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Introduction
Cardiovascular diseases (CVD) are a major cause of morbidity 
and mortality worldwide, and significant sex differences exist 
in their incidence, pathogenesis, and prognosis.1 It is increas-
ingly evident that environmental exposures play an important 
role in CVD etiology, but how sex and environment interact to 
influence CVD risk and prognosis are unclear. Phthalates are 
industrial chemicals that are widely used in processed food 
packaging, medical devices, and building materials.2,3 The 
major exposure route for phthalates in the United States is the 
consumption of contaminated food. Other sources of exposure 
include dermal (through the use of cosmetics), inhalation of 
indoor air, and household dust.4 Patients receiving medical 
procedures (dialysis, blood transfusion, EMCO) are also 
exposed to high levels of phthalates through tubing and medi-
cal devices.4 Given the ubiquitous human exposure to these 
chemicals, and evidence of harm in human and animal studies, 
exposure to phthalates represents a significant public health 
concern.3,5 In rodent models, phthalate exposure during gesta-
tion or the early postnatal period is associated with metabolic 

diseases and reproductive abnormalities.6-9 Recent animal 
studies have also linked gestational phthalate exposures to 
altered heart development and function.10-12 Likewise, human 
studies demonstrate an association between both pediatric and 
adult phthalate exposure and adverse cardiovascular out-
comes.13-16 However, few studies in humans have investigated 
the effects of perinatal exposures on cardiovascular health.17,18 
The molecular mechanisms linking phthalate exposures to del-
eterious cardiovascular effects are poorly understood, although 
in vitro studies suggest that phthalate exposures may disrupt 
cardiomyocyte differentiation.19,20 Importantly, the majority of 
studies investigating the effects of gestational phthalate expo-
sures on cardiovascular outcomes have focused only on 
males.11,12,21 Although work from our lab and others demon-
strate sexually dimorphic effects of endocrine-disrupting 
chemicals, including phthalates, in humans and animal mod-
els,6,22-24 little is known about the sex-specific effects of gesta-
tional exposure to phthalates on the heart.

One important mechanism by which early-life exposures 
influence long-term disease risk is by disrupting the epigenetic 
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programs governing normal development. DNA methylation 
(DNAm) is an epigenetic mark that is critical for the regulation 
of stem cell differentiation and the establishment of tissue and 
cell-type-specific gene expression patterns.25,26 Because DNAm 
is relatively stable, mitotically heritable, and undergoes rapid 
reprogramming during early development, environmental 
insults during this period may lead to changes in DNAm that 
persist later in life.27 Indeed, it is increasingly clear that disrup-
tion of normal DNAm patterning during early cardiovascular 
development may have long-term, adverse health conse-
quences.28,29 Recent studies demonstrate that DNAm in the 
heart is altered in disease states,28,29 after obesogenic diet expo-
sure,28 and with toxicant exposures,30,31 suggesting that this 
modification may play a key role in CVD pathogenesis. Despite 
this, the effects of early-life phthalate exposure on cardiac 
DNAm have not been investigated. Early-life exposure to 
diethylhexyl phthalate (DEHP), one of the most widely used 
phthalates, reprograms DNAm in other tissues.32,33 The effects 
of DEHP exposure on DNAm in developing heart, however, 
are unknown. We have also previously shown that the effects of 
perinatal DEHP exposure DNAm are sex-specific.6 Based on 
this evidence, we hypothesized that perinatal exposure to 
DEHP would lead to sex-specific alterations in the program-
ming of cardiac DNAm that would be present in adulthood. To 
test this hypothesis, we utilized an established mouse model of 
human physiologically relevant perinatal DEHP exposure and 
measured DNAm in adult male and female mouse hearts. These 
studies were conducted as part of the National Institute of 
Environmental Health Sciences (NIEHS) Toxicant Exposures 
and Responses by Genomic and Epigenomic Regulators of 
Transcription II (TaRGET II) Consortium, which aims to 
determine how the environment affects disease susceptibility 
across the life course through changes to the epigenome.34

Materials and Methods
Animal exposure paradigm

Mouse studies were conducted according to procedures estab-
lished by the NIEHS TaRGET II Consortium.34,35 The work 
outlined in this manuscript is part of a larger study looking at 
the effects of perinatal lead and DEHP exposures on multiple 
tissues and time points. This work is focused on DEHP and 
the 5-month time point. The mice for this experiment were 
wild-type a/a non-agouti mice derived from a colony of the 
viable yellow agouti (Avy) strain maintained for more than 230 
generations. This results in forced heterozygosity on an invari-
ant genetic background, which is approximately 93% identical 
to the C57BL/6J strain.36,37 Virgin a/a females (6-8 weeks old) 
were mated with virgin a/a males (7-9 weeks old) and ran-
domly assigned to receive control or DEHP through consump-
tion of chow. Control animals received standard chow 
(AIN-93G, TD.95092, ENVIGO, Madison, WI) with 7% 
corn oil. Treated animals received DEHP (Sigma) dissolved in 
7% corn oil (25 mg DEHP per kg of chow). Dams began 

consumption of control or DEHP diets 2 weeks before mating, 
and exposure was continued during gestation and lactation. 
The DEHP exposure level was selected based on a target 
maternal dose of 5 mg/kg-day, assuming that pregnant and 
nursing female mice weigh approximately 25 g and eat approxi-
mately 5 g of chow per day. This target dose was selected based 
on literature demonstrating increased body weight and other 
metabolic effects in offspring that were developmentally 
exposed to DEHP in this dose range.38,39 The 5 mg/kg-day 
dose used in this study falls within or below the range of no-
observed-adverse-effect level (NOAELs) for oral DEHP 
exposure established by US and European agencies4,40 and is 
estimated to result in an amniotic fluid concentration within 
the ranges observed in human amniotic fluid.6

