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Reproduction is an energy demanding function and only take place in case of sufficient
available energy status in mammals. Metabolic diseases such as anorexia nervosa are
clinically associated with reduced fertility. AMP-activated protein kinase (AMPK), as a
major regulator of cellular energy homeostasis, is activated in limited energy reserves to
ensure the orderly progress of various physiological activities. In recent years, mounting
evidence shows that AMPK is involved in the regulation of reproductive function through
multiple mechanisms. AMPK is likely to be a metabolic sensor integrating central and
peripheral signals. In this review, we aim to explore the preclinical studies published
in the last decade that investigate the role of AMP-activated protein kinase in the
reproductive field, and its role as a target for drug therapy of reproductive system-related
diseases. We also emphasized the emerging roles of AMPK in transcriptional regulation
of reproduction processes and metabolisms, which are tightly related to the energy state
and fertility of an organism.
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INTRODUCTION

AMP-activated protein kinase (AMPK) is a heterotrimeric complex composed of a catalytic
α-subunit and two regulatory subunits: β and γ. The most well-known physiological function of
AMPK is to act as an energy sensor to maintain metabolic homeostasis (Hardie, 2007). In response
to decreased ATP/AMP ratio or glucose starvation, the liver kinase B1 (LKB1) phosphorylates the
threonine-172 residue of AMPK and mediates its activation through canonical and non-canonical
mechanisms. These two activation mechanisms occur in the cytoplasm and lysosome, respectively
(Gonzalez et al., 2020). Furthermore, hormones and DNA damage can also trigger AMPK activation
by the Ca2+/calmodulin-dependent kinase, CaMKK2 (Gonzalez et al., 2020). After activated,
AMPK switches off ATP-consuming pathways such as protein synthesis, glycogenolysis, and
lipogenesis, and turns on ATP-generating pathways such as fatty acid oxidation, glycolysis, and
autophagy by regulating downstream factors, thereby ensuring nutrient supply (Hardie, 2007).

It is known that mammalian reproduction is an energy-consuming process that occurs when
there is adequate nutrition (Dupont et al., 2014). Metabolic disorders are clinically associated
with fertility decline. For instance, polycystic ovary syndrome (PCOS) is a common reproductive
disorder that causes infertility in women of childbearing age often accompanied by insulin
resistance and hyperandrogenemia (Diamanti-Kandarakis, 2008). Besides, anorexia nervosa or
obesity may cause impaired ovarian function and spermatogenesis (Group, 2006; Pasquali, 2006;
Mah and Wittert, 2010). Therefore, the relationship between reproduction and energy metabolism
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has attracted extensive attention. The properties of AMPK as
an energy sensor allow it to couple the energy status of the
body to reproductive function (Duval, 2011). Hypothalamic
AMPK is central to energy homeostasis (Huynh et al., 2016).
Both anorectic signals (leptin, insulin) and orexigenic signals
(ghrelin, neuropeptide Y) affect energy intake and energy
expenditure through the regulation of hypothalamic AMPK
activity (Minokoshi et al., 2004), thereby ensuring the orderly
progress of various physiological activities. During nutrient
starvation, AMPK, as a catabolic enzyme, promotes cellular
catabolism and augments energy production through the
inhibition of mTOR (mammalian target of rapamycin) by directly
phosphorylating the TSC2 (tumor suppressor Tuberous Sclerosis
Complex 2) and RAPTOR. Under nutrient-rich conditions,
the inhibition of mTOR is diminished and the whole-body
energy balance is positive, it is conducive to reproduction
(Gonzalez et al., 2020). In addition to the above indirect effects
on reproduction, AMPK in the hypothalamus and pituitary is
able to directly regulate gonadal steroid hormones production
and affect fertility in response to peripheral metabolic signals
(Tulipano, 2020). However, the global physiological actions of
AMPK in reproduction include not only the acute response of
AMPK activation through directly phosphorylating downstream
metabolic enzymes or regulating the hypothalamic pituitary
gonadal (HPG) axis, but also AMPK-mediated transcriptional
events via affecting the interaction between transcription
regulators (TFs) and their DNA recognition sites.

In this review, we aim to explore the preclinical studies
published in the last decade that investigate functions of AMP-
activated protein kinase in the reproductive field, and its role as
a target for drug therapy of reproductive system related diseases.
We also discussed the emerging roles of AMPK in transcriptional
regulation of reproduction processes and metabolisms, which are
tightly related to the energy state and fertility of an organism.

AMPK IS INVOLVED IN THE
MODULATION OF THE HYPOTHALAMIC
PITUITARY GONADAL (HPG) AXIS

The HPG axis is of vital importance in mammalian reproductive
system (Schneider, 2004). The secretion and gene transcription
of the pituitary gonadotropins luteinizing hormone (LH) and
follicle-stimulating hormone (FSH) are driven by pulsatile release
of gonadotropin-releasing hormone (GnRH) from neurons in the
hypothalamus. Gonadotropins control gonadal steroid hormones
production and in turn sex hormones exert feedback regulation
on GnRH, LH and FSH synthesis and secretion (Burger et al.,
2004). In response to energy insufficiency, the bodies usually
choose to reduce all the dispensable energy expenditure in
mammals. Therefore, GnRH pulsatility was suppressed, and
fertility decreased to allow energy accumulation for individual
survival. That is to say, there must be some signaling pathways
in the center that serve as a bridge to link the diminished
energy reserves with the reproductive neuroendocrine axis. In
fact, hypothalamic AMPK activity is tightly related to feeding
and thermogenesis, thus controlling the energy homeostasis of

