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Abstract

There is growing interest in systematic establishment of marine protected area (MPA) networks and representative
conservation sites. This movement toward networks of no-take zones requires that reserves are deliberately and adequately
spaced for connectivity. Here, we test the network functionality of an ecoregional assessment configuration of marine
conservation areas by evaluating the habitat protection and connectivity offered to wide-ranging fauna in the Gulf of
California (GOC, Mexico). We first use expert opinion to identify representative species of wide-ranging fauna of the GOC.
These include leopard grouper, hammerhead sharks, California brown pelicans and green sea turtles. Analyzing habitat
models with both structural and functional connectivity indexes, our results indicate that the configuration includes large
proportions of biologically important habitat for the four species considered (25–40%), particularly, the best quality habitats
(46–57%). Our results also show that connectivity levels offered by the conservation area design for these four species may
be similar to connectivity levels offered by the entire Gulf of California, thus indicating that connectivity offered by the areas
may resemble natural connectivity. The selected focal species comprise different life histories among marine or marine-
related vertebrates and are associated with those habitats holding the most biodiversity values (i.e. coastal habitats); our
results thus suggest that the proposed configuration may function as a network for connectivity and may adequately
represent the marine megafauna in the GOC, including the potential connectivity among habitat patches. This work
highlights the range of approaches that can be used to quantify habitat protection and connectivity for wide-ranging
marine species in marine reserve networks.
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Introduction

The Convention on Biological Diversity (CBD) has endorsed the

ambitious goal of establishing a comprehensive, effectively man-

aged, and ecologically representative national and regional systems

of protected areas globally by 2012 [1]. In marine ecosystems, the

number and extent of protected areas has increased recently [2],

however existing systems of protected areas are, with few exceptions

(e.g., Great Barrier Reef, California coast [3]), neither representa-

tive of the world’s ecosystems, nor do they adequately address

conservation of critical habitat types, biomes and threatened species

[4]. Consequently, it is important to develop efficient conservation

planning tools to effectively prioritize conservation areas [4].

Due to its high productivity and diversity, the Gulf of California

(GOC) is considered a conservation priority area both in Mexico

as well as internationally [5]. However, at present, only 7% of the

ecoregion is under some form of protection [6]. To reinforce the

marine protection in this area, Comunidad and Biodiversidad

(COBI) and The Nature Conservancy (TNC) completed a marine

ecoregional assessment (ERA) in the Gulf of California (GOC) and

near shore Pacific coast of southern Baja California, Mexico

(Fig. 1; [7]). This proposal, which combined both species and

habitat conservation goals, identified 54 priority areas for

conservation covering 26% of the ecoregion (ca. 87,000 km2).

The aim of this assessment was to identify minimum areas for

biodiversity representation and conservation and, in theory, if

effective conservation management were implemented in each

area, long-term persistence of most biodiversity and productivity in

the GOC would be achieved.

The growing movement toward ecosystem-based management

and networks of no-take zones requires that they be deliberately

and adequately spaced to allow for effective connectivity [8,9].

Marine Protected Areas (MPAs) are a common biodiversity

management and conservation tool, but are often created in an ad

hoc manner and function independently, even when close to each

other. The performance of a network of sites designed with the

two-fold purpose of protecting commercial species and allowing

for spillover effects will largely depend on the degree to which sites

in a network are functionally and structurally linked to each other

by both biological (e.g., organism dispersal at different life stages)
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and physical (e.g., currents) processes [10]. Well-designed

networks should include MPAs and other conservation and

management areas to support each other by taking advantage of

the oceanic currents and movement/migration capabilities of

species [e.g., 11–13]. Because establishment of isolated marine

reserves may not alone suffice for the conservation of biodiversity

[9–10,14], testing the level of connectivity between the areas will

be a critical aspect in network design [8,15]. Despite the key

importance of connectivity in the design of MPA networks, data

on dispersal is sparse for marine organisms [16,17] and population

connectivity in relation to MPAs has only been explored recently

[e.g. 13,18–19]. In particular, for the GOC ecoregion, the existing

studies have focused only on a portion of the ecoregion, and are

primarily geared toward larval dispersal of reef species [18,20].

Sala et al. [18] proposed that for connectivity between reserves to

be meaningful, rocky shore habitat reserves should be spaced

evenly across the entire Gulf with a conservative minimum

distance of 100 km between sites.

Here, we evaluate the extent to which the proposed ERA

configuration of conservation areas in the GOC can function as a

network in relation to the habitat protection and connectivity for a

number of target species considered as representative of the extant

biodiversity. We focus on wide-ranging marine species for two

reasons. First, there is increasing awareness for the need of an

ecosystem-based management approach to marine conservation.