After weaning at postnatal day 21, pups were weighed, and 
all animals received DEHP-free 7% corn oil control chow for 
the remainder of the study (Figure 1). Approximately 1 to 2 
male and 1 to 2 female offspring per litter were followed until 
5 months of age (n = 6 control animals per sex, n = 7 DEHP 
males, n = 5 DEHP females). All animals had access to food 
and drinking water ad libitum throughout the experiment, 
remained on a 12-hour light/dark cycle, and were housed in 
polycarbonate-free cages. Health checks were carried out daily 
by lab personnel and the University of Michigan Unit for 
Laboratory Animal Medicine (ULAM). This study protocol 
was approved by the University of Michigan Institutional 
Animal Care and Use Committee (IACUC).

Euthanasia and tissue collection

Each mouse was weighed weekly (Mettler Toledo). Upon 
euthanasia at 5 months of age, heart samples were collected fol-
lowing protocols established by the TaRGET II Consortium 
(Figure 1).34 Briefly, before euthanasia, mice were fasted for 6 
hours. Euthanasia was carried out via CO2 asphyxiation and 
bilateral pneumothorax. Blood was removed by cardiac punc-
ture, followed by whole-body perfusion with cell culture grade 

Figure 1. Experimental paradigm depicting timing of DEHP exposure 

and animal sacrifice/heart collection. Dams were exposed to control 

chow containing 7% corn oil alone or 25 mg DEHP per kg chow in 7% 

corn oil. Exposures started 2 weeks prior to mating and continued 

through gestation, until offspring were weaned on postnatal day 21. At 

this point, DEHP exposure ceased and all offspring were administered 

control chow. At 5 months of age, hearts were collected for DNA 

methylation analysis. DEHP indicates diethylhexyl phthalate.
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0.9% saline solution (Sigma Life Sciences) to remove any 
residual blood that could confound the heart-specific epig-
enomic analysis. Next, whole hearts were collected and weighed. 
Relative heart weights were expressed as a percent of total body 
weight. Heart samples were immediately snap-frozen in liquid 
nitrogen and stored at −80°C until DNA extraction.

Statistical analysis of litter parameters

Differences in mortality rates, sex ratio, and litter size between 
control and DEHP-exposed animals were analyzed using 
unpaired t-test. For body and heart weights, animals were strat-
ified by sex, and linear mixed-effects regression was carried out 
using the lmer4 and lmerTest packages in R version 3.6.1 
(www.r-project.org). Litter-specific random effects were 
included to account for within-litter correlation.

DNA extraction and enhanced reduced 
representation bisulf ite sequencing

In all, 1 to 2 male and 1 to 2 female mice per litter were included 
in each condition. Heart tissue was cryo-pulverized, and DNA 
extraction was performed using the AllPrep DNA/RNA/
miRNA Universal Kit (Qiagen #80224) according to the man-
ufacturer’s instructions. Sample concentration and quality were 
assessed using the Qubit (ThermoFisher) and 2200 TapeStation 
system (Agilent), respectively, and all samples met the quality 
standard for next-generation sequencing library preparation 
(Supplementary Table 1). Enhanced reduced representation 
bisulfate sequencing (ERRBS) was performed at the University 
of Michigan Epigenomics and Advanced Genomics Cores as 
described previously.35,41,42 Bisulfite conversion efficiencies for 
all samples exceeded 99.8% (Supplementary Table 1). Single-
end, 50 nucleotide sequencing was performed on a HiSeq4000 
platform (Illumina). Libraries were multiplexed and sequenced 
over 2 lanes. Library sizes (with adapters) ranged from 200 to 
400 bp, and the average sequencing depth was >118 million 
reads. On average, the percentage of genomic CpGs captured 
using this method was 4.8%.

