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Abstract: In this study, predictive models of protein oxidation, expressed as the content of thiol
groups (SH), in raw ground pork were established and their accuracy was compared. The SH changes
were monitored during, maximum, 11 days of storage at five temperature levels: 4, 8, 12, 16, and
20 ◦C. The effect of 13 plant extracts, including spices such as allspice, black seed, cardamom, caraway,
cloves, garlic, nutmeg, and onion, and herbs such as basil, bay leaf, oregano, rosemary, and thyme,
on protein oxidation in pork was studied. The zero-order function was used to described SH changes
with time. The effect of temperature was assessed by using Arrhenius and log–logistic equations.
Artificial neural network (ANN) models were also developed. The results obtained showed very
good acceptability of the models for the monitoring and prediction of protein oxidation in raw pork
samples. High average R2 coefficients equal to 0.948, 0.957, and 0.944 were obtained for Arhhenius,
log-logistic and ANN models, respectively. Multiple linear regression (MLR) was used to assess the
influence of plant extracts on protein oxidation and showed oregano as the most potent antioxidant
among the tested ones in raw ground pork.

Keywords: thiol content; protein oxidation; raw pork; plant extracts; predictive models; temperature
effect; Arrhenius equation; log-logistic model; artificial neural network

1. Introduction

Meat is a valuable source of protein, containing essential amino acids, heme-iron, B
vitamins, and minerals such as zinc and phosphorus [1], and pork meat is one of the most
popular meat types worldwide [2]. Although vegetarian or vegan lifestyles have become
popular, mostly in high-developed countries, their impact on global changes in consumers’
preferences is still relatively low and the global consumption of meat is maintained at a
high level and is predicted to increase for pig meat to 127 Mt over the next 10 years. This
increase will be the most noticeable in developing countries (such as Latin America), where
the consumption of pork is expected to boost [2].

During shelf life, meat undergoes a number of processes that negatively affect the final
quality and safety of the product. Lipid oxidation has been considered for a long time to be
the main process leading to the decrease in the sensory and nutritional values of meat [3,4].
Starting two decades ago, increasing attention has been paid to proteins as the target of
oxidation [5–7]. The oxidation reactions in protein fraction could be initiated indirectly by
the primary and secondary products of lipid oxidation [4,5]. It was reported that both lipid
and protein oxidation in meat processes are very complex and inextricably related to each
other [8–10]. Protein oxidation could be also induced directly by the reactions with reactive
oxygen species (ROS) or transition metals [5,6]. There are various final products of protein
oxidation depending on the target of the process, protein structure, presence of amino
acids such as cysteine and methionine, oxidizing system (ROS or other), and some intrinsic
(presence of endogenous antioxidants and prooxidants) and extrinsic conditions (meat
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processing conditions, etc.) [4,7,11]. Generally, oxidative modifications of the proteins
include cleavage in the backbone position, leading to protein fragmentation; oxidative
modification of sulfur-containing amino acids (cysteine and methionine), resulting in
the loss of thiol groups and disulfide bond formation; intra- and inter-molecular cross-
linkage; and carbonyl generation [6,7,11]. All these reactions could take place through
various pathways that could cause changes in the protein conformation, digestibility, and
solubility and loss of essential amino acids, and affect the sensory and nutritional values
and the technological properties of the meat [5,12]. In addition, minced meat is particularly
susceptible to oxidation through exposure to oxygen during the mincing process itself and
through the increased surface contact with oxygen.

Various strategies have been undertaken to counteract quality impairments in meat
during storage. Consumers expect innovations in this aspect to lead to the decline of so-
called “artificial” food (the term used often to describe food with preservatives). Therefore,
the “natural” and “clean label” claims are recently widespread marketing catchwords
for food without any additives and/or with naturally occurring functional components
such as herbs and spices or extracts [13,14]. Thus, the efforts of the food industry and
scientists have been focused on replacing chemical preservatives with plant extracts rich in
antioxidants and other bioactive compounds. This approach has been met with consumer
acceptance, even though the sensory attributes of such “natural” food have been changed
in terms of taste, color, and odor [8]. The active antioxidant compounds found in spices
and herbs are phenolic acids such as protocatechuic, ferulic, hydroxybenzoic, caffeic, and
rosmarinic acids; flavonoids such as kaempferol, quercetin, catechin, and rutin; vitamins;
terpenoids found in plant oils (such as tymochinon, eugenol, and carvacrol); and enzymes
or glutathione [8,15–21]. The broad range of bioactive compounds results in various
mechanisms of antioxidant action in food, such as free radical scavenging, scavenging
molecular oxygen, chelating transition metal ions, regeneration of other antioxidants, and
also inhibition of pro-oxidant enzymes [22].

So far, many studies have shown the positive effect of plant and plant-extract addition
to meat on the oxidative status of its protein [23–28]. However, a predictive approach to
protein oxidation in raw meat is still little described [29].

Among various external factors, temperature and time of storage were shown to be
crucial to the final quality of meat [30]. Thus, it seems reasonable to use the predictive
approach (kinetic modeling) to monitor and manage meat-quality changes during shelf life.
This tool is very helpful in ensuring and maintaining meat safety, which is an important
issue from the producer’s and consumer’s points of view. Kinetic modeling could also be
used as an initial step in food-product development [30].

Previously, mathematical models were developed based on the changes of numerous
quality attributes in food [29,31–39]. ANN models were also previously built for quality
assessment of shrimp, bream fillets, and pork-protein denaturation [35,40,41].

To the authors’ best knowledge, there is neither research on the kinetic approach in
terms of protein oxidation in pork nor data available on the kinetic modeling of meat
quality after plant-extract addition.

Therefore, the goal of this study is to establish predictive models of protein oxidation
(expressed as SH content) of raw ground pork with the addition of various plant extracts
during storage at different temperatures. The models were derived based on a zero-order
kinetic model combined with Arrhenius and log-logistic equations. Data mining techniques
such as ANN were also applied for the SH content prediction at various time/temperature
conditions. In order to range the extract studied according to its antioxidant effectiveness
in raw meat, MLR models were also calculated.

