance of the material. Besides, the
proper temperature required for processing ensures the safety of the production process. In
the whole process, no harmful gases are generated, which is friendly to air. This section
shows plasma treatment of different materials, as shown in Figure 1.

3.2.1. Textile Fiber Surface

Fibrous materials are made up of many continuous filaments and are used in many
fields such as textiles, medicine, architecture, biology, et al., which receive wide attention.
Because of the need to contact with rain and dust, textiles with anti-pollution and easy
decontaminization properties can improve comfort and reduce washing workload. Fiber
surface has a relatively large surface area and high mechanical properties, such as softness,
light weight, high strength, air permeability, etc. Therefore, in different application fields,
the wettability requirements of material surface are also different. Clothing [59], for exam-
ple, needs to be hydrophobic and oily. As a result, we need to change the wettability of the
fiber surface so to meet the requirements in different conditions. The researches done by
other scholars are shown in Table 1.
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Table 1. Plasma treated fiber surface.

Material Gas Plasma
Type

Working
Conditions

Involves Elements/
Functional Groups

Morphology
Change

Water
Contact Angle Ref.

Cellulose C2F5H/Ar RF

120 ◦C,
1 Torr,
30 W,

13.56 MHz

F No change 0~104◦ [60]

Cotton HDTMS/N2
Glow

discharge

3 × 10−3 mbar,
400 W,

13.56 MHz
-COO−, O-O− Submicron

particle 148.2~161.3◦ [61]

Cotton n-Hexane/Ar APPJ V(DC) = 20 kv O Grain size larger 0~154.7◦ [62]

Faceted
nonwovens HMDSO/Ar APP

101 kPa,
300 V,

19 kHz
Si-C, Si-CH3 NPs 155◦ [63]

Nanofibre pad N2/He DBD 101 kPa,
9 W N No change 57 ± 0.2◦~

10.6 ± 2◦ [64]

Cellulose N2/NH3 DBD
25 ◦C,

101 kPa,
1000 W

-NH2, -CONH2
Roughness

increase 40~22◦ [65]

(HDTMS: Hexadecyltrimethoxysilane; HMDSO: Hexamethyldisiloxane; C2F5H: pentafluoroethane).

3.2.2. Porous Material Surface

Porous materials have been widely used in recent years. Advanced porous materials
have the advantages of adjustable pore size and specific surface area [66]. For example,
porous silicon substrate is widely used in microelectronics, biosensors, and other fields due
to its large surface area ratio and certain biocompatibility. Polystyrene foam is widely used
in order to prevent liquid from leaking out of food packaging. Improving the hydrophilicity
of the surface of the packaging can greatly alleviate this situation and so on. It can be seen
that the treatment of porous materials has great application prospects, and some scholars
have conducted studies on this, as shown in Table 2.

Table 2. Plasma treatment of porous materials.

Material Gas Plasma
Type

Working
Conditions

Involves Elements/
Functional Groups

Morphology
Change

Water Contact
Angle Ref.

Porous
aluminum HMDSO/H2 APPJ 101.3 kPa, 25 ◦C,

15–25 kHz Si-O-Si Dendritic <90◦~
>150◦ [51,67]

Porous
aluminum

OTS/
Air

Glow
discharge

30–50 kPa,
150–250 W Si, Cl Nanopore size 157.8◦ [32]

Polystyrenefoam O2
Plasma

treatment

240 W,
40 kHz,

0.12 mbar

C=O, O-C=O,
O-C(=O)-O / 86.0~15.13◦ [68]

Porous fiber Air APP 101 Kpa -COOH, -OH NPs 81.3~72.5◦ [69]

Porous silicon O2
Plasma

treatment
1 Torr,
10.5 W Si-OH No change 64.5◦~<0.5◦ [70]

Filter paper HMDSO/
n-Hexane PECVD 80 W,

500 mToor C-Hn
Double

membrane 0~141.5◦ [71]

(OTS: Octadecyltrichlorosilane; HMDSO: Hexamethyldisiloxane).