Bioinformatics pipeline, quality control, and 
differential methylation analysis

For analysis of DNAm data, quality control, trimming, align-
ment, and methylation calling were conducted as outlined pre-
viously.35 CpGs with read coverage >1000 were removed 
because they were likely the result of PCR amplification; CpGs 
with read coverage <10 were removed due to decreased power 
to detect differential methylation. Opposite strand CpGs at the 
same position were combined via destranding. Sex chromo-
somes were included in the analysis. We performed differential 
methylation testing on individual CpG sites (DMCs), requiring 
sufficient sequencing coverage for a minimum of 4 samples 
from the DEHP group and 4 samples from the control group 
for a site to be tested. Differentially methylated regions (DMRs) 

were identified in 1000 bp tiles using the same process. To iden-
tify differentially methylated CpGs and regions, we utilized the 
methylSig R package43 (v0.5.0). Differential methylation for 
each comparison (control male, control female, DEHP male, 
DEHP female) was tested using methylSigDSS(), which tests 
for differential methylation under general experimental design 
using a beta-binomial approach with the ‘arcsine’ link func-
tion.44 To control for batch effects, run was included as a covari-
ate in the model. After obtaining P values, we adjusted for 
multiple testing using the false discovery rate (FDR) approach. 
Sites and regions with FDR < 0.05 and an absolute difference 
in methylation of >10% were considered significant. To deter-
mine where differentially methylated sites were distributed 
across the genome, we used the annotatR R Bioconductor pack-
age (v1.5.9) to annotate the CpGs to the mouse mm10 
genome.45 The annotate_regions function was used to generate 
genomic annotations, including CpG annotations (CpG islands 
[CGI], shores, shelves, open sea [InterCGI]), genic annotations 
(exon, intron, promoter, 5′-UTR, 3′-UTR), and gene IDs. To 
determine whether the proportion of DMCs falling into each 
annotation was significantly different from the total regions 
tested, we conducted a Chi-Square test, comparing the number 
of CpGs falling in each annotation relative to all of the regions 
tested to the number of hypermethylated or hypomethylated 
DMCs falling within each category relative to the total number 
of hypermethylated or hypomethylated DMCs identified.

Pathway analysis of DMCs

PolyEnrich46 was used to assess biological pathways enriched 
among the DMCs. Analyses were stratified by sex and direc-
tion of differential methylation. Only sites within 1 kb from 
transcription start sites were included in the analysis. Biological 
Process, Cellular Component, and Molecular Function Gene 
Ontology pathways were used in the analysis. Pathways with 
FDR < 0.05 were considered statistically significant. For 
GREAT47 analysis, BED files of DMCs for each sex and direc-
tion of methylation change (4 separate datasets total) were 
uploaded to the GREAT web interface: http://great.stanford.
edu/public/html/, using the mouse mm10 species assembly. 
Association rule setting “basal plus extension” was utilized with 
the following parameters: Proximal: 5 kb upstream, 1 kb down-
stream, plus Distal: up to 1000 kb.

Overlap in DMCs and DMC-associated genes 
between sexes and human heart failure

Annotated lists of DMCs and DMRs were compared between 
males and females to identify chromosomal locations that 
directly overlapped between sexes. In a further analysis, the 
full lists of DMC- and DMR-associated genes in males were 
compared to those in females to identify a list of genes in com-
mon between sexes. To determine relevance to human disease, 
DMC- and DMR-associated genes for each sex were 

www.r-project.org
http://great.stanford.edu/public/html/
http://great.stanford.edu/public/html/
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compared to genes differentially methylated in heart tissue 
collected from human heart failure patients.48 In this study, 
whole-genome bisulfite sequencing was conducted to com-
pare DNA methylation between non-failing donor heart tis-
sue and biopsy samples from heart failure patients undergoing 
left ventricular assist device implantation.48 The overlap 
between gene lists was determined and diagrammed using 
Venny 2.1 ( J.C. Oliveros, http://bioinfogp.cnb.csic.es/tools/
venny/index.html). Statistical significance of overlap was 
determined using a hypergeometric test.

Results
Litter parameters and phenotype

Perinatal phthalate exposure had no significant effect on mor-
tality rates (P = .63), sex ratio (P = .29), or litter size (P = .63, 
unpaired t-test; Table 1). Bodyweight and relative heart weights 
were not significantly different between control and DEHP-
exposed animals (Figure 2).

Differential DNA methylation after perinatal 
DEHP exposure

To determine the effect of perinatal DEHP exposure on car-
diac DNA methylation in offspring mice, we performed 
enhanced reduced representation bisulfate sequencing on 
DNA from hearts of control and DEHP-exposed offspring at 
5 months of age (n = 6 control animals per sex, n = 7 DEHP 
males, n = 5 DEHP females). Although exposure to DEHP 
stopped at 3 weeks of age, we observed hundreds of differen-
tially methylated cytosines (DMCs) and regions (DMRs) with 
DEHP exposure in both sexes (Table 2 and Supplementary 
Table 2). In females, 44% of DMCs were hypermethylated and 
56% were hypomethylated, while in males, 64% of DMCs were 
hypermethylated and 36% were hypomethylated (Table 2). As 
expected, we observed similar results with analysis of DMRs 
(Supplementary Table 2). In females and males, we observed 
maximum DEHP-induced methylation changes of 67% and 
55%, respectively (Figure 3). The magnitude of methylation 
changes was similar for DMRs (maximum 63% and 64% in 
females and males, respectively; Supplementary Figure 1). The 
locations and annotations of the top 10 hypomethylated and 
hypermethylated cytosines (DMCs) and regions (DMRs) in 

each sex are shown in Tables 3 and 4. Compared to all of the 
CpGs tested, DMCs were significantly more enriched in open 
sea and intronic regions compared to promoters (Figure 4).