2. Materials and Methods
2.1. Materials

All herbs (basil, bay leaf, oregano, rosemary, and thyme) and spices (allspice, black
seed, cardamom, caraway, cloves, garlic, nutmeg, and onion) were bought from a local
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distributor (Ciecierzyn, Poland). Pork neck was supplied by a local producer (Swarzędz,
Poland). The meat was minced (diameter of plate = 5 mm) on the day of transport to the
laboratory. The temperature during the transport was held at a level of 4–8 ◦C. The basic
composition of the meat was as follows: moisture—64.7%, protein—19.6%, and fat—13.6%.

2.2. Preparation and Characterization of Plant Extract

Extracts of spices and herbs were prepared in 50% aqueous ethanol as previously
described [8]. The mass (g) to liquid (ml) ratio of each extract was 1:15 (m/v). The DPPH•

radical scavenging capacity was determined by the method by Sánchez-Moreno et al. [42],
modified as described previously [25]. The final results were expressed as µmol Trolox
equivalent (TE) per g of dried plant. The content of phenolic compounds was investigated
by the method by Singleton and Rossi [43] and the total phenolic content (TPC) was
expressed as mg GAE (gallic acid equivalent) per g of dried plant.

2.3. Preparation of Meat Samples with Plant Extracts

The preparation of meat samples with plant extracts (0.5% m/m) was performed
according to the procedure by Muzolf-Panek et al. [25]. Each sample was put in a low-
density polyethylene bag and stored at 4 ◦C for 11 days, at 8 ◦C and 12 ◦C for 7 days, and
at 16 ◦C and 20 ◦C for 5 days in a thermostatically controlled cabinet (Pol-Eco Aparatura,
Wodzisław Śląski, Poland). Various storage periods resulted from the rate of protein
oxidation. With increasing temperature the oxidation rate increased.

2.4. SH Content

Protein oxidation was investigated in terms of changes in SH content, which was
measured spectrophotometrically (Cary 1E spectrophotometer, Varian) using Ellman’s
reagent (DTNB – 5,5′-Dithiobis(2-nitrobenzoic acid)) [44] via the modified method [8].
The final results were expressed as nmol cysteine per mg of protein. The calibration curves
for BSA (bovine serum albumin) in the range of 0–1.5 mg/mL as well as for L-cysteine in
the range of 0–100 µM were prepared.

Since the protein-containing extracts did not absorb light at a wavelength above
300 nm, as was also observed by others [45], myoglobin was found not to interfere with
further measurements (at 412 nm). Non phenolic–protein interaction was observed in
the samples, nor was any phenolic interaction with DTNB observed. None of the tested
samples showed absorbance readings lower than the control, which would indicate the
possible hindering of NTB formation from DTNB breakage or pro-oxidant effects.

In order to obtain universal models, SH changes during storage were given in percent-
ages. Day 0 was used as the initial value, with SH equaled to 100%.

2.5. Kinetic Arrhenius and Log-Logistic Models

Kinetic models for food-quality loss can be determined based on the following general
equation:

− dQ/dt = kQn (1)

where Q is a quality index; t is time; k is kinetic constant rate, which is temperature
dependent; and n is kinetic order [30].

SH changes during storage at constant temperature were modeled by means of a
zero-order equation and Equation (1) for n = 0 is:

SH = SH0 − kt (2)

where SH is the content of thiol groups (%), SH0 is the initial value (100%) at time 0, k is the
meat-quality rate constant (day−1) at a given temperature, and t is time (day). SH changes
at 4, 8, 16, and 20 ◦C were used to establish the kinetic models. Linear regression was
obtained by plotting SH changes (%) versus time (day).



Antioxidants 2021, 10, 917 4 of 17

The effect of temperature on the rate constant (k) was calculated according to the
Arrhenius equation:

k = k0 exp(−Ea/RT) (3)

where k (day−1) represents the SH content rate, k0 is the pre-exponential factor, Ea (kJ/mol)
is the activation energy, R is the universal gas constant, and T is the absolute temperature.

The linearized form of the Arrhenius equation is:

ln k = ln k0 − Ea/RT (4)

A plot of lnk on the reciprocal of T gave the regression line with the slope equal to
–Ea/R and an intercept of lnk0. The Arrhenius model used for the prediction of product
quality is an empirical rather than physical one. This is because in food temperature
dependence is investigated for very complicated reactions and not for defined, simple
reactions [46].

A log-logistic model was also used to expressed the temperature dependency of
food-quality rate constant (k):

k = m′ ln(1 + exp(c(T − Tc )) (5)

where c (◦C−1), m’ (−), and Tc (◦C−1) are empirical fit constants and m’ = 1 [37]. The
difference between Equations (3) and (5) is that model from Equation (5) does not need the
concept of activation energy [46].

Finally, the predictive models were obtained by combining Equation (2) and Equa-
tion (4) as well as Equation (2) with Equation (5). Values of empirical constants were evalu-
ated using a non-linear estimation analysis by least-squares criterion with the Levenberg-
Marquardt algorithm.

Validation was performed on the external dataset (not used for model determination)
of SH content in meat stored at 12 ◦C.

2.6. Artificial Neural Networks (ANNs)

ANNs are a data mining tool used in regression and classification analyses. Knowl-
edge of the relations between variables is not required in ANNs, thus they are often called
“black box” models. The ability to analyze huge data matrices and to learn based on the
training dataset are the main advantages of this tool. ANNs have been applied in food
sciences to describe and predict quality changes in food, for process control, and for various
simulations [47]

In this study, the dataset was divided into learning (70%), testing (15%), and validating
(15%) subsets. Multilayer feed-forward connected ANNs using multilayer perceptron
(MLP) and radial basis function (RBF) networks were trained with the Broyden–Fletcher–
Goldfarb–Shanno learning algorithm (200 epoch). In total, 20 ANNs were evaluated and
the best five were retained. The ANNs consisted of an input layer including 16 neurons,
a hidden layer including 4–10 neurons, and an output layer consisting of 1 neuron (SH
values as a response). For the learning process, the sums of the squares and the cross-
entropy error functions were applied. The success of the ANN models to predict SH
content in meat samples was evaluated based on the performance calculated for learning,
testing, and validating steps. Performance is defined as a percentage of the samples in the
corresponding dataset correctly predicted by the model. Moreover, external validation was
performed, which included SH values (%) at 12 ◦C.