3.2.3. Porous Material Surface

Polymer films are widely used in chemistry, physics, and certain sectors of biosensors
and microelectronic components [72,73]. Using isotropic and anisotropic plasma etching
on the polymer substrate surface, ordered nanocolumns or nanoarrays can be obtained to
improve hydrophobicity [74]. However, traditional polymer films cannot be widely used
due to some defects such as rough surface and poor dry heat performance. For example,
due to its low surface free energy and hydrophobic properties, PTFE material is not capable
of surface adhesion. Therefore, some scholars modified the surface of polymer film in order
to expand its scope of application, as shown in Table 3.



Polymers 2022, 14, 3759 10 of 20

Table 3. Plasma surface treatment of polymer.

Material Gas Plasma
Type

Working
Conditions

Involves Elements/
Functional Groups

Morphology
Change

Water
Contact Angle Ref.

Polyethylene film O2 RF 90 ◦C, 1 Torr,
200 W C=O, C-O Nanostructures 97.2~152.9◦ [75]

Polyimide film He DBD 80 kHz, 1.5 kV C-O, C=O Roughness increase >70◦~<30◦ [46]

PTFE O2 RF
6.66 Pa,

13.56 MHz,
20–70 W

O Alveolar structure 110~152.8◦ [76]

PTFE O2/Ar RF 150 W,3 h / Coronary structure 110~178.9◦ [50]

PTFE Ar APPJ 4.4 kV,1.1 W O Roughness
reduction 100~28◦ [28]

PTFE Ar APPJ 9.6 kHz,
10 ± 2 ◦C, 26 kV

·OH Irregular bulge 109~37◦ [77]

Polyurethane foam Aerosol/He DBD 22 kHz,
10–60 min O Spherical particle 155 ± 5◦~

80 ± 2◦ [52]

PTFE CO2/N2 DBD 6.2 W, 19.4 kHz C=O Surface
compactness 140.9~48.6◦ [26]

PTFE O2 CCP 13.56 MHz,
<70 s ◦C, 13 Pa Roughness increase \ [78]

PTFE O2 CCP 13.56 MHz,
13 Pa -CF2 Roughness increase \ [79]

Ethylene
propylene O2, C4F8 ICP, RIE 1900 W, 0.75 Pa;

400 W, 10 mT F Roughness increase 95~168◦ [80]

(PTFE: Polytetrafluoroethylene; RIE: Reactive Ion Etcher).

3.2.4. Wood Surface

Due to its high mechanical properties, convenience, and moderate price, wood has
become the preferred material for some buildings and decorations [81]. Wood will be
subjected to natural degradation, which is an inevitable factor. With the change of time,
both microscopic and macroscopic appearance will be changed. The polar groups in the
uppermost layer of wood will lead to increased water absorption, expanded wood [82],
decomposed microorganisms, increased water content and other problems, thus greatly
reducing the service life of firewood. Currently, proposed physical and chemical methods
such as impregnation, painting, etc., produce coatings with low adhesion and cannot be
used for a long time. Some suggestions have been put forward to prolong the service life of
the coatings, as shown in Table 4.

Table 4. Plasma treatment of wood surface.

Material Gas Plasma
Type

Working
Conditions

Involves Elements/
Functional Groups

Morphology
Change

Water
Contact Angle Ref.

Chinese fir HMDSO/Ar DBD 95 kHz,
10 kV

Si-C;
Si-O-Si

Roughness
reduction <1◦~137.7◦ [83]

Wood
N2/N2O/Vapor
crystallization

solution of ZnO NPs
DBD 1 bar, <50 ◦C Si-OH Spherical

particle 40~100◦ [84]

Wood O2 RF 13.56 MHz,
0.5 Toor

C=C,
C-C

Roughness
increase 0~153◦ [85]

Poplar HMDSO DBD 60 W,
20 KPa, 75 s Si-O-Si, Si-O-C Acicular

structure 81~127.7◦ [86]

3.2.5. Glass Surface

Due to the advantages of long service life, high light transmittance, and others, glass
has been widely used in our daily life and industrial production [87], such as semiconductor,
optical equipment, and others. However, due to the disadvantages of high free energy
of glass surface, low hydrophobicity, and mechanical instability [88], its application is
limited. As a result, some scholars have made some contributions to improve the surface
modification of glass, as shown in Table 5.
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Table 5. Plasma treatment of glass surface.

