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Introduction

Vibration was initially researched using localized high-
frequencies as a means to study the actions of muscle 
spindles1-3. Previous research also focused on vibration as 
a possible occupational hazard4,5, as an occurrence which 
could negatively affect athletic performance in certain 
sport activities6, and also as a method of rehabilitation for 
musculoskeletal injuries and conditions7-10. The focus of the 
current literature has centered on examining vibration at lower 
frequencies to enhancing acute muscular performance11-14.

The recent positive findings in low-frequency vibration 
research specific to muscle adaptation has led to studies 

focused on using vibration as an exercise method; this is 
referred to as whole-body vibration (WBV) that involves a 
vibrating platform. The idea of WBV is to utilize the isolated 
positive effects, such as muscle spindle activation1,3,15,16 and 
muscular performance8,17-19, and apply them to exercise and 
training for the entire body.

Theoretically, positive results due to WBV are a product 
of muscle activation20-23. WBV is based on the concept of 
muscle spindle activation and the resulting position feedback 
and muscle stretch provided by the vibration stimulation24,25. 
An increase in muscle spindle sensitivity could potentially 
improve the neuromuscular response. The difficulty with 
WBV and the theory of muscle activation is how to measure 
these adaptations. 

One possibility of measuring muscle spindle sensitivity 
is from electromechanical delay (EMD), which is defined the 
lag time between muscle activation and force production26. 
Increased muscle spindle sensitivity due to vibration 
increases spindle feedback which affects impulse firing to the 
muscle fiber, essentially priming the fibers for contraction3. 
In other words, enhanced spindle sensitivity results in an 
increased number of cross bridges, taking up a portion 
of the slack in the series elastic component and ultimately 
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decreasing EMD. Therefore, a decrease in EMD would provide 
evidence for enhanced muscle spindle sensitivity.

Many studies have utilized the theory of increased muscle 
activation to explain muscle strength and power responses 
of muscles due to WBV. Acute responses to WBV have shown 
significant increases in lower-limb strength19,27, and lower-
limb muscular power28,29. Directly following application, WBV 
has also provided evidence of significant improvements in 
vertical jump performance12,18,19,30. The majority of studies 
shows that WBV can have a positive influence on muscle 
strength and power responses, although a few studies 
have found acute WBV to have either no effect on lower-
limb muscular performance31 or an increase of fatigue and 
decreased performance25.

The literature has shown that acute WBV has potential 
benefits for neuromuscular performance. More research, 
however, is required to explain the positive WBV findings. 
Therefore, the purpose of this study was to determine the 
effect of 10-minutes of WBV on EMD and vertical jump 
performance. It was hypothesized that WBV would decrease 
EMD and enhance vertical jump.

Materials and Methods

Participants

Twenty healthy college-aged students (13 males and 
7 females; mean±SD; height: 175.5±1.02 cm; weight: 
72.3±11.2 kg; body mass index: 23.5; age: 22.9±2.2 years) 
volunteered for the study. The sample size was based on 
earlier research that reported an improvement of 8% in 
vertical jump of 2.4 cm ± 3.4 [SD]12. With α=0.05 and β=0.8, 
a sample size of 16 was required. To ensure greater statistical 
power, 20 recreationally active participants completed the 
study. For purposes of this study. ‘recreationally active’ was 
defined as participating in at least 30-minutes of exercise 
twice per week, not currently involved in any rigorous 
resistance or athletic training program, and had no lower-
limb injuries within the last year. This study was approved by 
the University Institutional Review Board for Ethics. 

All participants signed informed consent and were 
familiarized with the methods and procedures prior to 
testing. Each participant was assigned a treatment order 
using a counterbalance design. At least 2 days following the 
first treatment and testing, all participants performed the 
second treatment.

Experimental Procedures

At baseline, participants were tested for involuntary 
EMD and maximal CMJ. After baseline measurements, 
participants either performed a 10-minute WBV or control 
(no WBV). At no less than 2 days following the first treatment, 
each participant received the alternate treatment.