This implies paying particular attention to higher trophic levels,

since they play an important role in ecosystem functioning [21–

23]. In fact, elimination of top predators has led to the degradation

of some coastal ecosystems and ecosystem shifts, following changes

in the populations of some marine top predators [21–25]. Second,

the assessment of habitat protection and connectivity at the

community level remains a challenge, due to the large differences

in life histories and their operating scales among different taxa,

particularly in marine ecosystems [16,26–27].

In light of the paucity of spatially explicit data for many marine

systems and species, we highlight different approaches and sources

of data that can be used to quantify habitat protection and

connectivity for wide-ranging marine species. Given the obvious

infeasibility of simultaneously monitoring all components of

biodiversity at the same time [28], understanding connectivity of

a set of carefully chosen individual species may reflect connectivity

of the ecosystem [29–31]. While the selection of those represen-

tative species is not straightforward [e.g. 32,33], we propose a

simple approach based on a multi-criteria expert based approach.

The specific goals of the work are: 1) to select representative taxa

from the pool of wide-ranging marine species occurring in the

GOC, 2) to quantify the habitat protection provided to wide-

ranging marine species by the ERA network and 3) to assess the

connectivity offered by the ERA to the target species.

Methods

Species selection
The selection of the species representative of the wide-ranging

biodiversity of the GOC was determined based on expert opinion.

In particular, species experts were surveyed within the framework

of the Gulf of California Marine Habitat Connectivity Experts Workshop,

June 2007 (see Text S1). The experts were first asked to list the

animal species that they considered important for the ecological

functioning of the GOC. Note that here we did not constrain our

protocol to wide-ranging species, in order to obtain the maximum

amount of information from the experts. Then experts rated each

species according to five criteria: practicability, socio-economic

importance, ecological relevance, spatial scale and conservation

status. The contents of the criteria include general conservation

considerations, habitat protection and connectivity issues (Table 1).

Experts assigned a value from 1 to 5 (1 = least important) for each

criterion in the list. Because all respondents did not have

information about all species, there is a variable response rate

for any given species. For that reason, we averaged the data

(within criterion) for each of the five criteria across respondents

and then, assuming all criteria were equally important (all

weighted 1), we took the grand mean across criteria for each

species. To obtain final representative species the ranked list was

narrowed by means of three criteria: data availability and

representation of the widest possible ranges of taxonomic groups,

life history strategies and operating spatial scales.

Mapping Potential Habitat
The selected species had a comparably large quantity of data.

However, for the four species selected available data comprises

mainly local studies on habitat use and movement (see Table S1)

but no accurate distribution data or enough raw spatial data (i.e.

presence/absence) to build classical statistical niche distribution

models. For that reason, for the four species, habitat models were

built by means of an expert-based modeling approach [34–35].

Expert-based models are intended to operate in a data poor

environment that precludes the development of empirical based

models, and may provide objective and valuable habitat

delineation for guiding management efforts [35–37]. In our case

we develop simple predictive habitat-linkage models based on

expert opinion and qualitative models based on the best

information available from the literature, ERA database and

Figure 1. Map of the proposed priority areas for conservation
(ERA) in the Gulf of California area.
doi:10.1371/journal.pone.0028400.g001
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unpublished data (Table S1). A brief description of the rationale of

the modeling procedures for each species is given next. Detailed

ecological background and data sources on each species is

presented in Text S2 and Table S1. Our study area follows the

study area employed in the design of the ERA [7] covering an area

of ca. 360,000 km2. All GIS work was conducted using ArcInfo

GIS 9.1. All resulting grids have a cell size of 200 m.

Pelican. We buffered the location of pelican nesting sites to

20 km to represent the maximum distance of pelican movements

during the breeding season. Pelicans in the Southern California

Bight decreased in abundance with distance from the mainland,

but the slope of the regression lines varied considerably [38]. In

light of this uncertainty, we assumed a linear decrease in pelican

presence and habitat use from the center of the nesting site (high

use) to 20 km outward (low use) for each nesting site, and added

the resulting grids to reflect the relative overlap and potential

intensity of use of the areas surrounding the breeding sites by

pelicans to gain additional insight about the location of higher-use

areas of breeding pelicans within the ecoregion. Areas with many

overlapping nesting grounds would likely contain or be more

important to pelicans than one isolated site. We then assigned a

value of 4 to the upper half of the range of summed distance values

to represent the most important habitat because it has the highest

potential overlap of pelicans. The remaining areas of pelican use

(i.e., up to 20 km from a nesting site, but with little overlap with

other nesting locations) were assigned a value of 3 (high). All other

areas were assigned a value of no data/not habitat, assuming

pelicans do not fly farther than the 20 km during the breeding

season.