Pathway analysis of hypomethylted and 
hypermethylated DMCs

We next performed pathway analysis to identify biological 
pathways enriched among DMCs. First, we utilized PolyEnrich 
and focused our analysis only on promoter regions (within 
1000 bp of a transcription start site). We stratified the data 
based on sex and direction of methylation change. This analysis 
yielded a small number of significantly enriched pathways. In 
females, among hypermethylated DMCs, we observed signifi-
cant enrichment in pathways associated with receptor binding, 
neurotransmitter transport, smooth muscle differentiation, his-
tone demethylation, insulin signaling, and meiosis 
(Supplementary Table 3). In males, hypomethylated DMCs 
were significantly enriched for glucose transport 
(Supplementary Table 4). To further investigate the biological 
significance of the DMCs, we used a parallel approach for 
pathway analysis, the Genomic Regions Enrichment of 
Annotations Tool (GREAT).47 GREAT incorporates distal 
methylation changes in non-coding regions of the genome.47 
Again, we stratified the data based on sex and direction of 
methylation change (Figure 5). This analysis revealed sex-spe-
cific enrichment for several pathways relevant to heart devel-
opment and function, including tyrosine phosphorylation, 
phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) activ-
ity, embryonic heart tube development, and regulation of pre-
cursor metabolites and energy (Figure 5A-D, respectively).

Sex specif icity of differential DNA methylation

We next investigated whether the DEHP-induced changes in 
methylation were sex-specific. Consistent with our hypothesis, 
only 2 DMCs and 3 DMRs directly overlapped between males 
and females (Supplementary Tables 5 and 6). Both overlapping 
DMCs were located in intergenic regions and did not map to 
genes. One of the 2 sites exhibited a change in DNAm that was 
in the same direction for both males and females (Supplementary 
Table 5). One of the 3 DMRs mapped to a gene (Slc5a4a), and 
all 3 regions were hypomethylated with DEHP exposure in 

Table 1. Litter Parameters.

ExPOSURE 
GROUP

NO. Of 
LITTERS

NO. Of PUPS 
bORN

NO. Of PUPS 
DIED

MEAN PUPS PER 
LITTER (±SD)a

PUP MORTALITy 
RATE (%)b

% fEMALESc

Control 6 53 3 7.57 ± 3.36 5.7 46

DEHP 6 41 1 6.83 ± 1.94 2.4 43

Abbreviation: DEHP, diethylhexyl phthalate.
Statistical analyses (DEHP vs Control) were conducted using fisher Exact Test.
a,bP = .63.
cP = .29.

http://bioinfogp.cnb.csic.es/tools/venny/index.html
http://bioinfogp.cnb.csic.es/tools/venny/index.html
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both males and females (Supplementary Table 6). We next 
determined whether the genes that mapped to the DMCs and 
DMRs were sex specific. Overall, DMCs in females mapped to 
1055 genes and DMCs in males mapped to 794 genes 
(Supplementary Tables 7 and 8). The majority of DMC-
associated genes were highly sex-specific, with only 106 genes 
overlapping between sexes (Figure 6A and Supplementary 
Table 9). Differentially methylated regions (DMRs) mapped 
to 288 genes in females and 173 in males (Supplementary 
Tables 10 and 11). Only 6 DMR-associated genes overlapped 
between sexes (Figure 6B and Supplementary Table 12). 
Among DMC-associated genes that overlapped, we deter-
mined whether the changes in methylation at these loci were 
significantly correlated. To do this, we identified the CpG in 

each gene with the highest methylation difference and com-
pared them between sexes. Methylation changes were not sig-
nificantly correlated (Figure 6C); 42.5% of genes exhibited 
methylation changes in the same direction with DEHP expo-
sure between males and females (Supplementary Table 9).

Sex-specif ic methylation and human heart disease

We next evaluated the relevance of DEHP-induced changes 
in cardiac methylation to human heart disease. To this end, 
we determined the overlap between genes differentially 
methylated with DEHP exposure and those reported to be 
differentially methylated in the hearts of human heart fail-
ure patients.48 For DMC-associated genes, among females, 

Figure 2. box plots depicting relative heart weights of control vs DEHP-treated (A) female and (b) male offspring at 5 months of age (n = 6 controls for 

each sex, n = 5 DEHP-exposed females, n = 7 DEHP-exposed males). Linear mixed effects regression with litter-specific random effects to account for 

within-litter correlation was used to evaluate statistical significance. Differences between control and DEHP-exposed animals were not statistically 

significant for either sex. DEHP indicates diethylhexyl phthalate.

Table 2. Differentially methylated cytosines (DMCs) in 5-month offspring mouse hearts.

CONDITION TOTAL NO. HyPERMETHyLATED (% TOTAL) NO. HyPOMETHyLATED (% TOTAL) TOTAL TESTED

female DEHP 1654 736 (44%) 918 (56%) 1 170 283

Male DEHP 1187 764 (64%) 423 (36%) 1 250 997
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Figure 3. Volcano plots showing differentially methylated cytosines (DMCs) for DEHP vs control in (A) female heart and (b) male heart. Green: regions 

significantly hypermethylated with DEHP exposure. blue: regions significantly hypomethylated with DEHP exposure.

