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Abstract

Study Design: Narrative review.

Objectives: Artificial intelligence (AI) and machine learning (ML) have emerged as disruptive technologies with the potential to
drastically affect clinical decision making in spine surgery. AI can enhance the delivery of spine care in several arenas: (1) pre-
operative patient workup, patient selection, and outcome prediction; (2) quality and reproducibility of spine research; (3)
perioperative surgical assistance and data tracking optimization; and (4) intraoperative surgical performance. The purpose of this
narrative review is to concisely assemble, analyze, and discuss current trends and applications of AI and ML in conventional and
robotic-assisted spine surgery.

Methods: We conducted a comprehensive PubMed search of peer-reviewed articles that were published between 2006 and
2019 examining AI, ML, and robotics in spine surgery. Key findings were then compiled and summarized in this review.

Results: The majority of the published AI literature in spine surgery has focused on predictive analytics and supervised image
recognition for radiographic diagnosis. Several investigators have studied the use of AI/ML in the perioperative setting in small
patient cohorts; pivotal trials are still pending.

Conclusions: Artificial intelligence has tremendous potential in revolutionizing comprehensive spine care. Evidence-based,
predictive analytics can help surgeons improve preoperative patient selection, surgical indications, and individualized post-
operative care. Robotic-assisted surgery, while still in early stages of development, has the potential to reduce surgeon fatigue and
improve technical precision.
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Introduction

Artificial intelligence (AI) has emerged as a disruptive tech-

nology that could guide clinical decision making in spine sur-

gery.1-5 While AI applications to fields such as radiology and

dermatology have been transformative, it has yet to be widely

adopted or well understood by most spine surgeons.1,3,6 AI

could potentially enhance the delivery of spine care in 4 pri-

mary ways: (1) preoperative workup, patient selection, out-

come prediction; (2) enhancing the quality and

reproducibility of spine research; (3) perioperative surgical

assistance and data tracking; and (4) intraoperative surgical

performance (Figure 1). The purpose of this narrative review

is to concisely compile, analyze, and discuss current trends and

applications of AI in spine surgery.

Background

Economics of Spine Surgery: Rising Costs and Mitigating
Downstream Financial Risks

Spine care is expensive: annual expenditures in the United

States currently average $110 billion in direct costs.7,8 By
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2025, total health expenditures are expected to average $5.3

trillion, or close to 20% of the gross domestic product of the

United States.8,9 Furthermore, the expenses are progressively

increasing; spinal fusions performed today cost approximately

12 times more than fusions performed 30 years ago.10 In 2014,

spinal fusions had the highest aggregate cost for an entire hos-

pital stay in the United States, beating costs of both total hip

and knee arthroplasty.11 It is tempting to assume this increase

in spending is fueled driven by supply and demand economics,

or in other words, that current trends in spine care spending are

unsustainable. However, what we have observed has been quite

the opposite.

The increasing cost of health care is quickly spiraling out of

control, and Medicare reimbursements are facing billions of

dollars in planned cuts over the next several years.12 Further-

more, health care reform has developed into an environment of

decreasing reimbursements, increasing payer denials, and profil-

ing hospitals and physicians on the utilization and quality of

care.8 Without innovation, or significant downsizing, the current

trajectory of spine surgery expenditures is not sustainable.7,8,10

Heterogeneity in the Delivery of Care and Research

Spine surgery is fraught with a myriad of different surgical

perspectives for a given condition, often informed by practice

and experience.13 A 2014 survey of neurosurgical and ortho-

pedic spine surgeons in the United States demonstrated dis-

agreement on the surgical treatment of a recurrent lumbar

disc herniations in 69% of the surgeons.14 In 2016, another

survey demonstrated a 75% rate of disagreement among spine

surgeons on various treatments for chronic low back pain

patients.15 This heterogeneity of care leads to variability in

treatment and cost. This was demonstrated by a cross-

sectional study by Alvin and colleagues, who demonstrated a

direct correlation between treatment costs and patient volume

along with years of experience for recurrent lumbar disc her-

niations.13 In addition, private practice spine surgeons were

shown to be more cost-conscious compared with their counter-

parts in academic practice.13

To further complicate matters, heterogeneity also exists

in patient-reported outcome instruments (PROIs), which are

Figure 1. Artificial Intelligence will disrupt the spine service line by improving the quality and delivery of care. This is accomplished through AI’s
ability to enhance (1) preoperative patient workup, patient selection, and outcome prediction; (2) quality and reproducibility of spine research; (3)
perioperative surgical assistance and data tracking optimization; and (4) intraoperative surgical performance.
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used to evaluate surgeon performance and judge the benefit