WBV was performed on a vertical vibration platform 
(Power Plate North America, Inc., Northbrook, IL). Adhering 
to the suggested whole-body vibration reporting guidelines32 
vibration was administered at a frequency of 26 Hz and the 

“high” setting of amplitude. Actual vibration frequency and 
amplitude was checked and sampled using a Vicon Nexus 
motion analysis system (Vicon, Denver, USA) and a PCB 
Piezotronics model 356a11 triaxial accelerometer (PCB 
Piezotronics Inc., New York, USA) to measure the input 
vibration to the platform. Thus, the actual frequency was 
26 Hz and 3.6 mm amplitude. Participants stood on the 
vibration platform with their feet hip width apart and they 
were instructed to feel as if more weight was distributed 
more towards their heels, in a half-squat (45° knee flexion set 
by a goniometer), with hands placed on the machine’s railing 
for balance. An elastic band apparatus was positioned under 
participants’ gluteal region, and participants were instructed 
to keep resistance on the elastic band once the knee angle was 
set. The WBV protocol was modeled on the study of Bosco, 
Iacovelli, Tsarpela, Cardinale, Bonifazi, Tihanyi, Viru, De 
Lorenzo and Viru18. However, in piloting testing, participants 
could not maintain the knee flexion without excessive fatigue. 
Thus, we adapted the knee angle (45° knee flexion) during 
the half-squat compared Bosco, Iacovelli, Tsarpela, Cardinale, 
Bonifazi, Tihanyi, Viru, De Lorenzo and Viru18 to a knee angle 
of 100°. 

WBV consisted of 60 s intervals, with 60 s of rest between 
each interval. After 5 bouts of WBV, participants received 
6-minutes of rest, which included the second session of 
testing for EMD and maximal CMJ. Following this, another 
5 bouts of WBV were performed, for a total of 10-minutes 
of WBV. For the control the exact protocol of WBV was 
performed on the vibration platform, but with no vibration. 
EMD and CMJ were assessed at baseline (pre-treatment), 
mid-way through treatment and post-treatment for WBV and 
control treatments. 

Involuntary EMD. This was assessed using a supramaximal 
percutaneous electrical muscle stimulation (ISOC, BIOPAC 
Systems Inc., Santa Barbara, CA) of the tibial nerve, similar to 
the peroneal method used by Mora, Quinteiro-Blondin, Perot, 
Isabelle, Sylvie and Chantal33. A water-based gel was used on 
the stimulator bar and the stimulation electrode was placed 
over the tibial nerve, at the posterior aspect of the knee, in 
the popliteal space. To ensure correct positioning over the 
tibial nerve, the stimulator was tested and moved until a 
supramaximal stimulation (maximum m-wave) of the MG was 
detected. On determining the correct stimulator position, it 
was then secured to the leg using elastic athletic tape (3M 
Coban, AR, USA).

Each participant then stood with the right foot on a force 
plate (AMTI Measurements Group, Watertown, MA) with the 
heel on a marked position. The left foot was positioned on 
the floor, to the side of the force plate over a marked spot. 
Participants then placed hands on a support stand located 
30.5 cm in front of toes at the level of the naval and were 
instructed not to lean on it but use only to maintain balance. 
Participants were then instructed to relax with weight 
equally distributed to both legs, with knees extended. Three 
stimuli were then administered with 30 s of rest between 
each stimulation.

During stimulation, muscle activation from the MG was 



375http://www.ismni.org

J.B. Feland et al.: Whole-body vibration, electromechanical delay and vertical jump