Hammerhead. Scalloped hammerheads spend daylight

hours in shallower waters around seamounts, but move 4–20 km

offshore to pelagic areas at night, descending to depths between 50

and 450 m to feed [39]. Scalloped hammerhead distribution

within the GOC is also correlated to upwelling events- reportedly

leaving the area when cold upwelling water is present, returning

shortly after the event is done [40]. Juveniles are mostly coastal,

and estuaries in coastal Sinaloa seem to be important nursery

grounds [41]. Based on the spatial ecology of the species (see also

Supp. Inf.), we modeled potential habitats and assigned them a

‘‘quality’’ or importance value: depth from 0–25 m (medium

importance = 2), depth from 26–450 m (lowest = 1), estuaries

(high = 3), documented nursery grounds from Villavicencio-

Garayzar [41] (highest = 4), seamounts buffered to 20 km

(high = 3) and upwelling sites [7] (lowest = 1). We used those

seamounts identified in Ulloa et al. [7] as well as those we derived

from the analysis of bathymetry using the methods by

Kitchingman et al. [42]. The resulting grids were then added to

create cumulative habitat types, and recoded such that all cells

with a value of 4 or greater were treated as most important habitat

(i.e., assigned value of 4). For example, cells with many types of

available hammerhead potential habitat have a higher habitat

value to hammerheads and a greater potential for hammerhead

presence.

Leopard grouper. The species is a top-predator from

shallow reefs to deep seamounts (.70 m deep) [43]. Adults

spawn in aggregations in specific areas within rocky habitats and

offshore islands [43–44]. To map leopard grouper habitat, we used

the following data: documented point locations of grouper [7 and

Rupnow et al. unpubl. data], rocky reefs, locations of known

grouper spawning aggregations and juvenile settlement areas (19

polygons created for this analysis based on literature review [45

and Sala and Aburto 2000, unpublished WWF technical report

data], reef locations for the entire ecoregion derived for this

analysis from location of rocky shores and bottom complexity [7],

and depth in two classes: 0–30 m and 31–70 m. We then coded

these data with individual habitats ranging from lowest (1) to

highest (4) importance/quality to grouper (with value of 0 assigned

to not important/not habitat) as follows: depths 31–70 m = 1,

grouper points and shallow waters = 2, spawning aggregations and

rocky reef locations = 4, all else = 0. The resulting grids were then

merged to create cumulative habitat types, and recoded such that

all cells with a value of 4 or greater are assigned a value of 4. We

Table 1. Criteria for the selection of representative species of wide-ranging marine species in the Gulf of California.

Criteria Contain

Practicability Species likely to respond rapidly to protection

Species easily identified for monitoring with existing or available technology to enable community
involvement.

Where connectivity occurs in the life cycle: Benthic sessile species that disperse only through larvae.
Ontogenetic shifts

Species with relevant ongoing research (robust baseline data on biology, distribution, etc.

Economic and social relevance Commercial species

Relevant for tourism (charismatic megafauna)

Heritage value

Recreational and educational value

Ecological Role Species in different different trophic levels

Critical ecological roles as apex predators or key trophic links as a adults or juveniles

Taxonomic, phylogenetic, ecological and/or life history representation

Spatial scale Represent widest range of connectivity for different spatial scales

Species that are present in most of the sites of the ERA

Conservation status Species in some protected status, or identified as conservation targets in protected areas or other efforts

Invasive species that could be transporting through habitat connections and threatening conservation
targets

doi:10.1371/journal.pone.0028400.t001
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assumed that cells with many types of available potential grouper

habitat have a higher habitat value to grouper, thus a greater

potential for grouper presence.

Green turtle. The GOC is primarily a foraging area for the

green turtle; they prefer areas with seagrasses and shallow waters

(,30 m) [e.g. 46–48], a habitat frequently found in bays, estuaries

and coastal lagoons. When foraging, short and mid-term

movements outside core areas (e.g. pacific waters adjacent to

coastal lagoons) are performed [47] although short-term

movements do not exceed aprox. 20 km [46,48–49]. When

migrating into and out of the GOC, sea turtles have a higher

likelihood of occurring within 50 km from the shore [50]. We

identified key foraging sites for the species, that comprised a) well-

known areas important for the species such as Laguna San

Ignacio, Bahia Magdalena or Bahia Los Angeles (see Text S1 for a

complete list), b) seagrasses locations from the COBI database and

c) main estuaries and coastal lagoons in the continental coast of the

GOC (e.g. Nayarit, Sonora). Starting from these key sites we

identified three scenarios: core areas (key areas plus a 5 km buffer),

5–20 km buffer around key areas, and non-key areas. We

overlapped these three scenarios with bathymetry (,30 m) and

distance to coast (,50 km) yielding a map with four habitat

quality classes (from 1 to 4, Table S2).

Assessment of habitat protection
Habitat protection was measured as the proportion of the

habitat of each species protected by the ERA. Given the

differences in the life cycles of the species and their spatial scales,

it should be noted that the actual meaning of habitat protection

varies among the target species. For hammerhead and grouper,

the entire life cycle occurs in the GOC (and potentially in their

protected areas), whereas for pelican, protected areas are used for

feeding during breeding and green turtle uses the entire GOC as

feeding grounds (See Text S2).