the organism (Lim et al., 2010; Wang and Cheng, 2018). It is
worth noting that AMPK is highly expressed in those nuclei
associated with reproductive control in the hypothalamus, such
as the paraventricular and arcuate nuclei (Torsoni et al., 2016).
Hence, AMPK pathways in the hypothalamus are likely to
mediate the effects of peripheral signals on reproductive function.
Kisspeptin, a protein encoded by the Kiss1 gene, can promote
GnRH secretion and affect puberty after binding with its receptor
G-protein-coupled receptor-54 (GPR54) (Seminara et al., 2003;
Pinilla et al., 2012; Herbison, 2016). Evidence is accumulating
that AMPK activation inhibits GnRH release in GT1-7 cell,
a mouse immortalized hypothalamic GnRH neuron (Coyral-
Castel et al., 2008; Wen et al., 2008, 2012). On the one hand,
AMPK activation induced by adiponectin represses the promoter
activity of the Kiss1 gene via inhibition of the translocation of
specificity protein-1 (SP1) from the cytoplasm to the nucleus and
subsequently influences GnRH secretion (Wen et al., 2012). On
the other hand, the trafficking and exocytosis of secretory vesicles
is ATP-dependent (Nagiec et al., 1995). As a consequence, it is
plausible that AMPK may be activated to reduce GnRH secretion
to increase ATP levels in limited fuel availability. However, these
experiments were carried out in immortalized cells while GnRH
neurons themselves do not express Kiss1 (Pinilla et al., 2012), so
the reliability of these results needs to be further confirmed. In
previous years, two clinical studies have observed that metformin
treatment at early stage could delay menarche and ameliorate
metabolic disorder in girls with precocious pubarche (Ibanez
et al., 2011a,b). A paper published in 2018 documented that the
regulatory effect of AMPK activation on adolescent metabolic
control under negative energy balance was achieved by reducing
kisspeptin expression in hypothalamic KISS1 neurons (Roa et al.,
2018). Conditional deletion of the AMPKα1 subunit in Kiss1
cells largely prevented the delay in puberty onset caused by
malnutrition (Roa et al., 2018). Other AMPK subunits may be
involved in the partial compensation of the lack of AMPKα1
as the AMPKα2 catalytic subunit in Kiss1 neurons has been
reported to be responsible for the reproductive adaptations to
acute metabolic distress (Torsoni et al., 2016).

Notably, the different subunits of AMPK are also expressed
in the pituitary (Tosca et al., 2011) and the role of pituitary
gonadotroph cells as a metabolic sensor to integrate energy
status with fertility has been known (Duval, 2011). Clinically,
PCOS is characterized by elevated LH to FSH ratios, but
metformin treatment can reduce serum LH concentration in
PCOS women (Velazquez et al., 1994; Genazzani et al., 2004;
Oride et al., 2010). It is likely that AMPK activation mediates
the effect of metformin on pituitary gonadotropin-secreting
cells (Duval, 2011). In mouse LβT2 cells (mouse pituitary cell),
inhibition of AMPK activity or reduction of AMPK levels
prevented GnRH-stimulated LH gene transcription (Andrade
et al., 2013). Interestingly, Andrade et al. reported that AMPK
effects are mediated at least in part by diminishing the EGR-1
protein level (EGR-1 is a transcription factor required for LH
expression and induced to synthesize in response to GnRH)
(Andrade et al., 2013). However, this outcome is contrary to
that of Lu et al. (2008) who found that AMPK activation by
adiponectin reduces GnRH-stimulated LH secretion, and this
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repression can be mimicked by AICAR (5-aminoimidazole-4-
carboxamide riboside), an activator of AMPK. In rat pituitary
cells, metformin-induced AMPK activation strongly decreases
LH and FSH in response to GnRH and FSH release induced
by activin via inhibiting the MAPK3/1 and SMAD2 signaling
pathways, respectively (Tosca et al., 2011). Subsequently, these
alterations in gonadotropin secretion would likely lead to changes
in steroid synthesis in the gonad. Unlike previous studies using
rodent cells, metformin can only inhibit basal, but not GnRH-
stimulated FSH secretion, without altering LH release in non-
human primate pituitary cells in vitro (Vazquez-Borrego et al.,
2018; Figure 1). These inconsistent conclusions may be due to
differences in species or experimental methods, indicating that
further work is required to establish the viability of exploring the
effect of AMPK on the HPG axis in vivo and in vitro.

AMPK IN MALE REPRODUCTION

It is well known that the Liver Kinase B1 (LKB1), located
upstream of AMPK, regulates AMPK activity (Lizcano et al.,
2004). In humans, LKB1 gene mutation usually results in Peutz-
Jeghers syndrome (PJS) and male infertility (Ulbright et al.,
2007). Likewise, loss of LKB1 signaling in mice affects the
release of mature spermatids into the seminiferous tubules

(Denison et al., 2011). Additionally, genetically deleted testis-
specific serine kinase (TSSK) family genes, which also belong
to the AMPK branch, leading to male infertility due to
haploinsufficiency (Xu et al., 2008). Thus, the fact that AMPK-
related genes’ defects induce a reduction in male fertility and
the widespread expression of AMPK in various testicular cells
suggests its essential role in male reproduction. We will focus
on the functions of AMPK in male gonadal somatic cells and
spermatogenesis to summarize as following sections.