measured using surface electromyography (EMG) (MP150, 
BIOPAC Systems, Inc., Santa Barbara, CA). The skin of each 
participant’s right leg of the MG, medial malleolus, and the 
posterior aspect of the knee were shaved if needed and cleaned 
with isopropyl alcohol. Two pre-gelled Ag-AgCl electrodes 
(Type Blue Sensor P00S, Medicotest, Ølstykke, Denmark) 
were placed on the medial head of the MG, parallel to the 
muscle fibers and 2 cm superior the distal end. The ground 
electrode was placed on the medial malleolus. EMG was 
measured using the Biopac MP100 system (BIOPAC Systems 
Inc., Santa Barbara, CA). Signals were amplified (TEL100M, 
BIOPAC Systems Inc., Santa Barbara, CA) from disposable, 
pre-gelled Ag-AgCl electrodes. The EMG measurements 
were collected at 1000 Hz. The input impedance of the 
amplifier was 1.0 megaohm, with a common mode rejection 
ratio of 90 dB, high and low pass filters of 20 and 400 Hz, 
a signal to noise ratio of 70 dB, and a gain of 1000. Raw 
EMG signals were processed using a root mean square 
algorithm with a 5 msec moving window. The plantar flexion 
moment was measured using the force plate. Vertical ground 
reaction force, detected on the force plate, represented the 
force induced by stimulation and timing of the movement. A 
specifically designed software program on Microsoft Visual 
Basic (Microsoft, Portland, Oregon) was used to identify the 
onset of muscle activity and force to calculate EMD. EMD was 
calculated from the time EMG first detected stimulation to the 
time a force was observed (±2 SD).

Vertical Counter-Movement Jump. For each time interval 
(baseline, mid-treatment, and post-treatment) participants 
performed 3 maximal vertical CMJ with their hands on their 
hips and jump as high as possible. The depth of the jump 
was self-selected. Each CMJ was performed on a force plate 
(AMTI Measurements Group, Watertown, MA) and the force 
was collected at 1000 Hz during each jump. An analog to 
digital conversion card (Keithley 3100, Keithley Instuments 
Inc., Cleavland, OH) combined with Microsoft Visual Basic 
(Microsoft, Portland, Oregon) provided the vertical force. 
Flight time was calculated using the time when force was 
below 20 N. 
Jump height was estimated using the following equation:

CMJ height = ½ g * [t / 2]2

Where g is the gravitational acceleration for the site of 
data collection, estimated at 9.797 m/s2, t= time in air34. 
From the 3 maximal CMJ the maximal height was used for 
comparisons. This method of determining vertical jump has 
been found to be both very reliable and valid35.

Statistical Analysis

The average EMD and maximal CMJ height from each 
time interval of WBV and control treatments was used for 
data analysis. Descriptive statistics of treatment means and 
standard deviations were calculated for both the control 
and WBV EMD and CMJ results. Means were normalized to 
baseline and reported as a percent change (Table 1). A (2 
treatments x 3 time intervals) repeated measures factorial 
ANOVA was used to detect differences between treatments 

over time for both EMD and CMJ using the SPSS (version 11.5 
Chicago, IL, USA). The significance level was set at p≤0.05.

Results

No significant differences were detected in EMD between 
treatments (F(2, 38)=1.385, p=0.263). A non-significant 
decrease in EMD was observed in the mid and post-testing 
compared to baseline of 5.9% and 5.2% in the control and 
a 0.4% and 0.1% decrease in WBV (Table 1). No significant 
differences were detected in CMJ between treatments 
(F(2, 38)=0.040, p<0.96). A non-significant 4.0% and 
3.6% decrease in CMJ for the control, and 4.2% and 3.5% 
decrease for WBV of the mid and post-testing compared to 
baseline (Table 2). 

Discussion

The purpose of this study was to determine if an increase 
in CMJ from acute WBV could be explained by measuring 
EMD as an estimate of spindle sensitivity. The results of this 
study reported no significant difference in EMD between 
WBV and control. In earlier work using the same EMD 
method as the present study, researchers concluded that 
peroneus longus EMD could be used as an indirect method 
for assessing muscle stiffness; reporting that a decrease 
in EMD was a product of spindle sensitivity due to greater 
stiffness around the joint33. In effect, a decrease in EMD 
would indicate an increase in muscle spindle sensitivity and 
muscle activation. When muscles are vibrated, it has been 
theorized that spindle sensitivity is enhanced and muscle 
stiffness increases to damp the vibration24. The increased 
stiffness and change in muscle spindle sensitivity, increases 
the muscle’s α-motoneuron activity and the number of actin-

Table 1. Normalized Percentage (mean ± SD) of EMD in Control and 
WBV.

Time Control WBV

Baseline 0.00 ± 0.00 0.00 ± 0.00

Mid-Treatment -5.88 ± 16.46 -0.39 ± 11.49

Post-Treatment -5.20 ± 12.26 0.10 ± 6.63

Table 2. Normalized Percentage (mean ± SD) of Vertical Counter-
Movement Jump in Control and WBV.