Structural and functional connectivity
Connectivity was assessed by means of metrics related to both

structural and functional connectivity. Structural connectivity

reflects the physical relationship between habitat patches within

the seascape, ignoring the organisms’ behavior, whereas functional

connectivity attempts to consider how well the seascape facilitates

the movement of an organism throughout the seascape and a

seascape is more connected if the organism can move freely from

patch to patch [51]. As with habitat protection, the actual meaning

of connectivity at the GOC scale varies among the considered

species. Pelicans were removed from the analysis since likely factors

most influencing habitat connectivity for them during breeding

season are a trophic primary effect and temporal variations of

dynamic features [52] rather than the spatial arrangement of habitat

that is evaluated by the connectivity metrics.

Structural connectivity metrics were assessed using FRAG-

STATS [53]. We calculated the following metrics (Table 2):

number of habitat patches per habitat class (NP), percentage of

total seascape area comprised by the largest patch of each habitat

class (LPI), mean (and standard deviation of) patch area per

habitat class (AREA_Mn and AREA_sd) and mean (and standard

deviation) of nearest neighbor distance (EMN_Mn and EMN_sd).

Structural connectivity indexes are relative measures of the real

connectivity [54] and the relationship between the relative and

absolute (real) connectivity values is unknown. To obtain a more

biological meaningful measure of connectivity, we compared the

structural connectivity of the habitats of the species within the

entire GOC against the structural connectivity offered by the

habitats included in the ERA sites by means of the ratio M i,ERA/

M i,GOC, where M i,ERA is a given structural connectivity metric of

a given species and habitat type in the ERA sites and the whole

GOC, respectively. This ratio represents to what extent the ERA

captures the natural structural connectivity of the species (as

represented by its habitat configuration).

We measured functional connectivity by means of the

CONNECT index in FRAGSTATS. This index measures the

number of functional links between patches of the same type,

where each pair of patches is either connected or not based on a

specified distance criterion (i.e. dispersal distance). CONNECT

index is reported as a percentage of the maximum possible

connectivity given the number of patches. The species’ dispersal

distance values were used from the literature: 100 km for grouper

and 1000 km for hammerhead sharks and the green turtle (see

Supp. Inf.). Because of the uncertainty of these dispersal values, in

order to assess the robustness of our connectivity metric, we also

calculated CONNECT index for dispersal values d/2 and 2*d, d

being the average dispersal distance taken from the literature.

Following the same rationale as structural connectivity (see above),

we compared the functional connectivity of the species in the

GOC with the functional connectivity offered by the habitats

included in the ERA sites. As before, this ratio represents to what

extent the ERA captures the natural functional connectivity of the

species.

Table 2. Metrics calculated employed to quantify the connectivity of the ERA network in the Gulf of California.

Abbreviation Metric Definition

NP Number of patches Total number of patches of a given type; at seascape level, total number of
patches. Measures seascape pattern (or fragmentation).

LPI Largest patch index Percentage of total seascape area comprised by the largest patch.

AREA_MN Mean patch area Mean patch area across all patches

AREA_SD Standard deviation of mean patch area Standard deviation of patch area across all patches

EMN_MN Euclidean nearest neighbor distance - Mean Mean nearest neighbor distance across all patches

EMN_SD Euclidean nearest neighbor distance – Standard deviation Standard deviation of nearest neighbor distance across all patches

CONNECT Functional connectivity index Percentage of the number of functional connections between all patches of the
same patch type within a set distance, divided by the total number of possible
connections between these patches.
Distance thresholds for each species are given in the text

doi:10.1371/journal.pone.0028400.t002

Spatial Ecology of Wide-Ranging Marine Species

PLoS ONE | www.plosone.org 4 December 2011 | Volume 6 | Issue 12 | e28400



Results

Representative species
Of the 22 experts surveyed, 12 responded (54% response rate).

Forty species were considered as relevant for the conservation of the

biodiversity and functioning of the GOC (Table S3) and 28 of these

species can be considered large vertebrate or wide-ranging species,

that constitute the goal of the present work (Table 3). When ranking

these 28 species, the top positions included: green turtle (Chelonia

mydas) and leatherback sea turtle (Dermochelys coriacea); hammerhead

sharks (Sphyrna spp.), sea lion (Zalophus californianus); leopard grouper

(Mycteroperca rosacea); blue whale (Balaenoptera musculus), fin whale (B.

physalus) and sperm whale (Physeter macrocephalus) and pelican

(Pelecanos spp.), yellow-footed gull (Larus livens) and osprey (Pandion

haliaetus). From the top ranked species, data was nonexistent or not

available for sea lion (particularly movements in the GOC outside

colonies) and for the three species of whales. This filter yielded four

taxonomic groups (marine turtles, seabirds, grouper and hammer-

head sharks), and from each group we selected the top ranked

species. The final result was these four species: a bird species that

breeds in the GOC, the California brown pelican (Pelecanus

occidentalis californicus); a top-predator and wide-ranging fish, the

scalloped hammerhead shark (Sphyrna lewinii); a more mobility-

limited fish, the leopard grouper (Mycteroperca rosacea); and a wide-

ranging turtle mainly living on seagrasses in the GOC, the green

turtle (Chelonia mydas).