The Effect of AMPK on Male Gonadal
Somatic Cells
Male gonadal somatic cells contain two types of cells, Sertoli
and Leydig cells. Sertoli cells protect and nourish developing
germ cells, and the cell junction between Sertoli cell formed
near the basement membrane of seminiferous epithelium
constitutes the blood-testis barrier (BTB), providing a suitable
microenvironment for spermatogenesis and its maturation.
Additionally, Leydig cells can synthesize and secrete androgen to
promote spermatogenesis (Gerber et al., 2016). Taken together,
spermatogenesis is inseparable from the normal function of
Sertoli and Leydig cells. Tanwar et al. (2012) reported that
conditional deletion of LKB1 in Sertoli cells of mice resulted
in germ cell loss and Sertoli cell-only seminiferous tubular
phenotype, which is similar to that of human PJS patients

FIGURE 1 | Graphical summary of the effect of AMPK activation on the HPG axis. Species and in vivo or in vitro experiments are notified.
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(Ulbright et al., 2007). Some seminal researches have previously
shown that LKB1 (Baas et al., 2004) and its downstream
effector AMPK are responsible for establishing apicobasal cell
polarity (Forcet et al., 2005; Lee et al., 2007) and AMPK
activation reinforces tight junction function through directly
phosphorylating its substrates in apical junctional complexes
(Lee et al., 2007; Zhang et al., 2011; Shiomi et al., 2015;
Aznar et al., 2016) or driving key epithelial transcription factors
(Sun et al., 2017). Thus, it is no surprise that the LKB1
knockout mice also show defects in Sertoli cell polarity and
testicular junctional complexes, which indicates the involvement
of AMPK-mediated mTOR inhibition in this biological process
(Tanwar et al., 2012). It is well known that the maintenance
of Sertoli cell polarity and their tight junction, an integral part
of the BTB, are essential for male germ cell development and
spermatogenesis. The barrier functions as a “fence” to prevent
the diffusion of harmful substances and the escape of sperm
antigen. Autoimmune orchitis is one of the diseases caused by
barrier dysfunction (Perez et al., 2012). However, the AMPK-
mediated epithelial barrier repair in a pulmonary microvascular
endothelial cell wound healing model makes it a possible drug
target (Creighton et al., 2011). To date, the protective effect
of metformin-induced AMPK activation on epithelial barrier
dysfunction in different tissues has been discovered in succession
(Seo-Mayer et al., 2011; Spruss et al., 2012; Liu et al., 2014; Xue
et al., 2016; Chen et al., 2018). Sertoli cells, which are closely
linked to germ cells, engulf the extra cytoplasm of elongated
spermatids before their release and play a key role in shaping the
head of the spermatozoon (Sakai and Yamashina, 1989). Loss-
function of AMPKα1 in mouse Sertoli cells causes a decrease
in male fertility with abnormal sperm head morphology due
to destroyed tight junction between Sertoli cells and germ cells
(Bertoldo et al., 2016). In addition, AMPK activity can influence
the intracellular metabolism and cell proliferation of Sertoli
cells. Galardo et al. (2007) found that stimulation of rat Sertoli
cells with AICAR treatment increase lactate production through
several biochemical mechanisms, including promoting glucose
transport and the conversion of pyruvate to lactate as well
as improving lactate export to germ cells, suggesting a role
for AMPK modulating the nutritional function of Sertoli cells.
Specific deletion of AMPKα1 in Sertoli cells showed an increase
in lipid droplets (Bertoldo et al., 2016), which is consistent with
cytoplasmic vacuolization of Sertoli cells in human PJS patients
(Ulbright et al., 2007). Paradoxically, there was no change in
the number of Sertoli cells when AMPKα1 inactivated in vivo,
but inactivation of AMPKα1 in vitro promoted Sertoli cell
proliferation (Bertoldo et al., 2016). This is supported by a series
of other in vitro experiments. For instance, administration of
AMPK activator metformin to human and murine organotypic
testes cultured in vitro led to a decrease in the number of Sertoli
cells (Tartarin et al., 2012b). When pregnant mice or sexually
immature chicken were exposed to metformin, loss of testis
weight, and decreased proliferative activity of Sertoli cells can
be observed (Tartarin et al., 2012b; Faure et al., 2016). These
studies suggested that AMPK activation could inhibit cell division
during Sertoli cell development. Another intriguing observation
was that despite the number of aforementioned Sertoli cells

of chicken was reduced, the population of spermatogonia was
unchanged (Faure et al., 2016). Besides, the AMPK α1 subunit
is expressed in somatic cells (Sertoli and Leydig cells) (Tartarin
et al., 2012a). AMPK α1 KO male mice show a decrease
in fertility, with an increased mean number of Leydig cells
(Tartarin et al., 2012a). The smooth endoplasmic reticulum
activity was enhanced, and testosterone synthesis increased in
AMPK α1 KO testes. Owing to the negative feedback, the
serum LH and FSH concentrations became lower (Tartarin et al.,
2012a). In rat Leydig cells, the AMPK activator resveratrol
reduces the secretion of testosterone by affecting the transport
of cholesterol into mitochondria and conversion of progesterone
into androstenedione (Svechnikov et al., 2009). This is in line
with androgen reduction in organotypic testis cultured in vitro
with metformin stimulation (Tartarin et al., 2012b). Therefore,
the above-mentioned data strongly suggest that AMPK inhibits
the production of androgen in Leydig cells and thus affects
spermatogenesis.