of a particular surgery. While they are not perfect measures

of outcome, they are nonetheless necessary to address pos-

sible discrepancies in care. Still, the limitations of patient

reports are important to note. For instance, a recent cross-

sectional study examined the use of PROIs in spine surgery

and found approximately 206 unique PROIs with minimal

expert consensus regarding measurements of outcome.16

With these factors in mind, there exist numerous areas

where AI algorithms (eg, machine learning [ML], deep

learning) can be used to improve care and develop consen-

sus among surgeons.

Artificial Intelligence in Spine Surgery

There has been increasing attention and interest in the system-

based benefits of AI and its applications to spine surgery.1,3,6,17

AI can help clinicians and hospital centers define the quality

and cost of care, improve outcomes, and mitigate downrange

financial exposures to institution and to payers.1-3 While there

has also been controversy surrounding AI, if implemented

appropriately, it has the potential to revolutionize the standard

of care in spine surgery, reduce cost and waste, and improve the

efficiency and patient care. In addition, AI could enhance indi-

vidualized care to patients and reduce heterogeneity in both

clinical practice and research.1,3,18

Preoperative Patient Care
and Outcome Prediction

As an illustrative example, a patient with medically refractory

mechanical back pain and radiculopathy secondary to a single-

level, degenerative lumbar spondylolisthesis could potentially

undergo a lumbar laminectomy, laminoforaminotomy, lami-

nectomy with in situ posterolateral fusion, laminectomy with

instrumented posterolateral fusion, transforaminal interbody

fusion, anterior lumbar interbody fusion, lateral interbody

fusion, or some combination of the above.14,15 While there is

evidence to support certain surgical treatments over others, a

surgeon’s choice in treatment is often dictated by training,

experience, and personal performance.14 Furthermore, there

are many patient-specific variables that influence cost and out-

comes such as body mass index, the presence and severity of

comorbidities, tobacco use, and psychosocial factors, to name a

few. It is difficult, if not impossible, for the clinician to recon-

cile and weight all of the discrete data points and his/her per-

sonal performance when indicating such a patient for surgery.

AI can assist with such decision making. While most published

literature are level III evidence or expert-based guidelines,

most cannot guide decision making for complex spine surgery

or when there is clinical equipoise.

In this setting, AI could assist surgeons in identifying opti-

mal surgical candidates, advise the surgeon on operative

approaches, and predict the likelihood of success, cost, and/

or payments of various treatment pathways.1,5,17,19 Ghogawala

and colleagues examined this AI-driven approach in the setting

of degenerative lumbar spondylolisthesis, specifically in utiliz-

ing expert-reviewed imaging data from the upcoming SLIP II

study to create a supervised ML model.3 They also raise the

issue of unsupervised or semisupervised modeling projects as

well. While the SLIP II study will not suffer from this issue,

these models require standardized methodologies of reporting

radiology images, preoperative workup, surgical data, and

PROIs, along with the high expense associated with obtaining

expert opinions (often called data labeling) on the images.

These innovative approaches could allow for a stronger guar-

antee of optimized patient outcomes in certified surgical can-

didates through ensuring proper surgical selection.

