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Abstract: Critical shoulder angle (CSA) is the angle between the superior and inferior bony margins of
the glenoid and the most lateral border of the acromion. The acromial index (AI) is the distance from
the glenoid plane to the acromial lateral border and is divided by the distance from the glenoid plane
to the lateral aspect of the humeral head. Although both are used for predicting shoulder diseases,
research on their accuracy in predicting supraspinatus tendinopathy in patients with shoulder pain
is limited. Data were retrospectively collected from 308 patients with supraspinatus tendinopathy
between January 2018 and December 2019. Simultaneously, we gathered the data of 300 patients
with shoulder pain without supraspinatus tendinopathy, confirmed through ultrasound examination.
Baseline demographic data, CSA, and AI were compared using the independent Student’s t test and
Mann–Whitney U test. Categorical variables were analyzed using the chi-square test. A receiver
operating characteristic curve (ROC) analysis was performed to investigate the accuracy of CSA and
AI for predicting supraspinatus tendinopathy, and the optimal cut-off point was determined using
the Youden index. No statistical differences were observed for age, sex, body mass index, evaluated
side (dominant), diabetes mellitus, and hyperlipidemia between the groups. The supraspinatus
tendinopathy group showed higher CSAs (p < 0.001) than did the non-supraspinatus tendinopathy
group. For predicting supraspinatus tendinopathy, the area under the curve (AUC) of ROC curve
of the CSA was 76.8%, revealing acceptable discrimination. The AUC of AI was 46.9%, revealing
no discrimination. Moreover, when patients with shoulder pain had a CSA > 38.11◦, the specificity
and sensitivity of CSA in predicting supraspinatus tendinopathy were 71.0% and 71.8%, respectively.
CSA could be considered an objective assessment tool to predict supraspinatus tendinopathy in
patients with shoulder pain. AI revealed no discrimination in predicting supraspinatus tendinopathy
in patients with shoulder pain.

Keywords: shoulder; supraspinatus tendinopathy; critical shoulder angle; acromial index

1. Introduction

Supraspinatus (SS) tendinopathy is a type of tendon disorder characterized by pain
and impaired function. It is related to degeneration, irritation, overuse, and poor strain
mechanics [1,2]. Shoulder impingement syndrome is also believed to lead to SS tendinopa-
thy [3]. Moreover, the causes of SS tendinopathy are variable and can be divided into
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intrinsic and extrinsic factors [3]. Intrinsic factors include age, excessive weight, and
impaired biomechanics, including malalignments and decreased flexibility, causing degen-
erative changes and reduced strength of the tendon [4–6]. Extrinsic factors can be divided
into primary and secondary impingement, which result from increased subacromial load-
ing and muscle overload/imbalance, respectively [3,7–10]. Studies have reported that SS
tendinopathy leads to poor sleep quality, low quality of life, and work absenteeism [11–13].

Rotator cuff tendinopathy is the most common cause of shoulder disorders [14], and
its prevalence rates range from 5–10%, 30–35%, and up to 80% in people aged <20 years,
60–80 years, and >80 years, respectively [15–17]. Despite their variable etiology, supraspina-
tus tendinopathy is the most common among rotator cuff diseases, affecting 61.9% of men
and 38.1% of women [18]. Hsiao et al. reported that subacromial impingement occurred
at 7.77 per 1000 person-years in the military and observed that those aged >40 years had
an increased risk of subacromial impingement, thereby leading to an increased risk of SS
tendinopathy [19].

“Critical shoulder angle” (CSA), proposed by Moor et al., representing the inclination
of the lateral extension of the acromion and glenoid on an anteroposterior (AP) radio-
graph [20], was reported higher in patients with degenerative rotator cuff tear than in those
with non-rotator cuff tears [21]. Recent studies have also used CSA to predict supraspina-
tus tendon tear [22] and the risk of supraspinatus retear after surgery [23]. Furthermore,
CSA along with age was found to predict cuff tear arthropathy, osteoarthritis, rotator cuff
impingement, and calcified tendinitis [24]. On the other hand, “Acromial index” (AI),
introduced by Nyffeler et al., representing the lateral extension of the acromion above the
humeral head [25], has been revealed as a predictor of rotator cuff tear [21,26]. However, the
ability of AI to predict the postoperative outcomes of rotator cuff tears is conflicting [27,28].
As Neer reported, 95% of rotator cuff tears might arise from SS tendinopathy, which is
caused by the predisposition to the conditions of anatomic impingement [7].