Habitat modeling
Our habitat models (Fig. 2 and Table 4) for the GOC, described a

similar total area for grouper and pelican habitat (aprox.

50,000 km2) whereas the predicted habitat for hammerhead and

green turtle was much larger (160,000 km2 and 211,000 km2

respectively). Figure 2 shows that there is variability across species in

terms of where important habitats are found, although overall they

were all linked to coastal habitats. Pelican habitat is primarily

clustered around islands, whereas grouper, hammerhead and green

Table 3. List of wide-ranging marine species of the GOC and mean scores for the different criteria obtained from expert-based
opinion.

Common Name Scientific Name Practicability

Economic &
Social
relevance

Ecological
role

Spatial
scale

Conservation
status

Mean
score

Green turtle* Chelonia mydas 4.67 4.33 3.83 4.50 5.00 4.47

Leopard grouper* Mycteroperca rosacea 4.37 4.63 4.50 4.75 4.00 4.45

Sea lion Zalophus californianus 4.50 3.88 4.38 4.63 3.86 4.25

Hammerhead shark* Sphyrna spp. 3.67 4.33 4.33 4.67 4.17 4.23

Fin whale Balaenoptera physalus 4.00 3.56 3.78 4.89 4.78 4.20

Humpback whale Megaptera novaeangliae 3.67 4.25 3.88 4.25 4.63 4.13

Sperm whale Physeter macrocephalus 4.00 3.57 4.29 4.14 4.57 4.11

Leatherback sea turtle Dermochelys coriacea 3.33 3.83 3.33 4.33 5.00 3.97

Pelicanos* Pelecanus ssp. 4.50 2.88 3.88 4.63 3.75 3.94

Osprey Pandion haliaetus 4.50 2.63 3.75 4.38 4.13 3.88

Yellow footed gull Larus livens 4.25 2.00 4.00 4.75 4.00 3.80

Manta ray Manta birostris 3.50 3.83 3.00 4.00 4.00 3.67

Whale shark Rhincodon typus 3.20 3.40 3.60 3.00 4.80 3.60

Dolphin fish Coryphaena hippurus 3.83 4.17 2.83 4.33 2.67 3.57

Boobie Sula spp. 3.83 2.25 3.38 4.13 4.12 3.54

Mako shark Isurus oxyrinchus 3.00 3.17 3.67 3.67 4.00 3.50

Gulf coney Epinephelus acanthistius 3.00 3.80 3.60 3.80 3.20 3.48

Sierra Scomberomorus spp. 3.67 4.00 3.33 4.00 2.33 3.47

Killer whales Orcinus orca 2.40 3.00 3.57 3.57 4.57 3.42

Frigatebird Fregatta magnificens 3.40 2.29 2.71 4.57 3.60 3.32

Rock scallop Spondylus spp. 3.60 2.80 2.60 3.60 3.75 3.27

Great white shark Carcharodon carcharias 2.14 2.86 3.43 3.86 3.89 3.23

Blue whale Balaenoptera musculus 0.00 4.00 4.00 4.00 4.00 3.20

Olive ridley turtle Lepidochelys olivacea 3.00 2.00 2.00 4.00 3.00 2.80

Tilefish Caulolatilus spp. 2.20 2.75 2.75 3.50 2.50 2.74

Roosterfish Nematistius pectoralis 2.80 2.80 2.60 2.60 2.20 2.60

Hawksbill turtle Eretmochelys imbricata 2.00 2.00 1.00 2.00 5.00 2.40

Loggerhead turtle Caretta caretta 2.00 2.00 1.00 1.00 5.00 2.20

The list only comprises those species considered important for the ecological functioning of the GOC in the Workshop Gulf of California Marine Habitat Connectivity
Experts Workshop, June 2007.
*indicates the four species finally selected.
doi:10.1371/journal.pone.0028400.t003
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turtle habitats are closer to shore, but not necessarily island-related.

In particular part of the habitat of highest quality for hammerhead

and green turtle is linked to estuaries and coastal lagoons.

Habitat protection
The amount of habitats represented and potentially protected

by the ERA ranges from 24–27% in the case of green turtle and

hammerhead respectively to 42% of the habitat of grouper

(Table 4). Protection of pelican habitat showed an intermediate

value of 35%. For the four species considered, the habitats of

higher quality are better represented in the ERA than those of

lower quality. The ERA contains around 50% or more of the

high-quality habitat for all the four species and the high-quality

habitat type is the dominant habitat type for the grouper.