2.7. Multiple Linear Regression Models

In order to analyze the effect of plant-extract addition to pork meat on the SH content,
slopes of the multiple regression equation representing SH changes with time at constant
temperature were compared.



Antioxidants 2021, 10, 917 5 of 17

The general model of MLR is:

y = β0 + β1 x1 + β2 x2 + . . . + βkxk + ε, (6)

where y is the dependent variable value, β0 is the intercept, β1−k are the regression coef-
ficients, x1–k are the predictors, and ε is the standard estimation error. The comparisons
between the coefficients were performed by introducing 13 (k−1) dummy variables as
predictors to the regression analysis. The control samples were not coded since all other
categories (13 plant extracts) were compared to the control.

2.8. Statistical Analysis

All results are expressed as mean ± standard deviations calculated for three replica-
tions. Statistica 13.3 software (StatSoft, Tulsa, OK, USA) was used at significance level of
p = 0.05. The determination coefficient (R2), root-mean-square error (RMSE), and coefficient
of variation (CV%) were used to evaluate the capability of the models. The t-test (p ≤ 0.05)
was used to show the significant differences between the regression coefficients of the
samples with plant extract in comparison to the control sample.

3. Results and Discussion
3.1. Herb and Spice Extracts

The results of the antioxidant activity and phenolic content of the spice and herb
extracts are shown in Table S1 and were discussed in the paper by Muzolf-Panek et al. [48].
Since the antioxidant activity of plant extracts was highly correlated with the TPC values
(r = 0.98, p = 0.00) it could be concluded that the antioxidant properties of herbs and spices
resulted from these bioactive compound contents. The rank of plant extracts according
to the decreasing TPC values was as follows: clove >> allspice > thyme ≥ bay leaf ≈
oregano ≥ basil ≥ onion ≥ rosemary ≈ nutmeg ≈ garlic ≈ black seed ≈ caraway ≈
cardamom. The DPPH• radical scavenging activity decreased in the following order: clove
>> allspice > thyme > bay leaf > oregano > basil > rosemary ≥ nutmeg > caraway ≈ garlic
≈ black seed ≈ onion ≈ cardamom. A similar order was reported by Assefa et al. [49]
for extracts of selected spices and herbs obtained with 80% methanol. Clove extract was
previously reported to have the highest content of phenolics and the highest antioxidant
activity [49–51].

The phenolic profiles of the spices and herbs tested in the studies have been in-
vestigated by others. Among phenolic acids, p-hydroxybenxoic, protocatechuic, caffeic
ferulic, rosmarinic, and chlorogenic acids have been determined in bay leaf, nutmeg, onion,
oregano, thyme and rosemary, whereas protocatechuic, p-coumaric, caffeic, and rosmarinic
acids have been determined in basil [8,15–18,21,52]. Phenolic acids reported in caraway
are as follows: p-hydroxybenzoic, p-coumaric, syringic, caffeic, ferulic, rosmarinic and
chlorogenic acids, and in allspice and cardamom they include protocatechuic, sinapic, and
chlorogenic acids [8,15]. Gallic, p-coumaric, ferulic, caffeic, and chlorogenic acids were
determined in black seed, although other studies found only flavonoids such as kaempferol
and quercetin and their derivatives (mainly glycosides). Quercetin was detected in car-
away, clove, garlic, nutmeg, onion, oregano, rosemary, and thyme [15,16,18,21,52], whereas
kaempferol was found in high quantity in oregano but also in allspice, clove, garlic, onion,
cardamom, and onion [8]. Among flavonoids, catechin was a predominant polyphenol in
basil and rosemary extracts [18]. According to the literature, it could be stated that consid-
erable variation within the phenolic profiles of selected spices and herbs was observed.

3.2. Arrhenius and Log-Logistic Models

Thiol loss is one of the indices providing an evaluation of the extent of protein oxida-
tion and it was reported that free thiols are highly correlated with the content of carbonyl
compounds—another marker of protein oxidation [4]. This method has been successfully
applied in raw meat [8,25,29], cooked meat, and meat products [26,53,54].
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Thus, SH content was determined in raw ground pork samples with plant addition.
Samples were stored at controlled temperature conditions during storage time. Figure 1
presents SH changes for the control sample (without any addition). The plot of SH content
versus time gave linear regression with a high regression coefficient; therefore, a zero-order
reaction model was used. As shown in Figure 1, the content of SH dropped significantly
with time and the absolute rate value increased as storage temperature increased. A similar
trend was observed previously by Wang et al. in rabbit meat [29].

Antioxidants 2021, 10, x FOR PEER REVIEW 6 of 19 
 

Thus, SH content was determined in raw ground pork samples with plant addition. 240 
Samples were stored at controlled temperature conditions during storage time. Figure 1 241 
presents SH changes for the control sample (without any addition). The plot of SH con-242 
tent versus time gave linear regression with a high regression coefficient; therefore, a 243 
zero-order reaction model was used. As shown in Figure 1, the content of SH dropped 244 
significantly with time and the absolute rate value increased as storage temperature in-245 
creased. A similar trend was observed previously by Wang et al. in rabbit meat [29].  246 

 247 

Figure 1. Changes in SH (thiol group) content of raw ground pork (control sample) stored at 4, 8, 248 
12, 16, and 20 °C. 249 

The loss of SH was the most pronounced in the control sample. After the addition of 250 
plant extracts to pork meat, the rate of protein oxidation decreased. The absolute values 251 
of all rate constants (k) derived from kinetic linear regression models are shown in Table 252 
1.253 

0

20

40

60

80

100

120

0 2 4 6 8 10

SH
 c

on
te

nt
 (%

)

time (day)

4 °C

8 °C

12 °C

16 °C

20 °C

Figure 1. Changes in SH (thiol group) content of raw ground pork (control sample) stored at 4, 8, 12,
16, and 20 ◦C.