Material Gas Plasma Type Working
Conditions

Involves Elements/
Functional Groups

Morphology
Change

Water
Contact Angle Ref.

Organic glass Air DBD 250 MHz,
30 kV -CH3 No change 71~92◦ [89]

Organic glass CF4 DBD

1 × 105 Pa,
40 kV,

500 Hz,
2.25 W

F Roughness
increase 68~99◦ [55]

Glass Ar/TMS APPJ 22 kHz Si-O, Si-C Uniformly
convex 67~110.3◦ [90]

Slide Aerosol/He DBD 22 kHz,
10–60 min -COO, C-O Spherical

particle 160~<5◦ [52]

Organic glass He APPJ 16 kV, 1 kHz O=C-O, C-OH Small peak 27◦ [91]

Glass O2
Low temperature

plasma 298 K -OH, COOH Roughness
increase 21.1~2.6◦ [45]

(TMS: Trimethylsilanol).

3.2.6. Particle/Powder Surface

The hydrophobicity of particle surface is very important in many practical applica-
tions [92], such as agglomeration and mixing of powder surface, dispersion, and adsorption
of particles in composite materials. Some powders have hydrophobicity [93], which makes
them float on the liquid surface and unable to form suspension, thus reducing the uti-
lization rate of powders. A superhydrophobic sand has been designed to reduce water
evaporation, act as a catalyst, and degrade water pollutants when irradiated by the sun [94].
In recent years, extensive attention has been paid to the modification of wettability of
surface [95] such as granular powder. Some scholars have made some studies to increase
the application of these granular powder, as shown in Table 6.

Table 6. Plasma treatment of particle surface.

Material Gas Plasma
Type

Working
Conditions

Involves Elements/
Functional Groups

Morphology
Change

Water
Contact Angle Ref.

Clubmosses O2/N2 ICP 10 MHz, 20 W,
0.8–40 Pa O No change 140~60◦ [96]

SiO2 ppOD ICP 13.56 MHz,
0.7 Pa, 4–80 W -CH− Spherical

particle 37~>90◦ [97]

Al2O3 CO2/H2
Plasma

deposition 13.56 MHz, 80 Pa -OH, COOH Clusters
particles 46~74◦ [98]

PMMA CF4 RF 10 Pa, 250 kHz F Small hills 115.6~150.6◦ [99]
PP He APP 20 KHz, <28.9 ◦C O-CO-O / 99~69◦ [100]

Artificial
sandstone Air microwave

plasma
25 ◦C, 1 kHz,

500 W Si-OH / 123.6~58.5◦ [101]

(PP: Polypropylene).

4. Application of Superwetting Materials
4.1. Oil-Water Separation

In industrial production and daily life, a large amount of oily wastewater will be
produced, which has a great impact on our life and health. Therefore, separation of
oil and water is of great significance. Yan et al. [102] sprayed a hybrid coating of ZnO
nanoparticles and waterborne polyurethane on the stainless-steel net. UV light and heat
treatment were alternately applied to the treated stainless-steel net to achieve the rapid
transformation of superhydrophobicity and superhydrophilicity, so that the mode of oil–
water separation is changed from oil removal to water removal. In oil removal mode,
the heavy oil in the oil–water mixture can be allowed to permeate; in the water removal
mode, the water can be allowed to permeate. The separation efficiency is very high and
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can be completed only by gravity without external force. In order to separate the oil–water
mixture, Liao et al. [103] electrospinned aporous polyvinylidene fluoride–silica composite
nanotop layer and a polyvinylidene fluoride intermediate layer on the non-woven fabric
carrier. Because the film has high surface energy, it is superhydrophobic in air and oil and
under water. Yang et al. [104] constructed long-chain alkyl silane and silica nanoparticles
into a hydrophobic surface with micron-scale structure through plasmonic-induced cross-
linking. The surface can effectively destroy the stability of oil–water mixture, and the
filtration efficiency can reach 99.13%. The purity of the crude oil recovered is up to 99.98%.
Kim et al. [105] used atmospheric plasma to process the grid to obtain an underwater
ultra-oil-philic functional film layer. The treated grid can separate oil and water at the same
time, and the water separation flow rate is high and continuous, and the purity of oil up to
99.99% can be obtained.