Table 3. Top 10 differentially hypomethylated and hypermethylated cytosines (DMCs) in each sex, ranked by methylation change.

fEMALES

CHROMOSOME CHROMOSOMAL 
COORDINATE

METHyLATION 
CHANGE

fDR GENE GENOMIC ANNOTATION

8 108936845 −67.68 6.83E-5 Mir3108/Zfhx3 Promoter/Intron

12 105514846 −54.53 0.002 AU015791 Exon

10 82847363 −54.53 1.25E-5 Txnrd1/Gm38560 Intron/Intron

2 152358290 −53.16 0.022 Gm14164 Intron

9 39187003 −47.60 0.019 Olfr943 Exon, 3′-UTR

14 67253811 −46.40 1.72E-5 Ebf2 Intron

10 79892045 −45.00 0.041 Cfd Exon

8 120090741 −43.75 0.041 Zdhhc7/Galn2 1to5 kb, Intron/Intron

8 122501577 −41.93 0.045 Piezo1 1to5 kb, Exon

9 77464154 −40.73 0.019 Lrrc1 Intron

17 23742647 54.48 0.012 9530082P21Rik/
Paqr4/Kremen2

Promoter/1to5 kb/
Exon

5 20925654 45.59 1.80E-4 Rsbn1l Intron

6 28910055 40.12 0.034 Snd1 Intron

5 135105148 35.95 0.004 Mlxipl 1 to 5 kb, Intron

(Continued)
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fEMALES

CHROMOSOME CHROMOSOMAL 
COORDINATE

METHyLATION 
CHANGE

fDR GENE GENOMIC ANNOTATION

17 29216167 34.78 1.17E-4 Cpne5 Intron

15 30995593 34.65 0.018 Ctnnd2 Intron

19 6297667 34.17 0.002 Ehd1 Promoter/Exon

3 122044452 31.06 0.008 Abca4 1 to 5 kb, 5′-UTR, Exon

18 36022234 31.02 0.035 Nrg2 Intron

6 108593678 30.84 0.006 0610040F04Rik Intron

Males

11 68340065 −52.15 0.007 Ntn1 Intron

11 85458213 −50.88 3.19E-4 Bcas3 Intron

16 34946664 −47.81 0.011 Mylk/
E130310I04Rik

Intron/Intron

7 143071074 −47.81 7.32E-5 Tssc4/Trpm5 Exon, 3′-UTR/Intron

18 74959378 −47.14 0.048 Lipg Intron

11 115488732 −42.27 0.010 Armc7 Exon

11 107305047 −42.19 8.39E-11 Pitpnc1 Intron

4 154425413 −42.18 4.08E-5 Prdm16 Intron

19 46471486 −40.97 1.93E-4 Sufu Intron

7 100998188 −40.14 7.67E-5 P2ry2 Exon

19 45156160 55.71 0.002 Tlx1 Exon, 3′-UTR

1 36944000 48.94 0.002 Tmem131 Promoter, 1to5 kb

5 113144949 48.51 0.004 2900026A02Rik Intron

14 54595141 48.31 0.008 4931414P19Rik Exon

3 84478963 47.77 0.044 Fhdc1 Exon, Intron

19 45156143 46.28 0.004 Tlx1 Exon, 3′-UTR

1 58740574 45.37 0.018 Cflar Intron

6 8728976 43.43 0.017 Ica1 Intron

5 143400871 42.16 0.008 Kdelr2 1to5 kb

4 89689601 41.73 0.002 Dmrta1 Intron

(Continued)

Table 3. (Continued)

Table 4. Top 10 differentially hypo-methylated and hypermethylated regions (DMRs) in each sex, ranked by methylation change.

fEMALES

CHROMOSOME CHROMOSOMAL 
COORDINATE

METHyLATION 
CHANGE

fDR GENE GENOMIC ANNOTATION

15 25789001 −62.92 0.032 Myo10 Intron

12 105514001 −54.53 0.004 AU015791 Exon, Intron
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fEMALES

CHROMOSOME CHROMOSOMAL 
COORDINATE

METHyLATION 
CHANGE

fDR GENE GENOMIC ANNOTATION

2 152358001 −53.16 0.014 Gm14164 Intron

17 45632001 −49.53 0.001 Capn11 Exon, Intron

10 77881001 −44.21 0.005 Tspear Exon, Intron

7 96773001 −41.76 0.010 Tenm4 1to5 kb, Exon, Intron

17 36272001 −37.98 3.90E-4 Trim39 Promoter, 1to5 kb, 5’UTR, Exon

14 63982001 −37.60 0.032 4930578I06Rik Intron

13 38399001 −36.69 0.030 Bmp6 Intron

2 134787001 −33.40 0.037 Plcb1 Intron

15 30995001 34.65 0.012 Ctnnd2 Intron

19 21804001 29.16 0.002 Cemip2 Intron

7 118547001 28.20 2.12E-4 Tmc7 Exon, Intron

15 73544001 27.76 0.028 Dennd3 Exon, Intron

19 46322001 26.98 0.012 Psd 1to5 kb, Exon, Intron

5 135105001 26.30 0.025 Mlxipl Promoter, 1to5 kb, Intron

1 62749001 26.04 7.22E-4 Nrp2 Exon, Intron

6 136807001 25.97 8.82E-4 H2afj/ Hist4 h4 Promoter, 1to5 kb/1to5 kb

11 116131001 24.44 0.015 Trim65/Trim47/ Mrpl38 Promoter, 5’UTR, Exon/1to5 kb/Exon, 
3’UTR