The loss of SH was the most pronounced in the control sample. After the addition of
plant extracts to pork meat, the rate of protein oxidation decreased. The absolute values of
all rate constants (k) derived from kinetic linear regression models are shown in Table 1.
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Table 1. Estimated kinetic parameters of Arrhenius and log-logistic models for thiol group (SH) content in raw ground pork with plant extracts during storage at 4, 8, 16, and 20 ◦C.

Extract Temperature (K) k (d−1)
Arrhenius Log-Logistic

R2 Ea (kJ/mol) k0 (d−1) R2 c (◦C−1) Tc (◦C−1)

Control

277 8.1477 ± 0.0814 0.9844 ± 0.0059 31.21 ± 0.46 6.4 × 106 ± 1.2 × 106 0.9695 ± 0.0047 0.5695 ± 0.0029 10.081 ± 0.346
281 10.4655 ± 0.2743
289 13.8307 ± 0.0381
293 17.8547 ± 0.1424

Allspice

277 5.5696 ± 0.1429 0.9573 ± 0.0226 41.08 ± 0.62 3.4 × 108 ± 8.8 × 10 7 0.9767 ± 0.0222 0.5868 ± 0.002 6.001 ± 0.01
281 8.3583 ± 0.1037
289 13.683 ± 0.5107
293 14.6404 ± 0.3064

Basil

277 3.6157 ± 0.1467 0.955 ± 0.009 62.28 ± 0.46 2.3 × 1012 ± 4.0 × 1011 0.9643 ± 0.0036 0.8323 ± 0.0137 0.311 ± 0.006
281 7.4565 ± 0.006
289 11.96 ± 0.2746
293 17.9823 ± 0.2802

Bay leaf

277 5.0828 ± 0.0143 0.8416 ± 0.0176 36.73 ± 0.66 5.2 × 107 ± 1.4 × 107 0.9011 ± 0.0235 0.4726 ± 0.0115 9.083 ± 0.505
281 9.314 ± 0.0553
289 12.51 ± 0.2037
293 12.9375 ± 0.2903

Black seed

277 6.0303 ± 0.085 0.9983 ± 0.0022 38.08 ± 0.05 9.1 × 107 ± 1.4 × 106 0.9876 ± 0.0039 0.5542 ± 0.0015 6.377 ± 0.023
281 7.7736 ± 0.0992
289 11.884 ± 0.2261
293 15.0553 ± 0.0468

Caraway

277 3.7622 ± 0.1607 0.9983 ± 0.0009 42.53 ± 0.73 4.1 × 108 ± 1.1 × 108 0.9934 ± 0.0001 0.4131 ± 0.0048 4.642 ± 0.246
281 5.1103 ± 0.1271
289 8.2472 ± 0.2125
293 10.4214 ± 0.2175

Cardamom

277 6.8443 ± 0.0288 0.8834 ± 0.0294 23.58 ± 1 2.2 × 105 ± 9.1 × 104 0.8948 ± 0.0207 0.4976 ± 0.2784 14.118 ± 6.698
281 9.6445 ± 0.1948
289 10.5695 ± 0.03
293 13.1264 ± 0.2994

Clove

277 3.4777 ± 0.0574 0.9867 ± 0.0078 58.18 ± 1.6 4.0 × 1011 ± 2.6 × 1011 0.9711 ± 0.0004 0.6747 ± 0.0362 0.655 ± 0.39
281 5.825 ± 0.1333
289 10.0913 ± 0.3264
293 14.7812 ± 0.5409

Garlic

277 3.2008 ± 0.1237 0.9938 ± 0.0006 55.73 ± 1.14 1.1 × 1011 ± 5.1 × 1010 0.9866 ± 0.0047 0.5646 ± 0.0017 1.134 ± 0.284
281 5.0483 ± 0.1234
289 9.0686 ± 0.2595
293 12.4118 ± 0.0329
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Table 1. Cont.

Extract Temperature (K) k (d−1)
Arrhenius Log-Logistic

R2 Ea (kJ/mol) k0 (d−1) R2 c (◦C−1) Tc (◦C−1)

Nutmeg

277 5.2189 ± 0 0.9085 ± 0.0246 40.19 ± 0.03 2.3 × 108 ± 1.6 × 106 0.9649 ± 0.016 0.5544 ± 0.006 6.774 ± 0.192
281 9.2317 ± 0.4906
289 12.5299 ± 0.0444
293 14.6567 ± 0.3445

Onion

277 4.9511 ± 0.3146 0.9576 ± 0.0236 35.34 ± 2.11 2.8 × 107 ± 2.4 × 107 0.9262 ± 0.0099 0.4022 ± 0.0273 7.09 ± 0.883
281 5.7084 ± 0.4963
289 8.352 ± 0.0031
293 11.6554 ± 0.4791

Oregano

277 2.7732 ± 0.1898 0.9273 ± 0.0113 64.76 ± 4.56 1.0 × 1013 ± 1.4 × 1013 0.9481 ± 0.0088 0.5553 ± 0.0411 0.89 ± 0.768
281 2.7478 ± 0.1094
289 8.8805 ± 0.0506
293 10.503 ± 0.4606

Rosemary

277 5.023 ± 0.2823 0.9835 ± 0.004 40.52 ± 0.7 2.3 × 108 ± 5.6 × 107 0.958 ± 0.0047 0.7291 ± 0.0256 1.847 ± 0.138
281 6.6476 ± 0.3802
289 11.4884 ± 0.6257
293 12.651 ± 0.4627