The Function of AMPK in
Spermatogenesis
Spermatogonia undergo two rounds of meiosis and subsequent
morphological change to develop into a spermatozoon
during mammalian spermatogenesis (Mruk and Cheng,
2015). Ejaculated spermatozoa do not yet have the ability to
complete egg fertilization in mammals. They need to go through
some cellular processes in the female genital tract, including
capacitation and acrosome reaction, and eventually fertilize the
oocytes (Castillo et al., 2019). At this time, spermatozoa have
already lost corresponding organelles to allow transcription and
translation of genes, so the acquisition of these physiological
abilities must rely on the modification of existing proteins
(Castillo et al., 2019). AMPK and its phosphorylated form
are expressed in a variety of mammalian sperm and mainly
localized at the acrosome and at the mid-piece of flagellum
(Martin-Hidalgo et al., 2018). Spermatozoa motility depends on
flagellum beating, and mitochondria exist in the middle of the
flagellum to provide energy for the movement (Gu et al., 2019).
AMPK activity has been reported to be essential for spermatozoa
motility. For example, AMPK inhibitor compound C (CC)
treatment reduces a potent decrease in the number of mobile
spermatozoa, and those remnant active spermatozoa move with
significantly lower speed, but the use of CC itself does not impair
sperm viability (Hurtado de Llera et al., 2012). Interestingly,
AMPK activator A769662 does not improve spermatozoa
motility (Hurtado de Llera et al., 2015), indicating that AMPK
activity needs to fluctuate within a specific physiological range,
and excessive inhibition or activation is not conducive to
maintaining optimal sperm motility. In addition, the AMPKα1
knockout mice presented a reduced number of pups per litter
due to decreased mitochondria number and their abnormal
arrangement along microtubules in KO spermatozoa (Tartarin
et al., 2012a). Similarly, specific deletion of Tssk2 in mice
can also affect spermatozoa motility since it phosphorylates
a protein of the axoneme central apparatus in the flagellum
(Zhang et al., 2008). These studies raise the possibility that
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AMPK phosphorylates specific proteins in the flagellum, thereby
influencing sperm motility.

Mitochondrial function is a prerequisite for sperm to achieve
flagellum swing (Gu et al., 2019). The mitochondrial membrane
potential (19m) is generally used to reflect mitochondrial
function (Sakamuru et al., 2016). Inhibition of AMPK activity
in boar spermatozoa by CC treatment resulted in instability of
19m and plasma membrane lipid disorganization (Hurtado
de Llera et al., 2013). Plasma membrane disorder is most
likely to occur at the apical part of the acrosome, where a
majority of phosphorylated AMPK protein accumulates, leading
to impaired acrosomal integrity (Hurtado de Llera et al., 2013).
Male germ cells will encounter various metabolic stresses in the
process of transit through the female genital tract or semen
cryopreservation (Huang et al., 2015). In this case, the integrity
of sperm structure and intracellular adaptive physiological
responses, such as AMPK regulating cell metabolism when
ATP is limited, are required for successful fertilization. A study
has reported that intracellular messengers Ca2+and cAMP, as
well as PKA, PKC, and CaMKKα/β signaling pathways are
involved in the activation of AMPK in boar spermatozoa in
response to a variety of physiological or pharmacological stimuli
(Hurtado de Llera et al., 2014).

Data shows a decline in sperm quality among men of
different races (Levine et al., 2017; Mishra et al., 2018), and in
order to improve fertility, semen cryopreservation has become
a fundamental part of assisted reproductive techniques (ARTs)
during recent years. However, the freeze-thaw process has
detrimental effects on the biological functions of spermatozoa.
It can decrease the percentage of mobile spermatozoa and
dramatically increase reactive oxygen species (ROS) generation
and the percentage of apoptotic-like sperm cells (Shabani
Nashtaei et al., 2017). Since sperm membranes are rich in
polyunsaturated fatty acids (Dandekar et al., 2002), they are very
susceptible to lipid peroxidation. Although there are different
kinds of antioxidant enzymes in semen to protect sperm from
lipid peroxidation (Aitken et al., 1996; Gadea et al., 2004),
the freeze-thaw process has detrimental effects on enzyme
activity and decreases the scavenging capacity of seminal plasma
(Lasso et al., 1994; Bilodeau et al., 2000). AMPK activation
of chicken sperm before cryopreservation enables sperm to
store more ATP, which helps to restore antioxidant enzyme
activity to remove ROS and limit lipid peroxidation, thus
improving sperm motility and acrosome reaction, and ensuring
a better quality of cryopreserved sperm (Nguyen et al., 2015).
Moreover, considering that cryopreservation-induced ROS can
generate a significant DNA damage in some genome regions
(Thomson et al., 2009; Aitken and De Iuliis, 2010) and successful
fertilization requires the sperm normal DNA integrity (Zini et al.,
2008), it is important to use antioxidants to reduce oxidative
DNA damage (Agarwal et al., 2004). In human frozen-thawed
sperm, AMPK activator resveratrol (RSV), a known antioxidant,
alleviated oxidative stress induced by cryopreservation and at
least partially restored some functional properties of sperm,
while CC supplementation showed an opposite effect (Shabani
Nashtaei et al., 2017). Subsequent published paper showed that
the addition of RSV could protect sperm DNA integrity and key

paternal transcripts from the adverse effects of cryopreservation
by enhancing the activity of AMPK (Shabani Nashtaei et al.,
2018). The protective mechanism of AMPK activation on
cryopreservation-induced DNA damage in human spermatozoa
still remains obscure, which may be associated with the role
of AMPK in autophagy (Li et al., 2017) or DNA damage
repair (Hashimoto et al., 2018; Chen et al., 2020). These results
indicates that AMPK is a drug target for optimizing sperm
cryopreservation protocol and AMPK activity is crucial to protect
sperm from lipid peroxidation and ROS (Figure 2).

AMPK IN FEMALE REPRODUCTION

Mammalian oogenesis begins in the fetus. The primordial
germ cells proliferate and differentiate into oogonia, and
undergo the first meiosis, reaching diplotene at birth known
as a germinal vesicle (GV). When the estrus cycle arrives, the
oocytes continue the first meiotic division, including germinal
vesicle breakdown (GVBD), emitting the first polar body,
and stopping at the middle stage of the second meiosis which
won’t be completed until successful fertilization (Sathananthan
et al., 2006). Both folliculogenesis and embryo development
require energy. As a central regulator of energy homeostasis,
AMPK is closely associated with female reproduction, including
follicular development, granulosa cell proliferation, and
pregnant regulation.