19 47258001 24.22 0.002 Neurl1a Exon, 3’UTR

Males

4 131489001 −64.16 7.49E-5 N/A N/A

1 118981001 −59.33 4.67E-5 Gli2 Intron

11 85458001 −43.09 0.004 Bcas3 Intron

11 107305001 −42.19 2.68E-11 Pitpnc1 Intron

19 46471001 −40.49 0.021 Sufu Intron

5 122950001 −35.04 0.042 Kdm2b 1to5 kb, Intron

4 137949001 −35.52 0.050 Ece1 Exon, Intron

11 75524001 −25.33 0.003 Scarf1 Exon, Intron, 3’UTR

16 34028001 −25.24 0.035 Kalrn Exon, Intron

8 83710001 −25.22 0.037 Ddx39 1to5 kb

12 111572001 54.38 0.043 Mark3/ 2810029C07Rik 1to5 kb/Exon

1 74719000 50.69 1.01E-5 Cyp21A1 Intron

1 36943001 48.93 0.001 Tmem131 Promoter, 1to5 kb, 5’UTR, Intron, Exon

2 76105001 41.24 5.05E-18 Pde11a Intron

14 32644001 39.76 0.032 Prrxl1 Intron

Table 4. (Continued)

(Continued)
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fEMALES

CHROMOSOME CHROMOSOMAL 
COORDINATE

METHyLATION 
CHANGE

fDR GENE GENOMIC ANNOTATION

7 143082001 39.68 1.68E-4 Trpm5 Promoter, 1to5 kb, Intron, Exon

15 63351001 37.83 0.004 Gm20740 Intron

4 155739001 33.27 0.014 Tmem240 Exon, Intron, 3’UTR

6 55457001 30.86 2.64E-5 Adcyap1r1 1to5 kb, Intron

x 7167001 30.24 1.20E-4 Clcn5 Intron

Table 4. (Continued)

Figure 4. Summary plots depicting the total number of tested CpGs (red), hypermethylated CpGs (green), and hypomethylated CpGs (blue) for each 

genomic annotation using the R annotatr package. Data are from (A) female and (b) male offspring at 5 months of age. (*P < .05 using chi-square test.) 

DMC indicates differentially methylated cytosine.

111 of the 1346 genes differentially methylated in human 
heart failure were also differentially methylated with DEHP 
exposure (Figure 7A and Supplementary Table 13). This 
overlap was significantly greater than that expected by 
chance (P < 3.67 × 10−9, hypergeometric test). Among 
males, 87 genes were shared between the groups (Figure 7B 
and Supplementary Table 14). Again, the overlap was sig-
nificant (P < 3.12 × 10−8, hypergeometric test). Only 15 
genes were in common between DEHP-exposed males, 
DEHP-exposed females, and heart failure patients 
(Supplementary Figure 2A and Supplementary Table 15). 
To determine whether methylation changes were correlated 
at overlapping DMC-associated genes between DEHP 
exposure and heart failure, we compared the CpG with the 

highest methylation change for each gene (Figure 7C and 
D). Overall, changes in methylation were not significantly 
correlated between heart failure and DEHP exposure in 
either males or females (Figure 7C and D). However, in 
DEHP-exposed females, 50.5% of the overlapping genes 
exhibited changes in methylation in the same direction as in 
the heart failure patient samples. In DEHP-exposed males, 
methylation changes in 55.2% of genes were concordant 
with those in heart failure patient samples. For DMR-
associated genes, 32 and 14 genes were in common with 
human heart failure patients among females and males, 
respectively (Figure 7C and D and Supplementary Tables 
16 and 17), with only 2 genes in common across all groups 
(Supplementary Figure 2B). Thus, perinatal DEHP 



10 Epigenetics Insights 

exposure resulted in altered methylation at many genes 
common to human heart failure, with distinct sex differ-
ences. In females, these genes included PRKCE, SPRY1, and 
GJA5, which have all been demonstrated to contribute to sex 
differences in ischemia-reperfusion injury, cardiac fibrosis, 
and sudden cardiac death.49-52 In males, common genes 
included ECE1, SMAD7, and DNMT3A, which play a 
critical role in cardiac fibrosis and development.53-55 
Notably, changes in methylation at these genes were con-
sistent across individual animals within each treatment 
group (Supplementary Figure 3).