Connectivity within the ERA
When considering all habitats (1–4) in the GOC, hammerhead

and green turtle habitats conform to a single continuous patch

whereas for grouper, the largest patch constitutes 36% of all

habitats (Table 5). When considering only the best quality habitats

(3 and 4), the three species present a naturally fragmented habitat,

with the largest patch comprising from 11 to 19% of all habitat.

Here hammerheads and green turtles have a much more naturally

fragmented habitat than the grouper, as shown by their number of

patches and patch size values. The three species exhibit similar

habitat fragmentation patterns when considering all habitat classes

or only the best habitats.

The differences in habitat configuration between the entire

GOC and the ERA, are stronger in those species whose natural

Figure 2. Habitat models for the four representative species in the Gulf of California. Habitat classes for the A) California brown pelican, B)
leopard grouper, C) scalloped hammerhead shark and D) green sea turtle.
doi:10.1371/journal.pone.0028400.g002
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habitat conforms to a unique large patch (i.e. hammerhead and

green turtle) (Table 6). This pattern also holds, although on a lesser

extent, when considering only the best habitats. Hammerheads

and green turtles have the largest reduction in mean patch size (46

and 48%) and in the largest patch index (58 and 56% respectively).

ERA/GOC ratios on nearest-neighbor distances (EMN) do not

match this pattern and the largest increases in EMN are in green

turtle and grouper (1.47 and 1.42) (Table 6).

Natural functional connectivity (i.e. considering the whole GOC)

strongly differed among species, considering all habitats (1–4) or

only best quality habitats (3–4). In the latter case, for the whole

GOC and for species’ average dispersal values, grouper connectivity

value was 14%, whereas for hammerhead and green turtles it was

96 and 99% (i.e. almost all patches interconnected among them).

Connectivity values considering only those habitat patches included

in the ERA were very similar to those in the whole GOC, as

reflected by the ratios ERA/GOC, that were very close to 1. These

results indicate that connectivity provided by the ERA, as measured

by the CONNECT metric, is very similar to the natural connectivity

existing in the whole study area. Functional connectivity values

varied when considering the uncertainty of the dispersal distance;

however, the ratio GOC/ERA was not affected by this source of

uncertainty (Tables 5 and 6).

Discussion

Representative species
We propose a multi-leveled approach for the selection of

representative species, based on a multi-criteria expert approach.

The selected representative species comprises three very different

taxonomic groups (birds, turtles, fishes), a wide range of positions

in the food chain (from herbivorous to apex predator –

hammerhead), a wide range of operating spatial scales (that affects

the relative importance of the GOC in the life cycle of the species

– see Text S1) and a wide range of dispersal distances

(approximately from 100 to 1000 km). Thus, the selected species

may adequately represent wide-ranging marine biodiversity.

Despite their straightforward usefulness for conservation, selecting

representative species is not without criticism [33]. Because of the

absence of complete knowledge of species’ ecologies and their

functional roles in ecosystems, the results of our approach should

be viewed as hypotheses to test [31]. Our expert-based approach

has also yielded two additional results: a list of important species

Table 4. Distribution of habitat quality classes in the GOC
and the ERA network. Area in km.

Species Habitat GOC ERA % Included

Grouper 0 310585 65523

1 23916 6727 28.1

2 19823 6495 32.8

3 3 0.5 13.9

4 17013 8159 48.0

All (1–4) 50755 21382 42.1

Hammerhead 0 198054 44270

1 97697 19743 20.2

2 34693 10648 30.7

3 23985 9067 37.8

4 6911 3177 46.0

All (1–4) 163286 42635 26.1

Pelican 0 307396 68008

3 53295 18522 34.8

4 649 375 57.7

All (3–4) 53944 18897 35.0

Green Turtle 0 150183 30313

1 146809 35266 24.0

2 43701 12813 29.3

3 12345 4125 33.4

4 8302 4688 56.5

All (1–4) 211157 56892 26.9

doi:10.1371/journal.pone.0028400.t004

Table 5. Structural and functional connectivity metrics for the habitats of the GOC and the ERA network for the selected species.

Species Extent NP LPI AREA_Mn AREA_sd EMN_Mn EMN_sd CONNECT

All habitats (1–4)

Grouper GOC 777 36 7819 109594 2110 5889 11.9 (6.0–27.4)

ERA 638 11 3351 16903 1815 5149 12.7 (6.9–30.3)

Hammerhead GOC 1 100 16328600 0 - - 100 (100–100)

ERA 604 16 7058 38758 1596 5483 97.1 (70.3–100)

Green Turtle GOC 1 100 21115700 0 - - 100 (100–100)

ERA 846 14 6725 42895 972 2828 98.0 (76.9–100)

Best habitats (3–4)

Grouper GOC 259 11 6570 21348 4201 11551 14.4 (10.2–25.5)

ERA 181 12 4508 13329 5968 17184 12.2 (8.5–31.0)

Hammerhead GOC 756 15 4087 29183 1019 3484 95.9 (65.5–100)