Time Control WBV 

Baseline  0.00 ± 0.00  0.00 ± 0.00

Mid-Treatment -3.98 ± 3.21 -4.23 ± 2.72

Post-Treatment -3.62 ± 4.63 -3.54 ± 4.91
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myosin cross-bridges. Therefore, since cross bridges have 
already been formed the time necessary to take up slack in 
the series elastic component may be significantly reduced, 
decreasing the overall time between activation and force 
development36.

Several studies have attributed improvements in muscle 
performance due to WBV, to increased muscle spindle 
sensitivity and the feedback system19,37. However, in the 
current study there was no change in EMD following WBV, 
indicating, no increased muscle spindle sensitivity. In earlier 
studies, the acute effect of WBV on EMD remains unclear. 
After an acute bout of WBV soleus EMD was significantly 
reduced by 15.6% (20 Hz, 5 mm)38, while others have 
reported no change in EMD of vastus lateralis (26 Hz, 6 
mm)39, vastus medialis and vastus lateralis (26 Hz) and 
peroneus longus40. The lack of EMD response following 
WBV in the current study, may be due to the duration of the 
experimental protocol that could have elicited fatigue, mainly 
in the control treatment. The majority of the participants 
reported WBV having a relaxing effect while the control 
participants provided feedback that fatigue started to set in 
during the static half-squat. While not significant, the control 
exhibited, a mid- and post-treatment decrease of 5.9% and 
5.2% in EMD compared to baseline, while WBV contributed 
0.4% and 0.1% decrease in EMD compared to baseline. 
It is plausible that the muscle spindle or EMD coexisted 
with fatigue of the muscle. When large motor units begin 
to fatigue, muscle spindles initiate a feedback contribution 
to decrease activation rates and reduce the muscle’s loss 
of force during the contraction41. Hortobagyi, Lambert and 
Kroll42 reported that CMJ performance following fatigue, 
participants compensated for fatigue by enhancing muscle 
spindle sensitivity. In another study, fatigue and 3-minute of 
rest decreased EMD, indicating that the fatigue effect may 
persist for a long period43. Further, the contribution of MG to 
CMJ performance may be a factor in addressing the present 
EMD result. Previous research reported that the lower-limb 
percentage contribution for CMJ performance were30,42, 
28% for the hip, knee and ankle, respectively44. It is plausible 
that MG EMD may not be indicative of lower-limb response to 
WBV and future research should assess the implications of 
using MG EMD. 

In contrast to previous findings12,17,30,31,45 current findings 
reported no significant increase in CMJ following acute WBV. 
The disparity between results appears to be the variability 
of WBV parameters (vibration frequency, amplitude and 
duration) and the use of different vibration platforms. It 
is still unknown what the optimal acute WBV parameters 
are for enhancing CMJ. Another explanation for the non-
significant differences between treatments may exist with 
the knee flexion angle. From our pilot work participants 
were unable to tolerate 1-minute bouts in a deeper squat as 
described by previous research17; therefore, we prescribed a 
less aggressive knee flexion angle. The knee can attenuate 
vibration transmission46, with knee angles smaller than 180° 
(knee extension=180°) damping mechanical vibration before 
reaching the hip47. This may be a factor in optimizing hip joint 

moment and consequently CMJ performance. In considering 
the limitations of the current study examined the effect of a 
single WBV exposure. The covariate of sex (male, female) was 
not analyze due to the unequal sample of males and females. 
However, the group is representative of recreationally active 
participants, but future studies should investigate other 
populations and a greater range of vibration frequencies 
and amplitudes could be examined. The strength the present 
study provided an investigation to determining a potential 
WBV mechanism and related performance. 

In conclusion, our findings suggest acute WBV has no 
effect on EMD and does not enhance CMJ performance. 
Future work may focus on an optimal training protocol, 
including WBV duration, frequency, and amplitude, that 
might have beneficial effects. Additional research is required 
to determine the applicability and reliability of EMD in 
measuring muscle spindle sensitivity.
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