In addition, Ames and colleagues examined AI-driven risk

prediction models in a retrospective multicenter study that

examined preoperative decision making with the largest adult

spinal deformity patient cohort to date.1 Their model predicted

2-year outcomes by constructing a visual risk-benefit grid;

furthermore, their model also provides the surgeon insight into

which surgical intervention would yield the highest probability

of success with the lowest risk. Given that adult spinal defor-

mity is a heterogeneous patient cohort, hierarchical clustering

was used to create 3 distinct demographic/pathological and 4

distinct surgical clusters combined to produce 12 separate

groups of patients for whom extensive patient-reported out-

comes were collected. These groups were then compared on

the basis of complication rates and postoperative disability and

functional outcome scores, allowing surgeons to assess

patients’ placement into these categories and subsequently pre-

dict the outcomes of their surgeries. In essence, these models

successfully converted surgeons’ gestalt about a patient’s prob-

ability of surgical success into an accurate, reproducible, and

homogenous clinical decision-making tool in a population of

patients at high risk of poor outcome. Ideally, these tools will

be developed for a variety of patient populations in the future.

While these innovative approaches to ML in spine surgery

have not yet been scaled to encompass the whole field, models

that help surgeons determine the probability of an adverse

event following spine surgery have emerged in recent years.

Arvind and Kim both developed AI models to predict surgical

complications in patients after anterior cervical discectomy and

fusion and posterior lumbar fusion, respectively.19,20 Both

studies utilized a variety of different methodologies, including

artificial neural networks, support vector machine, logistic

regression, and random forest, all compared to the predictive

power of the American Society of Anesthesiologists physical

status classification for predicting postoperative complications.

While the authors hypothesized that the receiver-operating

characteristics of their model would improve as more patient

information was added to the database over time, very few of

their models performed with an area under the receiver oper-

ating characteristic curve (AUC) greater than 0.7. Furthermore,

their predictive values for models utilizing American Society

of Anesthesiologists physical status classification were often

worse than chance (AUCs 0.35 to 0.57), which calls into ques-

tion the validity of these models as well. Efforts by Stopa and

colleagues using ML algorithms to predict patients at risk of
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nonroutine discharge after elective lumbar spine surgery have

fared better, as their external validation of a previously devel-

oped model for nonroutine discharge netted an AUC of 0.89.5

Regardless, ML models that help surgeons predict complica-

tions preoperatively will inevitably improve with the availabil-

ity of more data, hopefully to the point of effective clinical

implementation.

Research

At its core, AI is fundamentally a research tool that could be

both powerful and disruptive to the current body of spine sur-

gery literature. As ML applications improve, this may ulti-

mately lead to a paradigm shift in the way evidence-based

guidelines are used and interpreted. Most expert-based, societal

guidelines are developed through modified Delphi approaches

with expert panels.21 The evidence used to create the guidelines

that ultimately dictate the standard practice of spine surgery is

mostly derived through large, multicenter, retrospective data-

base studies. The results produced from these studies are

wholly dependent on the data that is utilized to generate these

hypotheses.22

AI-based research enables clinical data to speak for itself.

Rather than utilizing a data mining approach, which drives

much spine research, AI has the ability to revolutionize the

field. To best appreciate the potential breakthroughs that may

result from exploiting AI in spine research, it is useful to survey

the advances that have already been made in this arena. In

particular, a recent review by Galbusera and colleagues iden-

tified several key areas of spine research that have benefited

from AI and ML, namely, diagnostic imaging, outcome predic-

tion, clinical decision support, and biomechanics.2

Diagnostic Imaging

The classification of degenerative discs via feature-extraction

from MRI (magnetic resonance imaging) imaging exemplifies

the critical contributions that AI has already made to the field

of spine surgery.2 By extracting salient features of discs, such

as the shape and intensity, and utilizing convoluted neural net-

works, which are intrinsically adept at processing visual data,

this AI-based algorithm was able to achieve a 70.1% concor-

dance with human observations, which is extremely compara-

ble to the documented rate of agreement between individual

expert radiologists (70.4%).2,23,24 With further training, the

accuracy of this classification scheme improved to 97%.2 This

Pfirrman classification system, named after the radiologist who

first described it, is commonly utilized in clinical practice and

allows standardization of this diagnostic classification.2,23

Other areas of spine research to profit from AI include evalua-

tion of severity in adolescent idiopathic scoliosis by utilizing

surface topography and support vector machines and classifi-

cation of spinal deformities through automated Cobb angle

analyses.2 In doing so, it complements surgeon expertise with

standardized recommendations derived from large collections

of patient data, and thereby decreases the subjectivity associ-

ated with these tasks.