Role of AMPK in Follicular Development
The mammalian ovary is a heterogeneous organ containing
follicles at various developmental stages, and its principal
function is the release of the mature oocyte for fertilization
(McGee and Hsueh, 2000). Although many follicles exist in the
ovary, most of them are primordial follicles, which consist of
an immature oocyte and several surrounding flattened somatic
cells called primordial follicle granulosa cells (McGee and Hsueh,
2000). In mammals, the original pool of primordial follicles is the
only source of all developing follicles for the entire reproductive
life. The prerequisite for successful fertilization is the activation
of primordial follicles. AMPK protein is reported to be expressed
in mammalian ovaries, including oocytes, granulosa cells, theca
cells, and corpus luteum (Tosca et al., 2005, 2007a; Lu et al., 2017).
A large number of researches show that AMPK is involved in
the regulation of primordial follicle activation (Lu et al., 2017).
In situ ovarian intramural administration of AMPK inhibitor
CC in mice, primordial follicle activation and stimulation of
follicle growth were observed, and thus more healthy pups were
delivered (Lu et al., 2017). AMPK inhibition by CC promotes
the growth of cultured ovary in vitro by activating mTOR and
increasing the expression of Ctgf in the YAP signaling pathway
(Lu et al., 2017). Importantly, conditional knockout of LKB1
or mTOR inhibitor gene TSC1 in mouse oocytes caused severe
subfertility and the pool of primordial follicles exhausted due
to early excessive activation (Jiang et al., 2016). In comparison,
specific deletion of TSC1 in mouse granulosa cells does not
compromise mouse fertility, and the conditional knockout mice
can produce more ovulating oocytes (Huang et al., 2013). This
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FIGURE 2 | AMPK activity in male reproduction. This figure summarizes the effect of AMPK on male gonadal somatic cells and spermatogenesis. As is shown
above, the loss-function of AMPK leads to the impaired physiological function of somatic cells and spermatozoa.

phenotype could be explained by increased mTORC1 activity,
while rapamycin as a specific mTORC1 inhibitor effectively
reversed the condition (Huang et al., 2013; Cheng et al., 2015;
Jiang et al., 2016). In addition to using the knockout mouse
models in vivo, researchers utilized mammalian oocytes by
in vitro maturation (IVM) technique to investigate the effect of
AMPK activation on follicular development. AMPK activation
using AICAR or other activators in vitro can delay oocyte
maturation in swine cumulus-oocyte complexes (COCs), but
only in the presence of cumulus cells (Santiquet et al., 2014).
Cumulus cells are necessary for promoting the inhibitory effect
of AMPK activation on the recovery of swine and bovine
oocyte meiosis (Santiquet et al., 2014). During IVM, the level of
AMPK phosphorylation gradually decreased in immature bovine
oocytes and cumulus cells. The AMPK activator metformin
blocks most oocytes in the GV stage by inhibiting the activation
of key factors involved in protein synthesis, while CC reduced
AMPK phosphorylation in COCs and accelerated the resumption
of oocyte meiosis (Tosca et al., 2007b). However, metformin
did not inhibit the resumption of denuded oocytes meiosis,
suggesting that the inhibition of oocyte maturation by metformin
requires the presence of cumulus cells (Tosca et al., 2007b).
Communication between the oocyte and cumulus cells is
supported by gap junctions, which are important for controlling
oocyte maturation. In bovine COCs, AMPK also exists in the
gap junctions (Bilodeau-Goeseels et al., 2007). Therefore, the
occurrence of oocyte maturation is highly likely to need signals

induced by AMPK inhibition from cumulus cells that transmit
through gap junctions. Intriguingly, phospho-AMPK provides a
meiotic maturation signal and induces oocyte maturation in mice
(Downs et al., 2002; Chen et al., 2006). The activation of AMPK
not only promotes GVBD in mouse oocytes but also participates
in the regulation of the progression of meiosis to MII (Downs
et al., 2010; Table 1). More studies will be needed to determine
the role of AMPK in follicular development as it appears there
are significant differences between species.

AMPK in Granulosa Cell Secretion and
Proliferation
It is well known that FSH and IGF-I regulate the growth and
differentiation of granular cells in mice (Baker et al., 1996; Zhou
et al., 1997; Abel et al., 2000). Mice lacking IGF-I had stunted
follicular development and were unable to produce Graafian
follicles successfully (Baker et al., 1996; Zhou et al., 1997).
Adashi et al. (1986) demonstrated that FSH and IGF-I could
synergistically act on the MAPK ERK1/2 pathway in granular
cells to increase progesterone secretion. In rat and bovine, when
primary granulosa cells treated with AICAR or metformin, the
activation of AMPK inhibited phosphorylation of MAPK ERK1/2
and affected the expression of 3β-hydroxysteroid dehydrogenase
(3β-HSD) and the steroidogenic acute regulatory (StAR) protein,
resulting in decreased progesterone secretion (Tosca et al., 2005,
2007a). Besides, metformin can inhibit the proliferation and
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TABLE 1 | Effects of the use of AMPK activator or inhibitor in follicular development.

Compound Species Tissue/cell type In vivo / In vitro Effects References

Compound C Mice Ovary In vivo Stimulation of follicular
development

Lu et al., 2017

AICAR Swine COCs In vitro Inhibition of both oocyte
maturation and cumulus

cell expansion

Santiquet et al., 2014

Metformin Bovine COCs/DOs In vitro Inhibition of cumulus cell
expansion and oocyte

arrest at the GV stage/ No
inhibition of meiotic

progression observed

Tosca et al., 2007b

AICAR, Rosiglitazone Mice COCs,DOs In vitro Oocyte maturation Downs et al., 2002; Chen et al., 2006

AICAR Mice CEO,DOs In vitro Accelerated polar body
formation

Downs et al., 2010

COCs, cumulus-oocyte complexes; DOs, denuded oocytes; CEO, cumulus cell-enclosed oocyte.

protein synthesis of bovine granulosa cells through an AMPK-
dependent mechanism (Tosca et al., 2006). Similarly, metformin
treatment could block the expansion of bovine cumulus cells
in vitro (Tosca et al., 2007b).