Thyme

277 3.3421 ± 0.2202 0.9718 ± 0.0057 52.19 ± 2.37 2.8 × 1010 ± 2.5 × 1010 0.9655 ± 0.0064 0.4781 ± 0.0084 1.399 ± 0.488
281 3.6951 ± 0.1168
289 8.1486 ± 0.0084
293 10.5541 ± 0.1328

k (day−1) represents the SH content rate, k0 is the pre-exponential factor, Ea (kJ/mol) is the activation energy from the Arrhenius equation, and c (◦C−1) and Tc (◦C−1) are empirical fit constants from the
log-logistic model.
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In order to model the temperature dependency of the SH values, Arrhenius as well
as log-logistic equations were introduced by combining Equation (2) and Equation (4) as
well as Equation (2) and Equation (5), respectively. Both models showed high accuracy
of model parameters with similar average values of determination coefficients equal to
0.953 and 0.958 for Arrhenius and log-logistic, respectively. The highest R2 values were
obtained for the caraway samples for both models (above 0.99), whereas the lowest was for
the bay leaf- (R2 = 0.84) and cardamom-treated samples (R2 = 0.89) for the Arrhenius and
log-logistic models, respectively. All model parameters are shown in Table 1.

The Ea value calculated from the Arrhenius equation for the control sample (raw
pork meat without plant extract) was equal to 31.2 kJ/mol, and apart from the cardamom-
treated sample, it was significantly lower from the samples with plant extracts. Since the
SH content was monitored in the meat system, the concept of Ea as the minimum energy
required for the reaction should be discussed very carefully, which was mentioned by
van Boekel [30]. In this study, Ea values indicated how temperature sensitive the content
of SH in each sample was. In this study, Ea values suggested that protein oxidation is
less sensitive to temperature in the control sample than in the treated ones (except in the
cardamom sample). The most sensitive to temperature were the samples with oregano
and basil, with the highest Ea values of 64.8 and 62.3 kJ/mol, respectively. The samples
ranged in increasing order of Ea values (from the least sensitive to the most sensitive to
temperature) as follows: cardamom < control < onion ≤ bay leaf ≤ black seed < nutmeg
≤ rosemary ≤ allspice ≤ caraway < thyme < garlic < clove < basil < oregano (Table 1).

Since the meat matrix is very complex, it could be only supposed that generally, SH
groups are more likely to be oxidized in the control sample than in extract-treated samples,
which is in agreement with a previous study [25], but the effect of temperature on the rate
of protein oxidation was more visible in the treated samples.

Based on the parameters derived from the Arrhenius model, SH content in ground
pork meat with various plant extract additions could be described by the equation:

SH = SH0 − k0 exp(−Ea/RT) t (7)

where SH is the value of the SH index (%), SH0 is the initial value (100%) at time 0, k0
represents the SH loss rate (Table 1), Ea is the activation energy (Table 1), R is the universal
gas constant, T is absolute temperature, and t is the storage time.

Temperature dependency was also introduced by the log-logistic equation and the
model was as follows:

SH = SH0 − ln(1 + exp(c(T − TC)))t (8)

where SH is the value of the SH parameter (%), SH0 is the initial value (100%) at time 0,
c (◦C−1) and Tc (◦C−1) are empirical fit constants, and t is the storage time.

To verify the Arrhenius and log-logistic models, the goodness of fit was calculated
for the observed versus predicted SH data at 4, 8, 16, and 20 ◦C and are shown in Table 2.
To this end, the adjusted R2 values, RMSE, and sum of adjusted R2 values were determined.
The Arrhenius models showed similar goodness of fit as the log-logistic models, with the
mean adjusted R2 values equal to 0.952 and 0.945, respectively, and the mean sum of R2

values equal to 3.81 and 3.80, respectively. Thus, both models could be applied to describe
SH changes at various time/temperature conditions. The highest model accuracy was
shown for the pork meat with caraway extract and the lowest for the onion-treated sample.
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Table 2. Accuracy of Arrhenius and log-logistic models of SH content in raw ground pork with various plants extracts
added during storage at 4, 8, 16, and 20 ◦C.

Extract Temperature (K)

Model

Arrhenius Log-Logistic

Adj. R2 RMSE ΣR2 Adj. R2 RMSE ΣR2

Control

277 0.9979 ± 0.0015 1.08 ± 0.24 3.93 0.9980 ± 0.0018 1.19 ± 0.64 3.93
281 0.9826 ± 0.0124 3.43 ± 0.35 0.9826 ± 0.0114 3.29 ± 0.35
289 0.9896 ± 0.0083 2.36 ± 0.17 0.9896 ± 0.0109 2.83 ± 0.07
293 0.9617 ± 0.0257 6.38 ± 0.04 0.9617 ± 0.0289 6.75 ± 0.03

Allspice

277 0.9788 ± 0.0199 2.28 ± 0.84 3.81 0.9848 ± 0.0150 1.86 ± 0.84 3.81
281 0.9065 ± 0.0781 6.03 ± 0.80 0.9065 ± 0.0602 5.29 ± 0.71
289 0.9670 ± 0.0292 3.97 ± 1.01 0.9670 ± 0.0240 3.73 ± 0.77
293 0.9538 ± 0.0366 5.75 ± 0.60 0.9538 ± 0.0424 6.28 ± 0.53

Basil

277 0.9933 ± 0.0052 1.85 ± 0.30 3.85 0.9876 ± 0.0129 2.04 ± 0.70 3.84
281 0.9257 ± 0.5989 7.20 ± 0.97 0.9257 ± 0.4616 5.01 ± 0.99
289 0.9901 ± 0.0086 2.35 ± 0.71 0.9901 ± 0.0159 3.18 ± 0.60
293 0.9415 ± 0.0376 8.64 ± 0.09 0.9415 ± 0.0591 10.75 ± 0.04

Bay leaf

277 0.9421 ± 0.0496 3.94 ± 0.78 3.79 0.9280 ± 0.0609 4.44 ± 0.77 3.78
281 0.9299 ± 0.0572 5.73 ± 0.51 0.9299 ± 0.0337 4.34 ± 0.48
289 0.9612 ± 0.0319 4.15 ± 0.47 0.9612 ± 0.0273 3.83 ± 0.44
293 0.9565 ± 0.0388 4.57 ± 1.05 0.9565 ± 0.0446 4.88 ± 1.16