Discussion
Cardiovascular diseases pose a grave health threat to both 
males and females. However, the incidence, clinical 

presentation, and prognosis of these diseases differ markedly 
between sexes.1 Although sex disparities in medical care may 
underlie some of these differences,56 it is clear that genetic, 
epigenetic, and hormonal factors are important contributors 
to sex specificity.1 Indeed, at the cellular level, there are intrin-
sic sex differences in how cardiomyocytes respond to drug 
treatments.57,58 Expression of ion channels and transporter 
subunits differ between men and women, and women are 
more prone to drug-induced arrhythmias.59,60 Despite these 
findings, the sex-specific effects of environmental chemicals 
on cardiac function, particularly early developmental expo-
sures, are poorly understood. In this work, we demonstrate 
that perinatal DEHP exposure leads to sex-specific, genome-
wide changes in DNAm in the hearts of adult offspring mice. 
Because exposure to DEHP ceased at 3 weeks of age, these 

Figure 5. Results of analysis of DMCs with Genomic Regions Enrichment of Annotations Tool. Analyses were stratified by sex and direction of 

methylation. All significant Gene Ontology terms are shown, with the exception of Male Hypermethylated (Panel C), which depicts the top 10 most 

significant pathways. DMC indicates differentially methylated cytosine.
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data suggest that perinatal DEHP exposure may have long-
term effects on the epigenome.

The implications the observed changes in methylation have 
for cardiac function require further investigation. Phthalate-
induced epigenetic changes have been identified as potential 
mediators of altered hormone levels and disease,61-63 suggesting a 
possible causative role for DNAm in phthalate-induced health 
effects. In this study, we did not observe significant changes in 
relative heart weights with DEHP exposure, and we did not 
determine the effects of DEHP exposure on cardiac function. 
However, we have previously demonstrated that DEHP exposure 
in this model results in increased body fat and decreased lean 
mass in adult females,64 suggesting that this chemical has long-
term, sex-specific effects on metabolic health. Moreover, adverse 
effects of perinatal environmental exposures may not manifest 
until subsequent challenges later in life, such as hormonal stimu-
lation, poor diet, or additional environmental exposures.65-67 
Further studies are necessary to determine the consequences of 
developmental DEHP exposure on cardiac function and the 
potential role for DNAm in mediating these effects.

Pathways associated with insulin signaling and glucose 
transport were significantly enriched among DMCs in the 
hearts of females and males, respectively. Likewise, Slc5a4a, 
which contained a DMR that directly overlapped between 
males and females, encodes a glucose-sensing sodium chan-
nel.68 These observations are notable, given the profound and 
unyielding energetic demands of the heart. Insulin signaling 
plays a pivotal role in regulating cardiac mitochondrial func-
tion, glucose, and fatty acid uptake, as well as promoting hyper-
trophy in response to exercise.69-71 Healthy hearts exhibit 
metabolic plasticity and are capable of utilizing fatty acids or 
glucose for generation of ATP.72 Both glucose uptake and insu-
lin signaling are impaired in diseases such as coronary heart 
disease and heart failure.71,73 Likewise, additional pathways rel-
evant to cardiac development and function were identified by 
GREAT analysis, including PI3K pathway function (female, 
hypomethylated) and embryonic heart tube morphogenesis 
(male, hypermethylated). The PI3K pathway plays an impor-
tant role in regulation of cardiac hypertrophy and contractility, 
and altered function of this pathway is implicated in heart fail-
ure and other diseases.74

It is further noteworthy that several genes mapping to 
DMCs and DMRs with DEHP exposure were also differ-
entially methylated in heart tissue from human heart failure 
patients,48 and that the overlapping genes were distinct 
based on sex. Importantly, in at least 50% of the overlapping 
genes, methylation changes occurred in the same direction. 
Notably, PRKCE encodes protein kinase C epsilon, which is 
increased in female hearts compared to males subjected to 
ischemia-reperfusion injury. Expression of this protein may 
confer reduced susceptibility to long-term deleterious 
effects of myocardial infarction. SMAD7, which was differ-
entially methylated in DEHP-exposed males and in heart 
failure samples, plays an important protective role against 
cardiac fibrosis induced by myocardial infarction or hyper-
glycemia.54,75 Phthalate exposures are linked in human and 
animal models to several CVDs associated with heart fail-
ure, including congenital heart defects, arrhythmias, hyper-
tension, and coronary heart disease.10-16,76-78 We are actively 
pursuing further mechanistic and functional studies to 
determine the implications of our findings for sex-specific 
cardiac health.