Advances in technology are facilitating the transformation

of image analysis, from qualitative, subjective assessment to

acquisition of quantitative, reproducible data. Many computer

vision ML applications are focused on lesion detection on con-

ventional images. But the truly transformative innovations

involve analysis of tissues at a pixel level with MR fingerprint-

ing and texture analysis and acquisition and analysis of tissue

properties with synthetic MRI.25 In contrast to subjective visual

analysis of signal intensity differences in a conventional MR

image, synthetic MRI produces objective numeric values that

can be used with or without production of actual images. Appli-

cations for spine surgery could include preoperative assessment

of osteoporosis, and postoperative assessment of changes in

disc composition, marrow composition, or spinal cord or nerve

root tissue characterization.26 In the future, quantitative data

acquisition with AI analysis will allow direct transfer of infor-

mation, with characterization and interpretation of patient

pathology, from imaging equipment to the surgeon, without

the need for radiology interpretation and reports.

The adoption of AI tools by other members of the larger

health care team will also affect surgical evaluation and work-

flow. Algorithms that provide image augmentation with deep

learning have recently been cleared by the Federal Drug

Administration (FDA).27 This technology facilitates MR image

acquisition in a fraction of the normal study time, by collecting

less data and using the algorithm to interpolate the missing

information based on training from large, high-quality data

sets. These time savings benefit the surgeon and patient: exams

are substantially shorter, reducing motion artifact and enhan-

cing image quality; patient satisfaction is improved with less

time in the MR scanner; and the time from initial order to

delivered report is substantially decreased. Algorithms that

automate evaluation of spinal hardware location and integrity

on routine longitudinal radiographic follow-up are currently

being developed. These AI tools can analyze multiple prior

studies in a fraction of the time and cost of a human

interpretation.

Outcome Prediction

Predictive models using ML techniques such as decision tree

and random forest enable surgeons to anticipate everything

from the best course of care—surgical intervention versus con-

servative, for example—to operative complications, such as

those following spinal deformity surgery. The complexity of

these tasks render them poor candidates for traditional statisti-

cal methods such as logistic regression and more promising

candidates for ML, which is far more proficient in processing

nonlinear data and identifying relationships not superficially

apparent or readily found using statistical models alone.

Indeed, studies have shown that statistical predictive models

of complications in spine surgery—surgical site infection, for

example—often perform poorly on external validation, indicat-

ing that the corresponding results are representative only of a
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specific cohort and cannot be generalized to the patient popu-

lation.17 On the contrary, ML techniques have shown remark-

able promise in tasks of similar complexity. For instance, a

large retrospective study recently described a random forest

approach to predicting intraoperative and perioperative com-

plications following spinal deformity surgery that reached an

accuracy of 87.6%.2,18

Translational Research

Integration of AI into biomechanical investigations represents

yet another frontier of spine surgery research. While the usage

of AI in this field is still in its infancy, AI has promising

applications in this arena. Analysis of gait and motion patterns,

along with identification of abnormal gait in spinal disorders,

represents one area that can benefit from AI usage.28-30 While

this field has traditionally relied on integrating discrete vari-

ables such as velocity and angle of joint rotation to quantita-

tively describe motion, ML allows identification and

classification of abnormal gait patterns that cannot be detected

with traditional methods alone.28-30 Additionally, ML can also

be utilized to estimate biomechanical variables such as stress

and load on specific joints and predict how bone and tissue

would respond to such forces. If such an algorithm were opti-

mized, it would allow the surgeon to tailor the treatment to the

individual patient and the specific biomechanical properties of

their spine.