Despite many studies evaluating the outcomes of rotator cuff disorders by using
CSA and AI, no study has investigated the relationship between CSA and AI with SS
tendinopathy. Therefore, this study aims to establish the association between CSA, AI,
and supraspinatus tendinopathy, comparing the accuracy of CSA and AI in predicting
supraspinatus tendinopathy.

2. Materials and Methods
2.1. Study Design and Participants

This study was designed as a retrospective case–control cross-sectional investigation
and performed in a medical university hospital between January 2018 and December 2019.
All participants were recruited from orthopedic and rehabilitation outpatient departments,
and the Institutional Review Board of Taipei Medical University (N202011086) approved the
study protocol. We applied the following inclusion criteria: (1) age between 20 and 80 years,
(2) having shoulder pain, and (3) undergoing shoulder X-ray and ultrasound evaluation.
The following exclusion criteria were applied: (1) previously underwent shoulder surgery
around the shoulder; (2) having glenohumeral osteoarthritis and acromioclavicular arthritis,
which could affect CSA and AI measurements; and (3) poor quality of shoulder radiographic
images. Based on the findings of the shoulder ultrasound and physical examination (both
painful arc and empty can test positive), participants were divided into the SS tendinopathy
group and non-SS tendinopathy group. Baseline demographic data, such as age, sex,
affected side, body mass index (BMI), history of diabetes mellitus, and hyperlipidemia,
were obtained from medical charts.

2.2. Radiographic Evaluation for CSA and AI

After demographic data collection, conventional AP shoulder radiographs were ob-
tained on the day of the outpatient department visit. The image was taken with the patient
in the upright standing position with a descending beam tilt of 20◦. The shoulder AP image
was obtained using a standardized protocol such that CSA could be measured accurately
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by clearly presenting the superior and inferior border of the glenoid fossa, and inferolateral
border of the acromion. We adopted the CSA measurement protocol reported by Blonna
et al. [29]. When the radiograph was not affected by rotation and overlapping of the anterior
and posterior edges of the glenoid cavity, we defined it as having sufficient image quality
for CSA assessment. Based on a previous study, the inter- and intra-observer reliability for
measuring the CSA was excellent [30]. CSA was measured from the angle made by the
superior and inferior bony margins of the glenoid and a line from the inferior bony margin
of the glenoid to the most lateral border of the acromion (Figure 1A). As for AI, the GA was
taken as the distance between the glenoid plane and lateral border of the acromion, and
the GH was taken as the distance between the glenoid plane to the lateral aspect of the
humeral head. AI was evaluated as the ratio of GA to GH (Figure 1B) [25].
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Figure 1. (A) The critical shoulder angle (CSA) is formed from a line connecting the inferior and
superior borders of the glenoid fossa and another line connecting the inferior border of the glenoid
with the inferolateral border of the acromion. (B) The acromial index is the ratio of the distance from
the glenoid plane to the lateral border of the acromion (GA) to the distance from the glenoid plane to
the most lateral aspect of the humeral head (GH). AI = GA / GH.

2.3. Ultrasound Evaluation with Physical Examination of SS Tendinopathy

SS tendinopathy was confirmed through ultrasound and physical examination after
the radiographic evaluation. The ultrasound and physical examination were performed
by different physiatrists in our department. An experienced physiatrist, who was blinded
to the result of the radiographic study of the shoulder, performed the evaluation for SS
tendinopathy. Patients with SS tendinopathy displayed shoulder pain when performing
shoulder abduction between 60◦ and 120◦, and patients did not have radiation of pain
to the neck or down the arm [31,32]. In addition, the empty can test was performed as
the provocation test [33]. For ultrasound examination, patients assumed the modified
Crass position with the palm on the iliac crest and the elbow directed posteriorly [34].
Sonography revealed thickening (>8 mm), hypoechogenicity, and heterogeneity in cases of
SS tendinopathy [35]. According to a review article, ultrasound demonstrated a sensitivity
of 79% and a specificity of 94% for the detection of rotator cuff tendinopathy [36].