ERA 647 9 1893 9051 1247 4443 96.9 (68.1–100)

Green Turtle GOC 776 19 2661 22543 782 2961 99.4 (84.5–100)

ERA 693 11 1272 6283 1147 6229 99.4 (84.9–100)

Abbreviations of connectivity metrics from Table 4. CONNECT mean value is referred to mean dispersal distance d, where as intervals values indicates CONNECT values
with d/2 and d*2 dispersal distances (see Methods). Data in ha.
doi:10.1371/journal.pone.0028400.t005
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for the ecosystem functioning of the GOC (Table S3) and a ranked

list of representative wide-ranging marine species (Table 3). These

results are relevant to future conservation and ecological works in

the GOC.

Habitat protection and connectivity
Our results show that the proposed ERA network largely

represents the habitats of the four species considered (mean: 30%,

range 25–45%). These figures are not surprising given the size of

the ERA (26% of the GOC), however highest quality habitats for

these four species were better represented (46–57%) than low-

quality habitats, indicating very large representation of the best

habitats. This range of values of habitat protection for these four

species, largely exceeds the goal of 10% for fish, and nearly meets

the goal of 40% for birds and turtles, considered in the design of

the ERA [7]. As it was intended in the species selection process,

the four species represent a wide range of life history strategies

among marine or marine-related vertebrates (i.e. bird, reptile,

wide-ranging fish and restricted-ranging fish with commercial

interest), and thus serve as useful indicators of the vertebrate fauna

in the GOC. In any case, it should be noted that we do not know

how much habitat is actually needed to assure the viability of the

different species. This issue is highly specific [9,55] and a more

detailed analysis addressing the spatial population dynamics with

much finer biological information is essential.

Structural fragmentation metrics showed that groupers exhibit a

more patchy distribution than the hammerhead and the green

turtle in the GOC, likely due to its narrower habitat preferences

(i.e. rocky habitats). Similarly, functional connectivity indicates

that the populations of species have different connectivity levels

(i.e. grouper 10%, green turtle and hammerhead .95%). This

metric is a simplification of the real biological system and should

be read with caution [53] but, in any case, functional connectivity

metrics indicates that very wide-ranging vertebrates (i.e. those with

dispersal distances .1000 km) present very high connectivity

values (.95%, i.e. 95% of all possible patch-to-patch distance are

within dispersal range) when considering the GOC. Despite the

above caution, these results suggest that at least these species may

be considered to function as a pancmictic population at the scale of

the GOC.

Habitat fragmentation in the GOC logically increases when we

consider only those areas included in the ERA, as shown by

structural metrics and GOC/ERA ratios. Despite this result, the

three species’ functional connectivity indices (which take into

account species-specific dispersal distances) indicate that the level

of connectivity among the ERA sites is very similar to the

connectivity level considering the whole GOC. Overall, this result

is remarkable and indicates that, for the studied species, the ERA

may function as a network with natural connectivity levels.

Our results for functional connectivity are robust to uncertainty

in species dispersal distances. Furthermore, if we plot the

hypothetical functional connectivity (as measured by the metric

CONNECT) for very different dispersal distances and for the

three species (grouper, hammerhead and green turtle), we observe

that in all cases they are strikingly similar (Fig. 3). In all cases,

connectivity for these three species steadily increases when we

assume a dispersal distance of 0 to 100 km; increases steeply with

dispersal distances from 100 to 1000 km; and is very high (.95%)

at dispersal distances greater than 1000 km. This similarity among

species indicates that the inter-species differences in connectivity in

Table 6. Structural and functional connectivity ratios ERA/GOC for the selected species.

Species TYPE NP LPI AREA_m AREA_sd EMN_m EMN_sd CONNECT

Grouper 1+2+3+4 0.82 0.30 0.43 0.15 0.86 0.87 1.07 (1.11–1.15)

3+4 0.70 1.03 0.69 0.62 1.42 1.49 0.85 (0.84–0.1.21)

Hammerhead 1+2+3+4* ,0.01 0.16 - - - - 0.97 (0.70–1.00)

3+4 0.86 0.58 0.46 0.31 1.22 1.28 1.01 (1.04–1.00)

Green turtle 1+2+3+4* ,0.01 0.14 - - - - 0.98 (0.77–1.00)

3+4 0.89 0.56 0.48 0.28 1.47 2.10 1.00 (1.01–1.00)

For each species all habitats (1+2+3+4) and only the best habitats (3+4) are considered. Abbreviations of connectivity metrics from Table 4. CONNECT mean value is
referred to mean dispersal distance d; whereas intervals values indicates CONNECT values with d/2 and d*2 dispersal distances (see Methods).
*indicates that these habitats conform a single continuous patch in the GOC (see Table 5).
doi:10.1371/journal.pone.0028400.t006