Perioperative Assistance
and Robotic Surgery

Over the past several years, technical advancements in surgi-

cal simulation, augmented reality, and robotic-assisted spine

surgery have led to fundamental changes in spine surgery

practice. While perioperative AI platforms are currently in

development and still experimental at the time of this writing,

the 2 most prominent technological advances in the modern

era of spine surgery, namely, neuronavigation and surgical

robotics, have the potential to incorporate AI and are espe-

cially well suited to AI.4,31 For one, robotic-assisted spine

surgery is often associated with minimally invasive proce-

dures that feature small incisions and exposures. As such,

perioperative surgical planning and intraoperative navigation

become exceedingly important to facilitate optimal outcomes

and minimize iatrogenic injury. Since image processing is a

key strength of AI programs, neuronavigation stands to par-

ticularly benefit from evolving AI techniques. Furthermore,

AI can facilitate the individualization of management and

surgical planning to each patient. By accounting for anatomi-

cal variations among patients, the image processing prowess

of AI allows exact reconstruction of relevant spinal anatomy

during surgical planning.

The advent of advanced navigation technologies allows sur-

geons construct a 3-dimensional rendering of the spine that

provides real-time positional feedback during the operation,

thereby allowing visualization of deeper structures. Thus,

intraoperatively, the operating team can also use AI-powered

image guidance to direct anatomical positioning of constructs

and avoid iatrogenic injury. Indeed, computer-assisted naviga-

tion (CAN) platforms are widely utilized throughout operating

rooms in the United States in operations ranging from resection

of spinal tumors to spinal deformity surgery. Multiple studies

have established that CAN usage not only improves accuracy in

operative tasks like pedicle screw placement but also improves

the efficiency of operations, thereby reducing the duration of

generalized anesthesia and decreasing complications associ-

ated with screw misplacement.4,31 Furthermore, usage of CAN

platforms can also reduce the need for fluoroscopic guidance

during procedures and thereby decrease exposure to harmful

radiation.4,31

In addition to CAN, surgical robotics have the potential to

transform the field of spine surgery by increasing precision,

thereby lowering complications from human error, and effi-

ciency (Table 1).32,33 One of the biggest challenges in spine

surgery is maintaining precision and accuracy of motion during

lengthy operations. It is not only human to error, but also

human to fatigue, and even the best trained spine surgeon is

not an exception to this human attribute. Robotics address these

drawbacks by providing a precision and indefatigability impos-

sible to consistently reproduce in a surgeon. To appreciate the

contributions of surgical robots to spine surgery, it is useful to

discuss 4 of the most widely used and well-studied robots:

SpineAssist (MAZOR Robotics Inc, Caesarea, Israel), ROSA

(Medtech, SA, Montpellier, France), the Excelsius GPS Robot

(Globus Medical, Inc, Audubon, PA), and the Da Vinci Surgi-

cal System (Intuitive Surgical, Sunnyvale, CA).4,31,33-37

The SpineAssist robot mounts directly onto bony land-

marks, such as a spinous process, during the opera-

tion.32,33,38-40 With 6 degrees of freedom, this device allows

for precise positioning of surgical instruments and interface

with a CAN, ultimately identifying the most accurate location

for pedicle placement based on the location of the designated

entry point and screw trajectory.4,31,41-43 Several studies have

documented the accuracy of the SpineAssist robot.44-54 For

instance, Roser et al found an accuracy rate of 99% in pedicle

placement with SpineAssist, compared with an accuracy of

92% with navigation only.55 Interestingly, a randomized con-

trol trial by Ringel et al was the only study to find a signifi-

cantly decreased accuracy associated with screw placement

using SpineAssist robots (85% vs 93% for fluoroscopy-

guidance, P ¼ .019), though the authors note that this result

could be in part due to placement of only one K-wire as rec-

ommended by the manufacturer.56 Furthermore, the authors

note that the pedicle screw entry point usually slopes down

laterally, which can lead to slipping of the cannula and subse-

quent lateral breach during pedicle screw placement. All of

these concerns came without a corresponding decrease in

intraoperative radiation exposure, and surgeons should take

these into account when utilizing the SpineAssist system.