Black seed

277 0.9495 ± 0.0418 3.43 ± 0.16 3.84 0.9259 ± 0.0615 4.15 ± 0.21 3.81
281 0.9478 ± 0.0411 4.76 ± 0.43 0.9478 ± 0.0486 5.19 ± 0.50
289 0.9694 ± 0.0239 3.85 ± 0.34 0.9694 ± 0.0271 4.17 ± 0.54
293 0.9716 ± 0.0231 4.49 ± 0.65 0.9716 ± 0.0279 4.99 ± 0.65

Cardamon

277 0.9879 ± 0.0147 1.07 ± 0.35 3.97 0.9927 ± 0.0063 1.11 ± 0.36 3.98
281 0.9964 ± 0.0035 1.14 ± 0.79 0.9964 ± 0.0074 1.01 ± 0.48
289 0.9910 ± 0.0132 1.04 ± 0.63 0.9910 ± 0.0226 1.30 ± 1.03
293 0.9989 ± 0.0009 0.90 ± 0.50 0.9989 ± 0.0024 1.13 ± 0.97

Caraway

277 0.9756 ± 0.0197 2.87 ± 0.34 3.76 0.9765 ± 0.0190 2.82 ± 0.34 3.76
281 0.9262 ± 0.0557 6.90 ± 0.94 0.9262 ± 0.0572 6.99 ± 0.97
289 0.9664 ± 0.0279 3.77 ± 0.78 0.9664 ± 0.0314 3.98 ± 0.78
293 0.8946 ± 0.0834 8.23 ± 0.68 0.8946 ± 0.0887 8.49 ± 0.69

Clove

277 0.9769 ± 0.0208 2.03 ± 0.46 3.80 0.9548 ± 0.0402 2.84 ± 0.63 3.78
281 0.9787 ± 0.0172 2.63 ± 0.54 0.9787 ± 0.0216 2.95 ± 0.79
289 0.9001 ± 0.0842 5.73 ± 0.74 0.9001 ± 0.0631 5.07 ± 0.48
293 0.9477 ± 0.0399 6.89 ± 0.54 0.9477 ± 0.0567 8.19 ± 0.68

Garlic

277 0.8927 ± 0.0918 3.56 ± 0.29 3.74 0.8296 ± 0.1458 4.48 ± 0.37 3.68
281 0.9531 ± 0.0394 2.91 ± 0.12 0.9531 ± 0.0201 2.07 ± 0.18
289 0.9385 ± 0.0512 4.08 ± 0.13 0.9385 ± 0.0466 4.05 ± 0.21
293 0.9566 ± 0.0360 4.93 ± 0.67 0.9566 ± 0.0508 5.93 ± 0.70

Nutmeg

277 0.9799 ± 0.0162 2.57 ± 0.00 3.78 0.9808 ± 0.0155 2.51 ± 0.00 3.78
281 0.9426 ± 0.0436 5.55 ± 0.55 0.9426 ± 0.0292 4.66 ± 0.63
289 0.9065 ± 0.0790 6.50 ± 1.09 0.9065 ± 0.0707 6.11 ± 1.08
293 0.9538 ± 0.0398 5.45 ± 1.16 0.9538 ± 0.0499 6.29 ± 1.11

Onion

277 0.8612 ± 0.1178 4.56 ± 0.40 3.67 0.8142 ± 0.1577 5.26 ± 0.48 3.62
281 0.9087 ± 0.0896 3.70 ± 0.84 0.9087 ± 0.0844 3.45 ± 0.95
289 0.9396 ± 0.0514 3.52 ± 0.29 0.9396 ± 0.0694 4.14 ± 0.26
293 0.9590 ± 0.0343 4.64 ± 1.29 0.9590 ± 0.0334 4.58 ± 1.30

Oregano

277 0.9256 ± 0.0676 2.73 ± 0.71 3.79 0.8044 ± 0.1707 4.21 ± 0.70 3.67
281 0.9281 ± 0.0659 2.16 ± 0.45 0.9281 ± 0.1448 3.34 ± 0.50
289 0.9629 ± 0.0313 3.43 ± 0.60 0.9629 ± 0.0101 2.04 ± 0.70
293 0.9717 ± 0.0231 3.45 ± 0.12 0.9717 ± 0.0182 2.89 ± 0.35

Rosemary

277 0.9493 ± 0.0426 3.15 ± 0.21 3.76 0.9333 ± 0.0562 3.57 ± 0.28 3.74
281 0.8712 ± 0.1073 5.98 ± 0.48 0.8712 ± 0.0871 5.46 ± 0.32
289 0.9627 ± 0.0318 3.73 ± 0.60 0.9627 ± 0.0236 3.23 ± 0.50
293 0.9766 ± 0.0206 3.96 ± 1.26 0.9766 ± 0.0155 3.49 ± 1.09

Thyme

277 0.8941 ± 0.1013 2.84 ± 0.64 3.82 0.8021 ± 0.1815 3.88 ± 0.81 3.73
281 0.9727 ± 0.0233 1.66 ± 0.07 0.9727 ± 0.0383 2.16 ± 0.23
289 0.9616 ± 0.0326 2.77 ± 0.11 0.9616 ± 0.0507 3.46 ± 0.12
293 0.9925 ± 0.0066 1.64 ± 0.32 0.9925 ± 0.0105 2.07 ± 0.40

Adj. R2 is adjusted determination coefficient; RMSE is root mean square error; ΣR2 is sum of determination coefficients
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3.3. ANN Model

Five MLP-ANN models with the highest accuracy are shown in Table 3. The ANNs
built for SH content in raw ground pork with extract addition were based on Tanh and
exponential functions in the hidden layer, whereas logistic, Tanh, linear, and exponential
functions were used in the output layer. Data for all samples (with and without plant
extracts) were used to construct ANNs. The accuracy of the networks was very high (above
0.95) in the learning, testing, and validation steps. Based on the values of the adjusted
determination coefficient and RMSE, the best network was MLP 16-10-1, with R2 = 0.999
and very small RMSE equal to 3.0.