The characteristics of the membrane described above can deal with various types
of oil–water mixture, and the demand for external driving force is not large. Cross flow
filtration can be completed without external driving force, and the purity of the treated
oil and water reached more than 99.99%; and the film layer is not easy to be destroyed in
the harsh environment of strong acid and alkali. However, in the process of use, oil and
other impurities will remain in a large number of voids on the surface of the membrane,
which will greatly reduce the membrane flux, membrane life, the hydrophobicity, and the
separation efficiency.

4.2. Ice Prevention

Ice on solid surfaces can cause serious problems and accidents on roads, power lines,
ships, and some energy equipment. There are many traditional methods such as heating,
mechanical removal, etc., which require a lot of manpower and material resources. There
are also some treatment methods that can produce a series of pollution. Wei et al. [106]
found that the prepared superhydrophobic surface can roll down from the surface before
the droplet freezed, and the effective contact between the superhydrophobic layer and
the droplet was small, which can effectively prevent freezing. Kim et al. [107] covered
a smooth and ice-phobic nano-layer on the surface of aluminum. Under the gravity of
a low dip angle, both the ice on the surface and unfrozen water can easily flow down,
so that the water can drop before freezing, thus reducing the accumulation of water and
preventing freezing. Yang [108] et al. used etching as a simple and low-cost method to
conduct hydrophobic treatment on the surface of aluminum alloy. The etching solution
with the best concentration was selected, and the treated surface obtained a water contact
angle of 160◦. This hydrophobic surface has significant anti-icing characteristics and can
delay the freezing time by 600–700 s. Wang et al. [109] used an aluminate coupling agent to
produce hydrophobic surface on aluminum surface. The hydrophobic coating inhibited
the growth of frost layer, and the deposition time of frost layer on hydrophobic coating
was delayed by 60 min compared with pure aluminum surface. The fatigue test shows
that the aluminate coupling agent coating on aluminum surface has stable and strong
adhesion ability.

The anti-icing ability of surface decreases with the repetition of icing and melting, and
some anti-icing surfaces perform poorly in low temperature and high humidity environ-
ment. Therefore, a smooth superwetting layer needs to be deposited in order to prepare a
stable superwetting surface that can prevent icing.

4.3. Self-Cleaning Antifouling Performance

External environmental pollution will have a serious impact on external surfaces such as
glass, ceramics, and metals, making them lose their original characteristics. Piispanen et al. [110]
prepared a layer of TiO2 coating on the glass surface by a sol-gel treatment process. After
ultraviolet irradiation, the TiO2 coating turned into a superhydrophobic one, which reduced
the adhesion between dust and the glass surface, thus having self-cleaning performance.
The copper coating prepared by Yang et al. [111] was easy to be contaminated by oxidation
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of hydrogen peroxide. The contaminated surface was reoxidized with hydrogen peroxide
and then dried in a vacuum at 60 ◦C for 1 h. The cleaned fabric surface returns to the
superhydrophobic state, and the recovered surface has almost the same performance as the
uncontaminated surface. D. Anda [112] et al. prepared ultra-liquefied biological coating on
the aluminum surface, in which the silica particles were modified by perfluorooctane triox-
ane. The modified surface was sprinkled with charcoal ash and then poured with water, so
that the water droplets on the inclined surface could roll down freely and take away the
surface pollutants, which has good self-cleaning performance. J. Lomga et al. [113] used
sodium hydroxide and lauric acid to chemically corrode the aluminum surface to prepare
the superhydrophobic coating. Figure 10a–c are SEM images etched on aluminum surface
with different concentrations of NaOH, Figure 10d shows that the water contact angle
on aluminum surface changes with the treatment time. After 200 min, the water contact
angle has been more than 160◦, which proves that the aluminum surface has reached the
superhydrophobic state. Compared with the untreated surface, a few drops of water on
the treated surface would wash away the pollutants on the aluminum surface, showing a
self-cleaning performance (Figure 10e,f compare the self-cleaning and hydrophobicity of
aluminum before and after treatment).