AMPK in Mammalian Pregnancy
Regulation
A healthy fetus delivery demands uterine receptivity increase
and normal placenta in the maternal uterus to allow embryo
implantation. AMPK is commonly expressed in the all-
female reproductive system (McCallum et al., 2018), suggesting
that AMPK is essential for normal pregnancy in females.
AMPK activation has been shown to reduce fibrosis or
scar mature failure after injuring the liver, heart, kidney,
intestine, and peritoneum (Noppe et al., 2014; Chen et al.,
2017; Cieslik et al., 2017; Shin et al., 2017). Similarly, the
conditional deletion of AMPKα in mouse uteri failed scar-
free regeneration of the endometrium after delivery and severe
endometrial fibrosis, thereby causing embryo implantation
failure and lifetime fecundity reduction (McCallum et al.,
2018). Another latest report supports the role of AMPK in
establishing uterine receptivity and demonstrates that AMPK
activity plays a prominent part in epithelial cell proliferation
and decidualization (Griffiths et al., 2020). In addition,
pharmacological AMPK activation can promote uterine artery
vasodilation, which indicates that AMPK activation may help to
maintain uteroplacental blood flow, thereby ensuring a normal
pregnancy process (Skeffington et al., 2016). AMPK is also
required for the growth and differentiation of mammalian
embryos. Double knockout of PRKAA1 and PRKAA2 in
mice resulted in embryonic lethality around 10.5 days of
gestation (Viollet et al., 2009). However, AMPK activation
beyond the normal physiological range is detrimental to
optimal preimplantation embryo development. Applying AICAR
to mouse 2-cell embryos decreases blastocyst formation and
inhibits trophectoderm differentiation. AICAR treated embryos
displayed altered blastocyst formation gene expression and
increased tight junction permeability, which is irreversible. This
effect is confirmed with other AMPK activators, metformin

and phenformin (Calder et al., 2017). The result suggested
that AMPK activity must be tightly controlled to facilitate
normal preimplantation development and blastocyst formation.
Given that there is no evidence to ensure the harmlessness of
metformin for fetal development, the use of metformin during
pregnancy should be carefully considered. A study reported that
the inhibition of AMPK activity in trophoblast stem cells blocked
their normal differentiation under cellular stress (Zhong et al.,
2010). After knocking down AMPKα1 and α2 in the mouse
trophoblast progenitor cell line SM10, the researchers observed
an impaired proliferation and differentiation of progenitor cells
(Carey et al., 2014). Glucose is a primary energy source for
the growing baby, but after knockdown AMPKα, the glucose
transportability in progenitor and differentiated labyrinthine
cells decreased. This finding is consistent with a study showing
that AMPK regulates Glut3 transporters’ movement toward
the plasma membrane and thus increases glucose transport in
neurons (Weisova et al., 2009). In summary, AMPK impacts
various aspects of normal pregnancy in females, not only as an
energy sensor but also participates in the precise regulation of
tissue growth and differentiation (Figure 3).

AMPK IN GENITAL DISEASES

Genital Cancers
The American Cancer Society reported that there were 317, 260
genital cancers cases diagnosed with a mortality rate of 21.3%
in 2019 in the United States alone, which seriously endangers
human reproductive health (Siegel et al., 2020). Currently,
there are many therapeutic regimes for genital malignancy, but
recurrence always tends to occur, and the overall prognosis for
patients remains still poor. Hence, developing novel molecular
targets for cancers is imperatively needed. LKB1 is the product
of the tumor suppressor gene STK11. Mutation of LKB1/STK11
leads to PJS, and such patients have an increased risk of
several cancers (Hearle et al., 2006). As a classical AMPK
upstream kinase, blocking LKB1 activation in rat liver cells
significantly abolished AMPK activation (Woods et al., 2003).
The close correlation between LKB1 and AMPK reminds us
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FIGURE 3 | Schematic representation of AMPK action in pregnancy. The diagram shows the importance of AMPK for a normal pregnancy. AMPK activity helps
establish uterine receptivity and regulates arterial blood flow and controls normal fetal growth and development.

that AMPK may regulate the tumor-suppressive effect of LKB1.
Clinically, metformin is often used in combination with other
anticancer drugs to reduce cancer incidence and achieve better
chemotherapy outcomes (Gadducci et al., 2016), suggesting that
AMPK may be involved in carcinogenesis. Several studies have
reported that AMPK protein functions in genital system cancers.
For example, it is reported that 20% of cervical cancer have LKB1
gene mutation (Wingo et al., 2009). Only those cervical cancer
cells harboring intact LKB1-AMPK-mTOR signaling are sensitive
to the administration of metformin (Xiao et al., 2012). Higher
expression of AMPK correlated with a smaller-size cervical tumor
(Choi et al., 2015). Therefore, the above studies showed that the
activation of AMPK is critical for retarding cervical cancer cell
growth. In addition, AMPK activation could induce apoptosis of
ovarian cancer cells and delay endometrial cancer progression by
inhibiting the mTOR and/or AKT pathways (Erdemoglu et al.,
2009; Xie et al., 2011; Yung et al., 2016), which suggesting AMPK
appears to serve as a tumor suppressor and exhibits an anti-
cancer effect on genital system cancers. Although the principle
how of AMPK plays an anti-cancer effect is far from understood,
researches on the role of AMPK in cell-cell junction and cell cycle
shed light on its other possible mechanisms. AMPK-mediated
regulation of apicobasal polarity establishment and tight junction
assembly (Forcet et al., 2005; Zhang et al., 2006; Lee et al., 2007)
are important to maintain cell normalization and defect in this
process increases tumor cell growth (Aznar et al., 2016). It’s now
widely accepted that cell cycle arrest is associated with the anti-
tumorigenic effect. AMPK can promote a cell cycle arrest at
the level of G1 and G2 by directly phosphorylating and thus
stabilizing p53 (Imamura et al., 2001; Jones et al., 2005). P53
is a key to understand how AMPK affects proliferation and its
regulation by AMPK also reveals the link between metabolism
and cell cycle. However, during tumor development processes,
cancer cells are often in a state of metabolic stress (hypoxia,