Table 3. ANN (artificial neural network) model parameters for SH content in raw ground pork enriched with plant extracts
stored at 4, 8, 16, and 20 ◦C.

Net Parameters
Net Structure

MLP 16-4-1 MLP 16-4-1 MLP 16-10-1 MLP 16-7-1 MLP 16-10-1

Learning accuracy 0.9712 0.9726 0.9728 0.9823 0.9855
Testing accuracy 0.9687 0.9740 0.9746 0.9768 0.9840

Validation accuracy 0.9582 0.9642 0.9599 0.9750 0.9770
Training error 8.2836 7.8646 7.7707 5.0906 4.1810

Test error 11.2108 9.4961 8.9631 8.1859 5.6804
Validation error 12.1337 10.4650 11.5884 7.2553 6.6660

Training algorithm BFGS 77 BFGS 68 BFGS 52 BFGS 195 BFGS 131
Error function SOS SOS SOS SOS SOS

Hidden activation Exponential Tanh Tanh Tanh Tanh
Output activation Logistic Tanh Linear Exponential Logistic

R2 0.9974 0.9975 0.9977 0.9984 0.9986
RMSE 4.11 4.05 3.90 3.25 3.00

MLP—multilayer perceptron.

3.4. External Validation of Prediction Models

For all determined models, the external validation was performed using data on SH
content in pork samples stored at 12 ◦C. The observed and predicted SH values from the
Arrhenius, log-logistic and MLP-ANNs (the combined five best networks) are presented in
Table 4. The verification of the model was discussed based on the determination coefficients,
RMSE, and CV values, all calculated from residuals. The highest prediction ability was
reported for the log-logistic model (R2 = 0.96, RMSE = 5.09, and CV = 4.04). Arrhenius and
MLP-ANN showed similar accuracy in predicting SH content in raw pork, with R2 equal
to 0.948 and 0.944, respectively. Previously, Arrhenius models were developed based on
the changes in various indices in food products [29,31,35,36,38,39]. In addition, RBF-ANNs
were successfully used for the prediction of quality changes in bream fillets [41], Gouda
cheese [55], and shrimp [35].

Table 4. Observed and predicted values of SH content in raw ground pork enriched with plant
extract during storage at 12 ◦C.

Extract Storage
Time (day)

Observed
Values

Arrhenius
Model

Log-Logistic
Model

MLP-ANN
Models

Control

0 100.00 100.00 100.00 99.33
1 93.63 87.88 87.43 88.46
2 82.86 75.75 74.85 74.21
3 66.33 63.63 62.28 61.84
4 52.72 51.51 49.70 50.61
6 24.81 27.26 24.55 29.79
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Table 4. Cont.

Extract Storage
Time (day)

Observed
Values

Arrhenius
Model

Log-Logistic
Model

MLP-ANN
Models

Allspice

0 100.00 100.00 100.00 99.29
1 94.86 90.09 89.44 89.42
2 73.63 80.18 78.88 75.80
3 68.95 70.27 68.31 64.39
4 60.07 60.36 57.75 55.06
6 37.88 40.55 36.63 41.00

Basil

0 100.00 100.00 100.00 95.53
1 94.48 91.16 89.75 82.30
2 80.79 82.32 79.51 71.09
3 71.58 73.49 69.26 63.44
4 66.01 64.65 59.01 56.67
6 43.97 46.97 38.52 41.60

Bay leaf

0 100.00 100.00 100.00 100.01
1 93.65 90.57 90.04 90.38
2 77.88 81.15 80.08 77.49
3 64.10 71.72 70.12 66.60
4 56.27 62.29 60.16 57.44
6 30.34 43.44 40.23 42.39

Black seed

0 100.00 100.00 100.00 99.50
1 92.89 90.35 89.82 91.24
2 80.05 80.71 79.63 80.26
3 71.70 71.06 69.45 70.40
4 61.11 61.42 59.26 61.04
6 43.75 42.13 38.89 42.04

Caraway

0 100.00 100.00 100.00 100.19
1 92.95 93.57 93.12 94.95
2 86.32 87.14 86.25 87.88
3 79.74 80.71 79.37 81.18
4 73.33 74.28 72.49 74.70
6 61.49 61.42 58.74 61.21

Cardamom

0 100.00 100.00 100.00 100.75
1 94.69 90.17 89.95 94.03
2 83.61 80.34 79.91 84.69
3 75.09 70.51 69.86 74.05
4 65.17 60.68 59.82 62.98
6 42.01 41.02 39.72 41.13

Clove

0 100.00 100.00 100.00 99.68
1 86.80 92.50 91.47 91.97
2 80.12 85.00 82.94 82.89
3 68.84 77.49 74.41 75.02
4 62.59 69.99 65.88 67.98
6 45.78 54.99 48.82 55.41

Garlic

0 100.00 100.00 100.00 99.24
1 90.31 93.40 92.58 91.99
2 79.25 86.79 85.17 82.88
3 74.82 80.19 77.75 75.88
4 70.41 73.58 70.34 70.54
6 54.13 60.37 55.51 60.38

Nutmeg

0 100.00 100.00 100.00 99.82
1 90.49 90.22 89.59 89.32
2 78.77 80.45 79.18 75.74
3 66.71 70.67 68.77 64.37
4 52.19 60.89 58.36 54.90
6 31.08 41.34 37.55 39.34



Antioxidants 2021, 10, 917 13 of 17

Table 4. Cont.