Under the action of the “air cushion effect”, the adhesion of water droplets to the
superwetting surface is reduced, and the water droplets will slide down with the surface
pollutants, so as to achieve the effect of self-cleaning and pollution prevention.

4.4. Biological Field

Superwetting materials are also mostly used in the medical field, and the main-
tenance and repair of some cells are crucial to the wettability of the material surface.
A. O. L. obo et al. [114,115] prepared super hydrophilic vertically aligned carbon nanotubes
(VACNTs) for cell adhesion, and the membrane played a great role in the growth of the
number of cells during adhesion. In the process of preparation (Figure 11a), the membrane
presents a bamboo shape (Figure 11b), and the structure changes (Figure 11d) after plasma
etching (Figure 11c). After the treatment, the surface showed a super hydrophilic state
(Figure 11f). XPS analysis (Figure 11g) of the surface before and after the treatment showed
that the plasma etching efficiency was higher. Carbon nanotubes increased projection on
the surface of the cell membrane (Figure 11e), promoted the adhesion and proliferation
of the cell membrane, limited the proliferation of cell, and had no adverse reaction on the
surface of membrane cells. Lu et al. [116] prepared a superhydrophilic composite film with
efficient degradation of tetracycline. The membrane inactivated tetracycline, oxytetracy-
cline, and other biological. In addition, after continuous adsorption and resolution, the
film was well preserved, indicating that it had a high utilization rate and stability in the
treatment of tetracycline, and the removal rate reached 98.3%. Gorjanc et al. [117] used
silver nanoparticles to treat the surface of siloxane with adhesives and then produced
hyperaerobic cellulose fibers with strong antibacterial activity against Escherichia coli and
Staphylococcus flavans. Wang et al. [118] grafted zwildes (Carboxylate betaine methacrylate)
onto the surface of commercial nanofiltration membrane, which had high anti-adhesion
to positively and actively charged proteins. The cleaned membrane had a high recovery
rate, and the inactivation efficiency of E. coli and Bacillus Subtilis can reach 99%. This
method can be used for polyamide membrane in all directions. Weng et al. [119] prepared
ultra-hydrophilic and antibacterial amphoteric polyamide film composite nanofiltration
membrane. The membrane is highly selective to erythromycin and sodium chloride, which
can effectively separate the mixture of the two solutions, and the water flow of the prepared
film is twice that of the pure film, and has certain antibacterial properties.
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Figure 10. (a) The aluminum surface was etched with 5 g/L NaOH for different times; (b) the
aluminum surface was etched with 8 g/L NaOH for different times; (c) the aluminum surface was
etched with 10 g/L NaOH for different times; (d) static contact angle versus etching time for different
NaOH concentration. (e,f) comparison of self-cleaning and hydrophobicity of aluminum before and
after treatment [113].

The wettability of some nano-biomaterials also affects the adsorption, growth, and
survival of some cells and protein fibers. Nanotube materials also play an important role in
biomimetic properties and other fields.