The mechanisms by which DEHP affects DNAm are cur-
rently unclear. Animal studies suggest that perinatal DEHP 
exposure alters expression of DNA methyltransferases 
(DNMTs), which catalyze the addition of methyl groups to 
the 5-position of cytosine bases in DNA.79,80 However, 
because these studies were conducted in males, the sex-spe-
cific effects of perinatal phthalate exposures on expression 
and function of DNMTs are unknown. In this study, we 
observed differential methylation of Dnmt3a in DEHP-
exposed males but not females, highlighting a potential sex-
specific mechanism of regulation of this gene by DEHP 

Figure 6. Venn diagrams showing overlap between females and males 

in genes mapping to (A) differentially methylated cytosines and (b) 

differentially methylated regions. Panel (C) depicts the correlation 

between methylation changes occurring in the overlapping genes. The r 

value represents the Pearson correlation coefficient, and the P value is 

based on a 2-tailed test. The correlation plot represents the CpG within 

each overlapping gene that had the largest methylation change after 

DEHP exposure. DEHP indicates diethylhexyl phthalate; DMC, 

differentially methylated cytosines.
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exposure. The functional effects of this epigenetic program-
ming require further investigation. Importantly, other envi-
ronmental exposures lead to changes in epigenetic regulators 
that are highly sex-specific,81 highlighting a potential mecha-
nism by which toxicants, including DEHP, may induce sex-
specific epigenomic programming. Alterations in DNMT 
function are another potential mechanism by which DEHP 
may alter DNAm. DNA methyltransferase methylate cyto-
sine bases in DNA using S-adenosylmethionine as a methyl 
donor, which is supplied by the 1-carbon metabolic 

pathway.82 Perinatal phthalate exposures lead to perturbation 
of methyl donor levels and global hypomethylation in rat tes-
tis,83 and administration of the methyl donor choline attenu-
ates the teratogenic effects of phthalate exposure in chick 
embryos,84 suggesting that phthalates may interfere with 
1-carbon metabolism. Moreover, phthalates have been 
reported to bind to and modulate the activity of nuclear hor-
mone receptors, including peroxisome proliferator-activated 
receptors (PPARs),85,86 which function in part through regu-
lation of DNAm.87,88 Studies to determine the sex-specific 

Figure 7. Venn diagrams depicting overlap in genes mapping to DMCs/regions between DEHP-exposed animals and human heart failure samples.48 

DMC data are depicted in Panels (A) and (b). Panels (C) and (D) depict the correlation between methylation changes occurring in the genes overlapping 

between human heart failure and DEHP exposed (C) females and (D) males. The r values represent the Pearson correlation coefficient, and the P values 

are based on a 2-tailed test. The correlation plots represent the CpG within each overlapping gene that had the largest methylation change after DEHP 

exposure or in heart failure. Panels (E) and (f) depict overlapping genes that mapped to DMRs. Selected overlapping genes strongly linked to 

cardiovascular development and disease are shown. P values represent the significance of overlap between differentially methylated genes by DEHP 

exposure and differentially methylated genes in heart failure. DEHP indicates diethylhexyl phthalate; DMC, differentially methylated cytosine; DMR, 

differentially methylated region.
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mechanistic basis for DEHP-induced perturbations in car-
diac DNAm are currently underway.

Although we provide novel evidence that perinatal phtha-
late exposure leads to alterations in cardiac DNAm detecta-
ble in adulthood, key limitations to this study should be 
considered. First, to assess changes in DNAm with perinatal 
DEHP exposure, we utilized ERRBS, which detects DNAm 
at basepair resolution at CpG rich loci in the genome. This 
approach captured, on average, 4.8% of the total CpGs in the 
genome. Thus, other biologically relevant genomic loci may 
have been missed. ERRBS provides enrichment for CGI, 
CpG shores, introns, exons, and intergenic regions.42,89 Thus, 
the enrichment of DMCs/DMRs at specific genome-wide 
regions may have been affected by this bias. In addition, 
ERRBS employs sodium bisulfite to convert unmethylated 
cytosines to uracil, which are replaced with thymine in sub-
sequent PCR.42 Methylated cytosines are resistant to sodium 
bisulfite treatment, allowing the quantity of DNAm to be 
assessed based on C to T transitions. However, oxidized 
derivatives of 5-methylcytosine, including 5-hydroxymethyl-
cytosine, are also resistant to sodium bisulfite conversion.90 
Thus, ERRBS and other assays based on traditional sodium 
bisulfite conversion methods do not discriminate between 
5-methylcytosine and 5-hydroxymethylcytosine. Future 
studies will investigate the effects of perinatal DEHP expo-
sure on 5-hydroxymethylcytosine in several tissues as part of 
the NIEHS TaRGET II Consortium. A second limitation of 
this study is that analysis of DNAm was conducted in bulk 
tissue. We, therefore, cannot determine the effects of DEHP 
exposure on specific subpopulations of cells. Future studies 
using single-cell epigenomics and transcriptomics91,92 would 
permit assessment of cell-specific effects of DEHP and other 
environmental exposures on the heart.

Conclusions
In this work, we describe novel findings related to the effects of 
perinatal phthalate exposure on the heart. We show, for the 
first time, that perinatal DEHP exposure leads to altered 
DNAm in the hearts of offspring mice in adulthood, long after 
cessation of exposure. Given the reported adverse effects of 
phthalate exposures on cardiac health, the role for epigenetic 
programming in phthalate-induced cardiac dysfunction war-
rants further investigation. We also demonstrate that changes 
in DNAm are highly sex-specific, a finding that underscores 
the need for environmental health studies that consider the 
critical role of sex in toxicant-induced health outcomes.
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