hormone deficiency, or radiochemotherapy, etc.), which activates
a stress-response molecule AMPK, inhibiting anabolism and
promoting catabolism to provide ATP, helping cancer cell escape
the crisis (Park et al., 2009). When androgen-dependent prostate
cancer cells are subjected to androgen deprivation or hypoxia,
AMPK activation induces autophagy, degrading intracellular
organelles, and providing sufficient nutrients for the survival
of cancer cells (Chhipa et al., 2010). Thus, AMPK activation-
induced autophagy is a protective survival mechanism for
androgen-dependent prostate cancer cells in a harsh living
environment, promoting prostate cancer cells’ transformation
into an androgen-independent phenotype (Chhipa et al., 2011).
Although AMPK activity has been repeatedly reported to be
related to prostate cancer cell growth and poor prognosis
(Park et al., 2009), paradoxically, AMPK activation also induces
apoptosis of DU-145 prostate cancer cells (Sauer et al., 2012).
Based on the current literature reports, AMPK may have a
duplex implication in genital system cancer development. AMPK
can either counteract growth-stimulating signaling mediated
by mTOR activation or act as a metabolic survival factor
in cancer cells, depending on different cancer cell types and
other compensations within the cell. Further investigation is
needed to answer the question and determine whether AMPK
can be as a target for drug therapy of reproductive system
related diseases.

PCOS
Polycystic ovary syndrome (PCOS) is a common gynecological
endocrine disease that affects about 6–21% of women in
reproductive age and is an important cause of female infertility
(Joham et al., 2015). Although the exact pathogenesis remains
unclear, PCOS patients are often present with ovarian cortical
thickening and multiple immature follicles, accompanied
by hyperandrogenic and insulin resistance. Metformin is
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commonly used clinically to treat PCOS patients, which can
reduce the serum progesterone and estrogen concentrations,
increase patients’ ovulation, fertilization, and pregnancy rates
(Vandermolen et al., 2001). Previously, it was widely believed
that metformin, as an insulin sensitizer, exerted its effects
by improving insulin resistance in PCOS patients (Morley
et al., 2017). However, in recent years, studies have found that
metformin is likely to rely on AMPK activation mechanism
to participate in the treatment of PCOS. AMPK activators
resveratrol and metformin have been shown to treat PCOS
in rats, reduce the body and ovary weights, testosterone
levels were observed, ameliorated the elevated number of
secondary and atretic follicles (Furat Rencber et al., 2018).
In a study mentioned above, metformin reduces granulosa
cells basal and FSH-stimulated steroid hormone secretion by
activating AMPK, which improves the formation of excessive
follicular cysts in the ovaries of patients with PCOS and
promotes the development of dominant follicles (Tosca et al.,
2007a). It is important to note that the endometrium of PCOS
patients is also in a state of insulin resistance. Compared
to healthy fertile women, the expression of AMPKα and
insulin-dependent glucose transporter (GLUT4) decrease in
the endometrium of PCOS patients, which are associated with
adverse reproductive outcomes. The downstream target of
AMPK, myocyte enhancer factor 2A (MEF2A), is involved in
the regulation of GLUT4 expression. When AMPK activation
increases MEF2A expression, MEF2A is transported to the
nucleus and binds to the GLUT4 promoter. Therefore, the
application of metformin can increase the expression of GLUT4
in the endometrium of PCOS patients, thereby improving
endometrial metabolic function and increasing pregnancy rates
(Carvajal et al., 2013).

TRANSCRIPTION REGULATION ROLES
OF AMPK IN REPRODUCTION

Transcription regulation is a multistep and complicated process
that heavily relies on the interaction between TFs and
their DNA recognition sites to modulate the activity of
genes (Chen and Rajewsky, 2007). In recent years, the
emerging role of AMPK signaling in the control of gene
expression through TF regulation has been documented.
Indeed, when energy shortage triggers AMPK activation
due to exercise/contraction in skeletal muscle, peroxisome
proliferator-activated receptor-γ co-activator 1α (PGC1α) and
transcription factor EB (TFEB)/transcription factor E3 (TFE3)
translocate to the nucleus where they activate mitochondrial
genes and metabolic genes such as pathways linked to the
expression of glucose transporters, glycolytic enzymes (Mansueto
et al., 2017; Markby and Sakamoto, 2020). An excellent
review published in 2020 has summarized the transcriptional
regulation by AMPK signaling (Sukumaran et al., 2020).
And more notably, while significant effort has been given
to explore the mechanism of how AMPK impacts gene
expression, its involvement in the field of reproduction are
less appreciated.