Extract Storage
Time (day)

Observed
Values

Arrhenius
Model

Log-Logistic
Model

MLP-ANN
Models

Onion

0 100.00 100.00 100.00 99.14
1 93.09 92.71 92.34 93.40
2 86.03 85.42 84.68 85.17
3 72.82 78.14 77.01 77.76
4 71.80 70.85 69.35 71.03
6 52.70 56.27 54.03 56.89

Oregano

0 100.00 100.00 100.00 99.33
1 95.52 94.77 93.85 94.41
2 93.48 89.54 87.69 88.29
3 82.18 84.31 81.54 82.86
4 80.58 79.08 75.39 77.80
6 61.29 68.62 63.08 67.71

Rosemery

0 100.00 100.00 100.00 99.33
1 94.15 91.59 91.05 90.19
2 82.97 83.18 82.10 78.16
3 79.21 74.77 73.15 69.60
4 64.46 66.36 64.20 63.01
6 42.22 49.54 46.30 50.37

Thyme

0 100.00 100.00 100.00 100.56
1 95.51 94.23 93.59 95.26
2 93.51 88.46 87.19 88.58
3 91.51 82.70 80.78 82.85
4 81.33 76.93 74.38 77.29
6 69.08 65.39 61.57 64.46

R2 0.948 0.957 0.944
RMSE 5.618 5.090 5.849
CV (%) 4.422 4.037 4.592

MLP-ANN—multilayer perceptron artificial neural network.

3.5. Effect of Plant Extract Addition Using MLR Model

MLR was performed to assess the effect of plant extracts on SH content in raw pork
in various time/temperature conditions. All results of the regression analysis are shown
in Table 5. Calculated from MLR, the coefficient (β) for the plant extracts represents the
difference in SH content between the control and treated samples. The higher the absolute
value of β, the lower the extent of protein oxidation was in the sample. Based on the
regression coefficients, all plant extracts slowed down the loss of SH groups in raw pork,
thus increasing the oxidative stability of the proteins.

Oregano and thyme were the most potent inhibitors of thiol oxidation among the
extracts studied, although they showed moderate radical scavenging capacity against
DPPH•. Their effectiveness against SH loss was superior to clove and allspice extracts,
which in turn were characterized by the highest TPC values and the antioxidant activity
in this study. Since meat is a very complex matrix, the antioxidant activity of the extracts
in meat could be affected by many factors, such as presence of other antioxidant active
compounds native to meat (enzymes, metal ions, myoglobin), various interactions between
the antioxidants from extracts and meat compounds (polyphenol–protein interactions in
particular could result in the decrease of the antioxidant activity of the extracts), or the
physico-chemical properties of the bioactive compounds in extracts (for example, expressed
as logP of the compounds). The effect of optimal concentration of the antioxidant could
also have some impact on the results obtained, since it has been shown that too-high or
too-low concentrations of the antioxidant in food could induce various effects, even leading
to pro-oxidant activity in the case of high concentrations. Thus, even when discussing
the phenolic profile of the extracts, it would be not possible to point out which of the
determined phenolic compounds or which mechanism could underlie the observed effect.
We could only suppose that the effect of oregano extract addition in meat could result from
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high amounts of kaempferol or carvacrol in oregano extract in comparison to other spices
and herbs [18,48,56]. Carvacrol was also detected in high quantities in thyme extract [56].

Table 5. The results of the multiple linear regression analysis (MLR).

Independent Variables
and Intercept Regression Coefficients (β) p-Values

Oregano 15.69 7.5 × 10−38

Thyme 15.49 5.7 × 10−37

Caraway 13.75 6.99 × 10−30

Onion 11.05 3.04 × 10−20

Garlic 10.01 5.48 × 10−17

Clove 7.39 4.82 × 10−10

Rosemary 7.31 7.28 × 10−10

Cardamon 6.34 8.84 × 10−08

Black seed 5.63 1.98 × 10−06

Bay leaf 4.66 8.00 × 10−05

Allspice 4.08 5.43 × 10−04

Nutmeg 3.22 6.38 × 10−03

Basil 2.43 3.92 × 10−02

Time −8.10 0.00
Temperature −1.28 9.57 × 10−160

Intercept 105.39 0.00

Nieto et al. [26] reported that oregano essential oils could retard the SH loss in pork
patties. The order of selected spices and herbs according their influence on SH content was
similar to the previous results [25], with caraway being one of the most active extracts.

4. Conclusions

This study establishes various kinetic predictive models for protein oxidation ex-
pressed as SH content in raw ground pork after the addition of various plant extracts. The
decrease in SH content with time was well described by the zero-order equation. The
temperature dependence was adequately modeled and validated by the Arrhenius and
log-logistic models. In addition, ANN showed high validation performance. All models
showed realistic prediction of data with CV ranging from 4 to 4.5%, which confirmed a low
relative dispersion of data around the mean in the modeled dataset. The verification of the
implemented models showed the log-logistic model as the one with slightly better accuracy
comparing to the Arrhenius and MLP-ANN models. Artificial neural networks usually
show greater predictive ability; however, in this research an additional qualitative predictor
(extract type) was introduced into the models, whereas in the kinetic models, only time and
temperature were introduced as quantitative predictors. Moreover, the influence of selected
herbs and spices on the SH content in raw pork was assessed by an MLR model. Oregano,
thyme, and caraway were noted as highly effective extracts in lowering protein oxidation
in pork. However, no correlation was observed between the radical scavenging activity
of the extracts and their activity in meat. Further research should establish compounds
responsible for such effects of the extracts, but even when discussing the phenolic profile of
the extracts, it would be not possible to point out exactly which of the determined phenolic
compounds or which mechanism could underlie the observed effect. This confirms the
importance of examining the antioxidant efficacy of plant extracts in a specific food matrix.
The high antioxidant activity of an extract alone does not guarantee its high efficacy in
particular complex food matrices (such as meat).

To maintain high quality in products during shelf life, the important issue is to have
appropriate tools for monitoring quality changes. This could be realized by using predictive
kinetic models. However, because of the complexity of the meat a matrix, where various
reactions could occur simultaneously and interfere with each other, conclusions on the final
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product quality should be drawn very carefully. More investigation is needed to obtain full
information in this area.
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