The Excelsius Robot System, which gained FDA approval

in 2017, has been the subject of an operative technique case

report and a case series since its approval.57,58 Its rigid arm and
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Table 1. Review of Published Literature Examining the Precision and Accuracy of Robotic Pedicle Screw Placement.

Author, Year
Robotic
System Study Design

Number of Patients,
Pedicle Screws Findings

Elswick et al,
202057

Excelsius GPS Retrospective review 28 patients, 127 screws 97.6% accuracy with robot

Zygourakis
et al, 201858

Excelsius GPS Case report 1 patient, 8 screws Successful revision decompression and fusion from L3 to S1

Chenin et al,
201732

ROSA Retrospective review 25 patients, 110 screws 96.3% accuracy with robot

Lonjon et al,
201659

ROSA Retrospective review 10 patients, 40 screws 97.3% accuracy with robot

Hyun et al,
201736

SpineAssist Prospective
randomized trial

30 patients, 130 screws 100% accuracy with robot

Keric et al,
201739

SpineAssist Retrospective review 66 patients, 341 screws 90.0% accuracy with robot

Kim et al,
201747

SpineAssist Prospective
randomized trial

37 patients, 158 screws 99.4% accuracy with robot

Kuo et al,
201648

SpineAssist Retrospective review 64 patients, 317 screws 98.7% accuracy with robot; K-wire deviation is usually caudal
and lateral

Macke et al,
201649

SpineAssist Retrospective review 50 patients, 662 screws 92.7% accuracy with robot in patients with adolescent
idiopathic scoliosis

Bederman et al,
201644

SpineAssist Retrospective review 14 patients, 31 screws 100% accuracy with robot

Sensakovic
et al, 201652

SpineAssist Retrospective review 34 patients Radiation dose reduced with robotic pediatric spine surgery

Tsai et al,
201653

SpineAssist Retrospective review 35 patients, 176 screws 98.9% accuracy with robot; robotic grading classification
system assesses K-wire placement accuracy

van Dijk et al,
201554

SpineAssist Retrospective review 112 patients, 494
screws

97.9% accuracy with robot

Hu et al, 201541 SpineAssist Retrospective review 9 patients Robotic spinal tumor surgery appears safe
Schatlo et al,

201542
SpineAssist Retrospective review 258 patients, 1265

screws
96.2% accuracy; peak in screw inaccuracy between cases

10 and 20
Onen et al,

201437
SpineAssist Retrospective review 27 patients, 136 screws 98.6% accuracy with robot; reduced radiation exposure

Schatlo et al,
201443

SpineAssist Retrospective review 55 patients, 244 screws 91.4% accuracy with robot

Hu and
Lieberman,
201435

SpineAssist Retrospective review 162 patients Accuracy increases with surgeon experience

Dreval et al,
201445

SpineAssist Retrospective review 77 patients Robotic surgery can be used for GO-LIF and spine tumor
surgery

Hu et al.,
201338

SpineAssist Retrospective review 102 patients, 1085
screws

98.9% accuracy with robot

Roser et al,
201355

SpineAssist Prospective
randomized trial

18 patients, 72 screws 99% accuracy with robot

Ringel et al,
201256

SpineAssist Prospective
randomized trial

30 patients, 146 screws 85% accuracy with robot (lower than freehand)

Schizas et al,
201251

SpineAssist Retrospective review 11 patients, 64 screws 95% accuracy with robot

Kantelhardt
et al, 201146

SpineAssist Retrospective review 55 patients, 250 screws 95% accuracy with robot

Devito et al,
201033

SpineAssist Retrospective review 635 patients, 3271
screws

98.3% accuracy with robot

Pechlivanis et al,
200950

SpineAssist Prospective case
series

31 patients, 133 screws 99.2% accuracy with robot

Sukovich et al,
200640

SpineAssist Retrospective review 14 patients, 98 screws 96.0% accuracy with robot

Barzilay et al,
200634

SpineAssist Prospective case
series

15 patients Described technical challenges

Rasouli et al 561



freestanding nature allow it to be utilized without rigid fixation

to the spine.58 While elementary compared to conventional

CAN systems, the Excelsius system allows for navigational

capacity, which could allow for minimally invasive technique

utilization and the minimization of intraoperative radiation

exposure to the surgical team. A case series of the Excelsius

system suggests that up to 97.6% of pedicle screws can be

placed with a GRS A or B rating, with all of the placement

errors in the reported case series being on patient’s left side and

most likely to happen at the L5 level.57 However, unlike the

SpineAssist, randomized evidence is currently lacking, and

further studies will be needed to elucidate specific outcomes

for this device in comparison to freehand pedicle screw

placement.