In fact, AMPK can influence reproduction activity not
only through acute effects of AMPK activation such as direct
phosphorylation of key enzymes but also through controlling
slower transcriptional events via modulation of TFs. Both
the aforementioned semen cryopreservation and environmental
exposure to toxic substances will put spermatozoa under
the threat of ROS (Li et al., 2017; Shabani Nashtaei et al.,
2017). However, the spermatozoa still retain their capacity of
fertilization, indicating spermatozoa themselves have a series of
intracellular biochemical reactions to achieve survival in the face
of oxidative stress. Increasing evidence has demonstrated that
exposure to cadmium (Cd) can result in reproductive toxicity in
humans (Pant et al., 2003) and rodents (Li et al., 2016), which
is due to Cd-induced ROS accumulation and then DNA damage
(Filipic, 2012; Li et al., 2016). Sperm DNA integrity is essential for
the accurate transmission of genetic information, and its damage
is one of the causes of abnormal sperm and male infertility
(Gunes et al., 2015). It has been reported that ATM was activated
by Cd-induced DNA damage and then positively regulates
autophagy through repression of mTOR signaling via the AMPK
pathway in mouse spermatocytes (Li et al., 2017). Subsequently,
autophagy provided energy for DNA damage repair via selective
degradation of damaged molecules and organelles (Towers
and Thorburn, 2016) and thus had a protective role in DNA
stability. In vivo, AMPK and mTOR always drive autophagy
in opposite directions. AMPK facilitates autophagy directly by
phosphorylating autophagy-related ULK1 and PIK3C3/VPS34
complexes or regulating the nuclear translocation of autophagy-
related transcription factors such as ACSS2 and FOXO3, TFEB,
while mTOR1 has an opposite, inhibitory role in these processes
(Li and Chen, 2019), thereby maintaining the dynamic balance
of autophagy. Actually, autophagy is a catabolic process mediated
by lysosomes (Towers and Thorburn, 2016). A paper published
by Young et al. (2016) linked AMPK and lysosomal biogenesis
to germ cell specification, revealing the possible mechanism
by which AMPK determines cell fates. Embryonic stem cells
(ESCs) possess the capability to differentiate into multiple
cell types (Young et al., 2016). The spatial and temporal
integration of numerous signaling cascades govern the induction
of lineage-specific transcription factors and determine cell
differentiation (Gadue et al., 2006). The transcription factors,
TFEB and TFE3, are known as important regulators of lysosomal
biogenesis and autophagic processes, whose activation induces
Coordinated Lysosomal Expression and Regulation (CLEAR)
target genes and up-regulates endolysosomes, thus providing a
suitable microenvironment for the canonical Wnt pathway to
free β-catenin and controlling the endodermal differentiation
program (Young et al., 2016). Mouse ESCs lacking AMPK
displayed severe endodermal defects because increased mTOR
signaling inhibits TFEB activity, indicating the important role
of AMPK in cell fate determination during differentiation
(Young et al., 2016). Interestingly, two teams recently reported
that AMPK could dephosphorylate TFEB/TFE3, induce their
nuclear localization independently of mTOR activity (Collodet
et al., 2019; El-Houjeiri et al., 2019), and activate TFEB/TFE3
boost the expression of lysosomal and inflammatory genes in
macrophages in response to infection (Hipolito et al., 2018;
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FIGURE 4 | Model depicting transcriptional regulation by phospho-AMPK in the field of reproduction. AMPK activation impacts gene expression involved in
biological processes such as embryonic development, spermatocyte DNA damage repair, and gonadal steroid hormones production.

El-Houjeiri et al., 2019). Additionally, stimulation of AMPK
could disturb the expression of specific developmental control
genes such as the pax3 gene in the embryo and cause durable
changes in phenotype under oxidative stress (Wu et al., 2012).
Hence, it is hardly difficult to see that AMPK is involved in a
wide variety of biological processes, including the biosynthesis
regulation of sex hormones. AMPK activation, whether the use
of activators or overexpression of the constitutively active form,
inhibits cyclic AMP (cAMP) -mediated steroidogenic enzyme
promoter activities and gene expression, ultimately reducing
testosterone production in Leydig cells (Ahn et al., 2012).
The importance of testosterone in maintaining male fertility is
indisputable, while the role of estradiol should not be ignored.
The aromatase enzyme in testis irreversibly converts androgens
into estrogens, and the infertile aromatase KO mice support the
direct actions of estrogen on spermatogenesis (Robertson et al.,
2001). A study using human testicular tissues has demonstrated
that the expression pattern of pAMPK was inversely associated
with aromatase expression and AMPK phosphorylation inhibits
the nuclear translocation of the cAMP response element-binding
protein- regulated transcription co-activator (CRCT), resulting
in failed aromatase expression (Ham et al., 2016), indicating the
important role of AMPK in the estrogen-mediated development
of germ cells. Taken together, these observations lead to the
conclusion that AMPK influences the binding between TFs and
their target DNA sequences, thus affecting gene expression in the
field of reproduction (Figure 4).

CONCLUSION

A large body of research has shown that AMPK is not limited
to serve as a major energy sensor to monitor the supply of
nutrients, but also involved in the regulation of reproduction

through several different strategies. AMPK affects the secretion
of GnRH and gonadotropins and integrates energy status
with fertility at the level of the hypothalamus and pituitary.
Furthermore, AMPK itself is also expressed in the gonad,
and is involved in regulating spermatogenesis and follicular
development. Of particular concern is the emerging role of
AMPK in transcriptional regulation, in which AMPK alters the
transcription efficiency of reproduction-related genes by affecting
the binding of transcription factors to their specific target
sequences. Here, we briefly summarized the effects of AMPK
activation on gene expression involving biological processes such
as embryonic development, spermatocyte DNA damage repair
and gonadal steroid hormone production, hoping to engender
interest in the field to fully understand how reproduction
and metabolism are tightly connected in the body through
transcriptional regulation by AMPK activation.
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