Polymers 2022, 14, 3759 15 of 20

Polymers 2022, 14, x FOR PEER REVIEW 15 of 21 
 

 

L. obo et al. [114,115] prepared super hydrophilic vertically aligned carbon nanotubes 
(VACNTs) for cell adhesion, and the membrane played a great role in the growth of the 
number of cells during adhesion. In the process of preparation (Figure 11a), the membrane 
presents a bamboo shape (Figure 11b), and the structure changes (Figure 11d) after plasma 
etching (Figure 11c). After the treatment, the surface showed a super hydrophilic state 
(Figure 11f). XPS analysis (Figure 11g) of the surface before and after the treatment 
showed that the plasma etching efficiency was higher. Carbon nanotubes increased pro-
jection on the surface of the cell membrane (Figure 11e), promoted the adhesion and pro-
liferation of the cell membrane, limited the proliferation of cell, and had no adverse reac-
tion on the surface of membrane cells. Lu et al. [116] prepared a superhydrophilic compo-
site film with efficient degradation of tetracycline. The membrane inactivated tetracycline, 
oxytetracycline, and other biological. In addition, after continuous adsorption and resolu-
tion, the film was well preserved, indicating that it had a high utilization rate and stability 
in the treatment of tetracycline, and the removal rate reached 98.3%. Gorjanc et al. [117] 
used silver nanoparticles to treat the surface of siloxane with adhesives and then produced 
hyperaerobic cellulose fibers with strong antibacterial activity against Escherichia coli and 
Staphylococcus flavans. Wang et al. [118] grafted zwildes (Carboxylate betaine methacry-
late) onto the surface of commercial nanofiltration membrane, which had high anti-adhe-
sion to positively and actively charged proteins. The cleaned membrane had a high recov-
ery rate, and the inactivation efficiency of E. coli and Bacillus Subtilis can reach 99%. This 
method can be used for polyamide membrane in all directions. Weng et al. [119] prepared 
ultra-hydrophilic and antibacterial amphoteric polyamide film composite nanofiltration 
membrane. The membrane is highly selective to erythromycin and sodium chloride, 
which can effectively separate the mixture of the two solutions, and the water flow of the 
prepared film is twice that of the pure film, and has certain antibacterial properties. 

 
Figure 11. SEM images of (a) as-grown films and (c) superhydrophilic VACNT films; TEM images 
of (b) as-grown films and (d) superhydrophilic VACNT films; (e) characterization of human chon-
drocytes on VACNT films; (f) change of water contact angle before and after treatment from 154° to 
0°; (g) C1s XPS peak analysis before and after; (h) O1s XPS peak analysis before and after (π-π*: The 
unsaturated compound transitions from the ground state (π) to the excited state (π*)). [114]. 

Figure 11. SEM images of (a) as-grown films and (c) superhydrophilic VACNT films; TEM images
of (b) as-grown films and (d) superhydrophilic VACNT films; (e) characterization of human chon-
drocytes on VACNT films; (f) change of water contact angle before and after treatment from 154◦ to
0◦; (g) C1s XPS peak analysis before and after; (h) O1s XPS peak analysis before and after (π-π*: The
unsaturated compound transitions from the ground state (π) to the excited state (π*)) [114].

5. Summary and Outlook

In the past decade, studies using plasma to modulate the surface wettability of various
materials have been continuously conducted, which puts forward new views on the use of
different plasma generation methods, different precursors, and materials of different sizes.

In this article, we review the influencing factors of wetting surfaces, some of the
treatment processes of low-temperature plasmas, and their applications. Although a big
breakthrough has been made in the manufacture of wetting surfaces in recent years, more
improvements are needed. First of all, the theory and mechanism of super-wetting materials
should be further studied, and some super-wetting materials with special structures can
be integrated, usually the structure is closely related to the harmony energy, and the
integration may give the material new functions. Second, the problem of the binding
strength of the prepared wetting film and the matrix; in order to achieve a change in
micro-roughness, the thickness of the deposited film should satisfy certain requirements,
which makes the process efficiency reduced. At this time, the plasma can be polymerized
to deposit a layer of nanoscale composite film which is an ideal method, both to improve
durability and to maintain that the corresponding wettability is not affected. Third, to
combine the established theoretical models with practical applications, such as the new
model mentioned above that measures dynamic water contact angles, whether it can be
applied to most wetting materials is worth following up.
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