2.4. Sample Size Estimation

G-Power 3.1 was used to estimate the sample size required for an analysis of two
groups of independent means in the study. We input the effect size dz was 0.15, an alpha of
0.05, with a power of 0.95. We determined that a minimum total sample size of 483 was
required to identify differences between the study groups. Considering the probability
of patients’ data lacking and excluded due to the matching process, we enrolled more
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than 483 patients (653 patients) in our study to ensure adequate statistical power with an
anticipated power of 0.95.

2.5. Statistical Analysis

Based on the ultrasound findings of SS tendinopathy, we divided all participants
into the SS tendinopathy and non-SS tendinopathy groups. For reducing the influence
of confounders, we match the demographic data such as age, sex, BMI, affected side,
diabetes mellitus, and hyperlipidemia with a 1:1 ratio of both groups. The variables of
age, sex, BMI, affected side, diabetes mellitus, hyperlipidemia, CSA, GA, GH, and AI are
presented as the mean and number of patients. Continuous variables between the groups
were compared using the independent Student’s t-test after the Kolmogorov–Smirnov test
was performed to confirm these were normal distribution. If the data were not a normal
distribution, we performed the Mann–Whitney U test to compare the mean value between
the groups. The chi-square test was used for comparing categorical variables between
the groups. We performed receiver operating characteristic (ROC) curve analyses of CSA
and AI to estimate their accuracy for predicting SS tendinopathy. The cut-off points of
optimal sensitivity and specificity of CSA and AI were determined by the Youden index.
All statistical analyses were performed using Statistical Package for the Social Sciences
(version 19.0; IBM, Armonk, NY, USA), and p < 0.05 was considered statistically significant.

3. Results

In total, 806 participants with shoulder pain met the inclusion criteria. Of them, 34,
25, 61, and 33 were excluded because of osteoarthritis, fracture, supraspinatus tear, and
poor image quality for CSA measurement, respectively. Finally, 653 patients were included
in this study. Based on the findings of ultrasound and physical examination, 339 patients
were diagnosed as having SS tendinopathy; 314 participants having shoulder pain without
SS tendinopathy comprised the non-SS tendinopathy group. For controlling the bias of
the retrospective study, we matched the baseline variables between these two groups.
Finally, 308 (148 men and 160 women) and 300 (143 men and 157 women) participants were
included in the SS tendinopathy and non-SS tendinopathy groups, respectively (Figure 2).

No statistical differences were observed in demographic variables, such as age, sex,
dominant side, BMI, diabetes mellitus, and hyperlipidemia, between these two groups
(Table 1). Among these supraspinatus tendinopathy patients, there were 103 (33.4%) with
supraspinatus calcific tendonitis, 90 (29.2%) with partial thickness tear, 89 (28.9) with
supraspinatus tendinosis, and 26 (8.4%) with full thickness tear.

Table 1. Demographic and characteristics of Supraspinatus tendinopathy (SS tendinopathy) and
Non-Supraspinatus tendinopathy (non-SS tendinopathy) groups.

Variables SS Tendinopathy
(n = 308)

Non-SS Tendinopathy
(n = 300) p Value

Age, y 57.1 ± 12.3 57.2 ± 13.0 0.870
Sex, n (male) 148 143 0.935

Evaluated side, n (dominant) 178 169 0.743
BMI, kg/m2 25.3 ± 3.5 25.2 ± 3.9 0.785

DM, n 59 65 0.481
Hyperlipidemia, n 28 32 0.587

Continuous data are shown as the mean ± standard deviation and categorical data as the number of patients; the
p value was calculated using the Student’s t test for continuous variables and the chi-square test for categorical;
variables; BMI, body mass index; DM, diabetes mellitus; VAS, visual analog scale.
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Figure 2. Flowchart of this study.