Figure 3. Functional connectivity for the three species habitats
considered. Functional connectivity (as measured by the metric
CONNECT in FRAGSTATS, see Methods) for different hypothetical
dispersal distances and for the three species habitats (grouper,
hammerhead and green turtle). Note that most considered dispersal
distances are unrealistic for the considered species; dispersal distances
described in the literature and employed in this work (see Supporting
Information) are 100 km for the grouper and 1000 km for the green
turtle and the hammerhead.
doi:10.1371/journal.pone.0028400.g003
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the GOC are dependent on dispersal distance and that the

distribution of the species’ habitat might be of secondary

importance. Two possibilities may explain this similarity in the

connectivity curves. First, the particular shape of the seascape

(peninsula in the middle, long, narrow shape of the GOC) imposes

a similar habitat configuration to most species. Second, the

considered species all have a coastal life stage and their habitat

maps are, to some extent, similar. Species with primarily pelagic,

offshore distributions (e.g. mako shark, fin whale) are likely to have

a different dispersal distance-connectivity profile. It should be

noted here, however, that much of the biodiversity in the GOC

uses coastal habitats at various life stages and thus our connectivity

profile, common for both GOC and ERA habitats, is likely to be

applicable to many of the species in our study area.

Conservation planning considerations
Our analysis represents a first step in understanding connectiv-

ity within and between the ERA network of sites for the Gulf of

California. More generally, our work serves to illustrate the

complexity of assessing habitat protection and connectivity among

marine areas at a community level, with species that disperse at

different life stages, but also to provide insight into the beginning

of the process (i.e. species selection) and into how one might

approach connectivity modeling with different types of data. This

work constitutes a first step toward the understanding of habitat

protection and connectivity by any eventual MPA network in the

GOC. Anyhow, many other species (e.g. algae, invertebrates and

small fishes) may clearly depart from our case studies and should

be a focus of further research.

Further studies should address the functioning of the target

species’ populations (i.e. spatially explicit population models) in the

context of the ERA network [e.g. 9,12,19]. We expect that as we

develop more realistic population models they become more

species-specific, and thus comprehensive multi-species approaches

will become methodologically complex and plagued with large

uncertainties [15]. Three aspects are key when considering further

efforts to address species population dynamics in relation to MPA

networks. First, as shown in this work by the differences between

the grouper and the other three species regarding natural

functional connectivity, species with different life cycles and

operating scales, may perform very differently under the same

network conservation system [9]. In this sense, the scale at which a

species life cycle, movement and dispersal occurs, is likely to be the

most important characteristic that defines the conservation value

of a MPA network for a specific species [9,26]. Second, in the

present work we have considered non-protected areas (i.e. matrix)

as empty. This is not a biologically realistic assumption and the

matrix may play both a positive or negative role [56,57]. More

importantly, this role depends largely on human activities

(harvesting, habitat loss and fragmentation, and pollution [5,7],

that can be, at least on paper, the subject of management. More

spatially-explicit models, taking into account the role of the matrix,

are likely to give information not only on the MPA network, but

also on management guidelines of human uses outside the

protected areas. Both kinds of information (design and manage-

ment of protected and unprotected areas) can be, equally valuable

for conservation, leading to a more ecosystem-based management

(EBM) [58]. Finally, the development of more realistic models

relies on high quality species-specific movement, dispersal and

population data. Acquiring this kind of information for a large

enough number of species to represent the biodiversity present in a

given study area is a tremendous challenge and thus inter-institutional

and inter-team collaboration and coordination is necessary.

Research on MPA networks and their management has rapidly

increased in the last years, leading to the emergence of general

frameworks and guidelines [e.g. 9,10]. Because of the challenge

associated with developing realistic spatially-explicit models for

particular case studies [8,12,19], such ‘‘simple rules’’ as well

general methods such as the one developed here are important

future research. Finally, it is essential that we begin testing the

application of general guidelines that yield coarse quantitative

rules of size and spacing [59], both in the GoC and beyond.
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mitigation passages. Conserv Biol 16: 503–514.

37. Rubin ES, Stermer CJ, Boyce WM, Torres SG (2009) Assessment of Predictive

Habitat Models for Bighorn Sheep in California’s Peninsular Ranges. J Wildl
Manage 73: 859–869.

38. Briggs KT, Lewis DB, Tyler WB, Hunt Jr. GL (1981) Brown Pelicans in
Southern California: Habitat Use and Environmental Fluctuations. The Condor

83: 1–15.

39. Klimley AP, Cabrera-Mancilla I, Castillo-Geniz JL (1993) Horizontal and

vertical movements of the scalloped hammerhead shark, Sphyrna lewini, in the
southern Gulf of California, Mexico. Cienc Mar 19: 95–115.

40. Klimley AP, Butler SB (1988) Immigration and emigration of a pelagic fish
assemblage to seamounts in the Gulf of California related to water mass

movements using satellite imagery. Mar Ecol Prog Ser 49: 11–20.
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