The ROSA robot, though initially designed for intracranial

operations, can also be adopted in spine surgery and may even

address some shortcomings associated with SpineAssist.4,31,32

A freestanding robotic assistant, the ROSA does not require

fixation to any part of the spine, thereby alleviating errors

associated with incorrect fixation, as described by Ringel

et al. As the robotic arm moves with the patient via a camera

that monitors movement of the patient through several percu-

taneously placed pins on bony landmarks, there is a further risk

reduction for disconnect between the system and the patient

during surgery. While this technology has not yet been vali-

dated for spine surgery, preliminary results are promising and

indicate that the ROSA has an accuracy of 97.3% in pedicle

screw instrumentation, compared with 92% in the fluoroscopy-

guided group, although this difference was not statistically

significant.4,31 Furthermore, it was associated with more than

70 extra minutes added to the operative time and increased,

rather than decreased, radiation exposure for the surgical

team.59 The authors attribute these difficulties to the learning

curve of using the new device and small number of patients in

the study. These results, however, highlight the vital impor-

tance of further study on this system before widespread adop-

tion in spine surgery.60-62

Last, the Da Vinci Surgical System, perhaps the most well-

known robotic suite was approved by the FDA in 2000 for

laparoscopic procedures such as hysterectomies.4,31 The Da

Vinci exemplifies the telesurgical model, in which the surgeon

operates the robot from a remote booth that is equipped with

technology allowing the surgeon to control the robotic arms

and override their actions.4,31 This model lends itself well to

training and education, as it strikes a balance between auton-

omy and oversight. Despite the abandonment of the laparo-

scopic approach to the anterior lumbar interbody fusion, the

Da Vinci holds promise in the area of a minimally invasive

approach to anterior lumbar interbody fusion, and a number of

case reports and small studies have begun to examine this topic

in animals and humans. While this system is not yet FDA

approved for placement of instrumentation, it carries promising

potential in this arena, and further studies of its accuracy in

instrumentation placement will be needed to assess its long-

term value as a disruptive innovation in spine surgery.

It is important to note that while surgical robotics are clearly

advancing spine surgery, they do not supplement the surgeon.

Even in the most technically challenging cases, which would

benefit from the increased precision of robotics, it is still the

surgeon that makes operative decisions and guides the robots in

their function. Like any instrument, surgical robots are tools—

albeit particularly powerful ones—in the spine surgeon’s arma-

mentarium. Furthermore, there is a large cost burden to over-

come with surgical robotic devices, which may prove to be a

barrier to widespread implementation of these devices in the

future. Future research is necessary to explore the cost-

effectiveness of these technologies and to expand the repertoire

of operations for robots like the ones described in this review.

While AI-driven technologies for perioperative surgical assis-

tance are still in their infancy, the potential for predictive ana-

lytics to guide the robotic-guided fusions is certainly on the

horizon.

Conclusion

Artificial intelligence has tremendous potential in revolutioniz-

ing comprehensive spine care. AI’s evidence-based, predictive

analytics can help surgeons improve preoperative patient selec-

tion, surgical indications, and improve individualized post-

operative care. In the realm of research, AI computing

capacity can be used to collect, process, and analyze volumes

of patient information to extract valuable clinical information

for studies. Robotic-assisted surgery, while still new and

improving, has potential to help reduce surgeon fatigue and

improve technical precision. Ultimately, in the ever-evolving

landscape of spine surgery, one thing is certain: artificial intel-

ligence technologies have arrived—and they are here to stay.
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