The results of the quantitative radiographic assessment presented in Table 2, demon-
strated a significantly higher CSA in the SS tendinopathy group (40.29◦ ± 4.81◦) than in the
non-SS tendinopathy group (36.10◦ ± 3.55◦; p < 0.001; 95% CI of difference: −4.9◦ to −3.5◦).
However, the GA, GH, and AI between the groups revealed no significant difference.

Table 2. Quantitative radiographic assessment of Supraspinatus tendinopathy (SS tendinopathy) and
Non-Supraspinatus tendinopathy (non-SS tendinopathy) groups.

X-ray Index SS Tendinopathy
(n = 308)

Non-SS Tendinopathy
(n = 300) p Value

CSA 40.29 ± 4.81 36.10 ± 3.55 <0.001 *
GA 3.76 ± 0.40 3.78 ± 0.38 0.377
GH 4.96 ± 0.54 4.94 ± 0.54 0.733
AI 0.76 ± 0.08 0.77 ± 0.08 0.088

Data were presented as the mean ± standard deviation; CSA, critical shoulder angle; GA, glenoid plane to the
lateral border of the acromion distance; GH, glenoid plane to the most lateral aspect of the humeral head (GH);
AI, acromial index * p < 0.05 by Mann–Whitney U test.

The ROC curve shown in Figure 3 with the area under the curve (AUC) for CSA was
76.8%, showing acceptable discrimination for patients with SS tendinopathy. However, the
AUC of AI was 46.9% for predicting patients with non-SS tendinopathy, which showed no
discrimination. According to the Youden index, the cut-off point of CSA was 38.11◦ with a
sensitivity of 71.8% and a specificity of 71.0% in predicting SS tendinopathy. (Figure 3).
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4. Discussion

To summarize, our results revealed that at a cut-off, CSA of 38.11◦demonstrated
acceptable discrimination for predicting SS tendinopathy in patients with shoulder pain.
CSA showed a sensitivity of 71.8% and a specificity of 71.0%. However, AI revealed no
discrimination for SS tendinopathy. This is the first study to investigate the diagnostic
accuracy of SS tendinopathy in patients with shoulder pain by using CSA and AI on
shoulder radiography.

Radiographic assessment is usually performed in clinics to evaluate patients with
shoulder pain, with ultrasound possibly being required as a follow-up evaluation as
determined by clinicians. Previous studies have revealed CSA as an objective assessment
to predict rotator cuff tear, rotator cuff retear after surgery, shoulder impingement, calcified
tendinitis, and glenohumeral osteoarthritis [23,24,37–39]. Our results first revealed CSA
as a predictor of SS tendinopathy, which accounted for a proportion of patients with
shoulder pain.

Immense stress is placed on the supraspinatus tendon, inserted under the acromion
process, during shoulder abduction [7]. In addition, repetitive shoulder adduction places
high loads on the supraspinatus tendon, thus causing SS tendinopathy [40,41]. Experimen-
tally, increasing CSA would reduce the supero-inferior joint stability, leading to increased
loads on the SS tendon to compensate for shoulder instability [40]. In addition, the work-
load of the rotator cuff increases in cases of high CSAs to counterbalance the ascending
force of the deltoid, thus increasing mechanical burden and causing SS tendinopathy or
tear [22]. SS tendinopathy can be a progressive disorder beginning with acute tendinitis,
progressing to tendinosis with degeneration, and finally resulting in rotator cuff tear or
rupture [7]. Numerous studies have demonstrated an association of CSA with rotator cuff
tear or retear after surgery [23,25,39]. Theoretically, the mechanism detailed earlier could
theoretically explain the relationship between CSA and SS tendinopathy.

Watanabe et al. and Heuberer et al. have reported a CSA of over 36.3◦ as a predictor
of rotator cuff tear [24,42]. In addition, the more severe the rotator cuff tear is, the higher is
CSA [43]. A recent systematic review by Zaid et al. demonstrated that several studies have
reported significantly higher CSA in patients with rotator cuff tear compared to control
groups [44]. Similarly, our results revealed significant differences in CSA between the SS
tendinopathy and non-SS tendinopathy groups. This finding may be attributed to the
same etiology that includes overload activity, muscle imbalance, shoulder impingement
syndrome, and history of trauma [45,46]. In addition, SS tendinopathy is initially found
before rotator cuff tear [7]; therefore, a high CSA could be a reasonable predictor of SS
tendinopathy. Although SS tendinopathy may progress to supraspinatus tear, our study
reported 38.11◦ as the cut-off of CSA for SS tendinopathy, which is higher than CSA in
patients with rotator cuff tear (36◦ in earlier studies). This result may be attributed to the
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following reasons. First, our study included patients with shoulder pain, which increased
the possibility of shoulder impingement caused by a high CSA; by contrast, previous
studies were not limited to patients with shoulder pain [24,44]. Second, a study reported a
higher CSA in degenerative rotator cuff tear than in traumatic rotator cuff tear (36.8◦ vs.
35.3◦) [47]. Therefore, the difference in the proportion of the traumatic etiology of rotator
cuff tear or SS tendinopathy may contribute to the difference in CSAs. Third, the different
races may influence the type of build, which may cause different outcomes compared to
previous studies.

In addition to CSA, a more lateral extension of the acromion is assumed to increase
the force vector of the deltoid muscle, resulting in the subacromial abrasion of the rotator
cuff tendon [25]. Based on this assumption, AI may be associated with rotator cuff tear or
SS tendinopathy. Our results showed that AI is not suitable for predicting SS tendinopathy,
although SS tendinopathy may potentially progress to rotator cuff tear. Miyazaki et al.
reported that AI is associated with rotator cuff tear in Brazilians, but not in the Japanese
population [48]; in addition, a different study revealed that AI may not be appropriate for
predicting rotator cuff tear in the Taiwanese population [39]. Racial differences influencing
unknown factors other than AI and impingement effect may be the reason for the conflicting
results; thus, further investigation of such factors should be performed.

The strength of our study is using radiography to measure CSA for predicting SS
tendinopathy in patients with shoulder pain, which was an objective assessment. CSA
also demonstrated better accuracy than did AI in clinical applications for predicting SS
tendinopathy. Nevertheless, our study has certain limitations. First, this was a retrospec-
tive study. To prevent heterogeneous data collection and bias of the radiographic image
measurement, we controlled the demographic variables between the SS tendinopathy and
non-SS tendinopathy groups by matching and standardizing the evaluation protocol of
CSA and AI measurements. In addition, the assessor was blinded to the allocation of the
group of patients with shoulder pain to reduce the evaluation bias. Second, morphologic
parameters, such as low lateral acromion angles, anterior slope, and the shape of the
acromion, were not analyzed in the study, which may affect rotator cuff pathologies [49–51].
Although these parameters of rotator cuff disease are debatable, the interaction among AI,
CSA, and these parameters should be considered. Third, our study did not use MRI, which
is considered a gold standard diagnostic tool, for detecting supraspinatus tendinopathy.
However, considering cost, availability, safety, and efficiency of management, ultrasound is
probably an option in most settings for the diagnosis of supraspinatus tendinopathy of daily
practice. Finally, our study evaluated participants of a single race in Asia, and different
races may affect results as previously mentioned. Finally, we evaluated only risk factors
such as diabetes mellitus, hyperlipidemia, age, and BMI; factors such as biomechanical
load in daily life and exercise should also be taken into account.

5. Conclusions

CSA could be used as an objective assessment tool to predict SS tendinopathy in
patients with shoulder pain. Moreover, AI revealed no discrimination in predicting SS
tendinopathy for patients with shoulder pain in our study. Although the AUC of CSA for
predicting SS tendinopathy in patients with shoulder pain revealed acceptable discrimina-
tion, room for improvement remains. More extensive studies combined with other factors
for predicting SS tendinopathy are required to strengthen the discrimination in the future.
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